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Introduction to the features of SAS 

1. Introduction 

This module illustrates some of the features of The SAS System.  SAS is a comprehensive package with 
very powerful data management tools, a wide variety of statistical analysis and graphical 
procedures.  This is a very brief introduction and only covers just a fraction of all of the features of SAS. 
We use the following data file to illustrate the features of SAS.   This data file contains information 
about 26 automobiles, namely their make, price, miles per gallon, repair rating (in 1978), weight in 
pounds, length in inches, and whether the car was foreign or domestic.  Here is the data file.  

make   price mpg rep78 weight length foreign 
 
AMC     4099 22  3     2930   186    0 
AMC     4749 17  3     3350   173    0 
AMC     3799 22  3     2640   168    0 
Audi    9690 17  5     2830   189    1 
Audi    6295 23  3     2070   174    1 
BMW     9735 25  4     2650   177    1 
Buick   4816 20  3     3250   196    0 
Buick   7827 15  4     4080   222    0 
Buick   5788 18  3     3670   218    0 
Buick   4453 26  3     2230   170    0 
Buick   5189 20  3     3280   200    0 
Buick  10372 16  3     3880   207    0 
Buick   4082 19  3     3400   200    0 
Cad.   11385 14  3     4330   221    0 
Cad.   14500 14  2     3900   204    0 
Cad.   15906 21  3     4290   204    0 
Chev.   3299 29  3     2110   163    0 
Chev.   5705 16  4     3690   212    0 
Chev.   4504 22  3     3180   193    0 
Chev.   5104 22  2     3220   200    0 
Chev.   3667 24  2     2750   179    0 
Chev.   3955 19  3     3430   197    0 
Datsun  6229 23  4     2370   170    1 
Datsun  4589 35  5     2020   165    1 
Datsun  5079 24  4     2280   170    1 
Datsun  8129 21  4     2750   184    1  

The program below reads the data and creates a temporary data file called auto.  The descriptive 
statistics shown in this module are all performed on this data file called auto.  

DATA auto ; 
  INPUT make $ price mpg rep78 weight length foreign ; 
DATALINES; 
AMC     4099 22  3     2930   186    0 
AMC     4749 17  3     3350   173    0 
AMC     3799 22  3     2640   168    0 
Audi    9690 17  5     2830   189    1 
Audi    6295 23  3     2070   174    1 
BMW     9735 25  4     2650   177    1 
Buick   4816 20  3     3250   196    0 
Buick   7827 15  4     4080   222    0 
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Buick   5788 18  3     3670   218    0 
Buick   4453 26  3     2230   170    0 
Buick   5189 20  3     3280   200    0 
Buick  10372 16  3     3880   207    0 
Buick   4082 19  3     3400   200    0 
Cad.   11385 14  3     4330   221    0 
Cad.   14500 14  2     3900   204    0 
Cad.   15906 21  3     4290   204    0 
Chev.   3299 29  3     2110   163    0 
Chev.   5705 16  4     3690   212    0 
Chev.   4504 22  3     3180   193    0 
Chev.   5104 22  2     3220   200    0 
Chev.   3667 24  2     2750   179    0 
Chev.   3955 19  3     3430   197    0 
Datsun  6229 23  4     2370   170    1 
Datsun  4589 35  5     2020   165    1 
Datsun  5079 24  4     2280   170    1 
Datsun  8129 21  4     2750   184    1; 
RUN; 
 
PROC PRINT DATA=auto(obs=10); 
RUN;  

The output of the proc print is shown below.  You can compare the program to the output below.  

OBS    MAKE     PRICE    MPG    REP78    WEIGHT    LENGTH    FOREIGN 
  1    AMC       4099     22      3       2930       186        0 
  2    AMC       4749     17      3       3350       173        0 
  3    AMC       3799     22      3       2640       168        0 
  4    Audi      9690     17      5       2830       189        1 
  5    Audi      6295     23      3       2070       174        1 
  6    BMW       9735     25      4       2650       177        1 
  7    Buick     4816     20      3       3250       196        0 
  8    Buick     7827     15      4       4080       222        0 
  9    Buick     5788     18      3       3670       218        0 
 10    Buick     4453     26      3       2230       170        0  

2. Descriptive statistics in SAS 

We can get descriptive statistics for all of the variables using proc means as shown below.  

PROC MEANS DATA=auto; 
RUN;  

Here is the output produced by the proc means statements above.  

Variable   N          Mean       Std Dev       Minimum       Maximum 
-------------------------------------------------------------------- 
PRICE     26       6651.73       3371.12       3299.00      15906.00 
MPG       26    20.9230769     4.7575042    14.0000000    35.0000000 
REP78     26     3.2692308     0.7775702     2.0000000     5.0000000 
WEIGHT    26       3099.23   695.0794089       2020.00       4330.00 
LENGTH    26   190.0769231    18.1701361   163.0000000   222.0000000 
FOREIGN   26     0.2692308     0.4523443             0     1.0000000 
--------------------------------------------------------------------  
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We can get descriptive statistics separately for foreign and domestic cars (i.e., broken down by foreign) 
as shown below.  

PROC MEANS DATA=auto; 
  CLASS foreign; 
RUN;  

The output from the above statements is shown below.  

      FOREIGN  N Obs  Variable   N          Mean       Std Dev       Minimum 
--------------------------------------------------------------------------- 
           0     19  PRICE     19       6484.16       3768.46       3299.00 
                     MPG       19    19.7894737     4.0356598    14.0000000 
                     REP78     19     2.9473684     0.5242650     2.0000000 
                     WEIGHT    19       3347.89   627.1769106       2110.00 
                     LENGTH    19   195.4210526    17.9639014   163.0000000 
 
           1      7  PRICE      7       7106.57       2101.83       4589.00 
                     MPG        7    24.0000000     5.5075705    17.0000000 
                     REP78      7     4.1428571     0.6900656     3.0000000 
                     WEIGHT     7       2424.29   325.1593016       2020.00 
                     LENGTH     7   175.5714286     8.4628038   165.0000000 
--------------------------------------------------------------------------- 
 
     FOREIGN  N Obs  Variable       Maximum 
------------------------------------------- 
           0     19  PRICE         15906.00 
                     MPG         29.0000000 
                     REP78        4.0000000 
                     WEIGHT         4330.00 
                     LENGTH     222.0000000 
 
           1      7  PRICE          9735.00 
                     MPG         35.0000000 
                     REP78        5.0000000 
                     WEIGHT         2830.00 
                     LENGTH     189.0000000 
-------------------------------------------  

We can get detailed descriptive statistics for price using proc univariate as shown below.  

PROC UNIVARIATE DATA=auto; 
  VAR PRICE; 
RUN;  

The results are shown below.  

 Univariate Procedure 
Variable=PRICE 
 
                 Moments 
 N                26  Sum Wgts         26 
 Mean       6651.731  Sum          172945 
 Std Dev     3371.12  Variance   11364449 
 Skewness   1.470727  Kurtosis   1.534672 
 USS        1.4345E9  CSS        2.8411E8 
 CV         50.68034  Std Mean    661.131 
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 T:Mean=0   10.06114  Pr>|T|       0.0001 
 Num ^= 0         26  Num > 0          26 
 M(Sign)          13  Pr>=|M|      0.0001 
 Sgn Rank      175.5  Pr>=|S|      0.0001 
 
            Quantiles(Def=5) 
 
 100% Max     15906       99%     15906 
  75% Q3       8129       95%     14500 
  50% Med    5146.5       90%     11385 
  25% Q1       4453       10%      3799 
   0% Min      3299        5%      3667 
                           1%      3299 
 Range        12607 
 Q3-Q1         3676 
 Mode          3299 
 
                 Extremes 
    Lowest    Obs     Highest    Obs 
      3299(      17)     9735(       6) 
      3667(      21)    10372(      12) 
      3799(       3)    11385(      14) 
      3955(      22)    14500(      15) 
      4082(      13)    15906(      16)  

We can get a frequency distribution of rep78 (the repair rating of the car) using proc freq as shown 
below.  

PROC FREQ DATA=auto; 
  TABLES rep78 ; 
RUN;  

The results are shown below.  

                              Cumulative  Cumulative 
REP78   Frequency   Percent   Frequency    Percent 
---------------------------------------------------- 
    2          3      11.5           3       11.5 
    3         15      57.7          18       69.2 
    4          6      23.1          24       92.3 
    5          2       7.7          26      100.0  

We can make a two way table showing the frequencies for rep78 for foreign and domestic cars as 
shown below.  

PROC FREQ DATA=auto ; 
  TABLES rep78 * foreign ; 
RUN;  

The output is shown below.  

 TABLE OF REP78 BY FOREIGN 
 
REP78     FOREIGN 
 
Frequency| 
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Percent  | 
Row Pct  | 
Col Pct  |       0|       1|  Total 
---------+--------+--------+ 
       2 |      3 |      0 |      3 
         |  11.54 |   0.00 |  11.54 
         | 100.00 |   0.00 | 
         |  15.79 |   0.00 | 
---------+--------+--------+ 
       3 |     14 |      1 |     15 
         |  53.85 |   3.85 |  57.69 
         |  93.33 |   6.67 | 
         |  73.68 |  14.29 | 
---------+--------+--------+ 
       4 |      2 |      4 |      6 
         |   7.69 |  15.38 |  23.08 
         |  33.33 |  66.67 | 
         |  10.53 |  57.14 | 
---------+--------+--------+ 
       5 |      0 |      2 |      2 
         |   0.00 |   7.69 |   7.69 
         |   0.00 | 100.00 | 
         |   0.00 |  28.57 | 
---------+--------+--------+ 
Total          19        7       26 
            73.08    26.92   100.00  

3. Making graphs in SAS 

We can make a bar chart showing the frequencies of rep78 as shown below.  

TITLE 'Bar Chart with Discrete Option'; 
PROC GCHART DATA=auto; 
      VBAR rep78/ DISCRETE; 
 
RUN;  

This program produces the following chart.   
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4. Correlation, regression and analysis of variance 

We can use proc corr to get correlations of price mpg weight and length as shown below.  

PROC CORR DATA=auto ; 
  VAR price mpg weight length ; 
RUN;  

The output is shown below.  

                               Simple Statistics 
 
Variable           N        Mean     Std Dev         Sum     Minimum     Maximum 
 
PRICE             26        6652        3371      172945        3299       15906 
MPG               26    20.92308     4.75750   544.00000    14.00000    35.00000 
WEIGHT            26        3099   695.07941       80580        2020        4330 
LENGTH            26   190.07692    18.17014        4942   163.00000   222.00000 
 
 
Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 26 
 
                   PRICE               MPG            WEIGHT            LENGTH 
 
PRICE            1.00000          -0.43846           0.55607           0.43604 
                  0.0               0.0251            0.0032            0.0260 
 
MPG             -0.43846           1.00000          -0.80816          -0.76805 
                  0.0251            0.0               0.0001            0.0001 
 
WEIGHT           0.55607          -0.80816           1.00000           0.90654 
                  0.0032            0.0001            0.0               0.0001 
 
LENGTH           0.43604          -0.76805           0.90654           1.00000 
                  0.0260            0.0001            0.0001            0.0  

We can use proc reg to predict mpg from weight length and foreign, as shown below.  

PROC REG DATA=auto; 
  MODEL mpg = weight length foreign ; 
RUN; 

The output is shown below.  

 Model: MODEL1 
Dependent Variable: MPG 
 
Analysis of Variance 
 
                         Sum of         Mean 
Source          DF      Squares       Square      F Value       Prob>F 
 
Model            3    378.69701    126.23234       14.839       0.0001 
Error           22    187.14915      8.50678 
C Total         25    565.84615 
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    Root MSE       2.91664     R-square       0.6693 
    Dep Mean      20.92308     Adj R-sq       0.6242 
    C.V.          13.93982 
 
Parameter Estimates 
 
                 Parameter      Standard    T for H0: 
Variable  DF      Estimate         Error   Parameter=0    Prob > |T| 
 
INTERCEP   1     44.968582    9.32267757         4.824        0.0001 
WEIGHT     1     -0.005008    0.00218752        -2.289        0.0320 
LENGTH     1     -0.043056    0.07692650        -0.560        0.5813 
FOREIGN    1     -1.269211    1.63213395        -0.778        0.4451  

We can use proc glm to do an ANOVA to test if the mean mpg is the same for foreign and domestic 
cars, as shown below.  

 PROC GLM DATA=auto; 
  CLASS foreign ; 
  MODEL mpg = foreign ; 
RUN;  

The output is shown below.  

General Linear Models Procedure 
Class Level Information 
 
Class    Levels    Values 
 
FOREIGN       2    0 1 
 
Number of observations in data set = 26 
 
General Linear Models Procedure 
 
Dependent Variable: MPG 
                                     Sum of            Mean 
Source                  DF          Squares          Square   F Value     Pr > F 
Model                    1      90.68825911     90.68825911      4.58     0.0427 
Error                   24     475.15789474     19.79824561 
Corrected Total         25     565.84615385 
 
                  R-Square             C.V.        Root MSE             MPG Mean 
                  0.160270         21.26610       4.4495220            20.923077 
 
Source                  DF        Type I SS     Mean Square   F Value     Pr > F 
FOREIGN                  1      90.68825911     90.68825911      4.58     0.0427 
 
Source                  DF      Type III SS     Mean Square   F Value     Pr > F 
FOREIGN                  1      90.68825911     90.68825911      4.58     0.0427  

 
Using SAS Display Manager 

This is a very brief introduction to show you the basics of using the SAS Display Manager for running 
your programs.  This introduction shows just the essentials that you need to know for using SAS 
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Display Manager.  There are so many options that it would be too confusing to even begin to explore 
them.  Let's start by opening SAS.  

Starting SAS 

You can start SAS by clicking the Start menu then looking for The SAS System (it can be hard to find 
since it is usually under T for The SAS System).  You also might find an icon labeled The SAS 
System.  When you start SAS, it will probably look something like the window shown below.  The 
bottom window is called the Program Editor and the top window is called the Log Window.   Hidden 
under these two windows is the Output Window. 

   
 
Most people would run SAS using the window configuration shown above.  However, this can be 
difficult for beginners since you cannot see all three windows at the same time.  Sometimes vital 
information will be contained in one of the hidden windows and you will be frustrated because you 
don't see the information.  To help you get comfortable with SAS, we will suggest you run SAS with 
the windows in a Tiled configuration until you get comfortable with SAS.  You can get the tiled 
configuration as shown below by choosing the Window pull-down and then Tile . 
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In this configuration, the Program Editor is at the left, the Log Window is in the center, and the 
Output Window is at the right.  You can't see all the contents of the windows, but you can see all the 
windows.  You can zoom any of the windows if you need see the contents of a window better. 
Let's start by typing this short little program into the Program Editor window as shown below. 
data test; 
  input id x y; 
cards; 
1 3 8 
2 6 2 
3 7 4 
4 4 3 
5 9 3 
; 
run; 
 
proc print data=test; 
run; 
Below you see this program typed into the Program Editor. 
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You can run the program by clicking the running person in the toolbar just under the Options 
pulldown. 

 

Running the program caused things to show up in the Log Window and the Output Window as shown 
below.  The log window shows your program along with messages (NOTEs) about the running of your 
program about your program.  In the Output Window you see the output of SAS procedures (in this 
case, the output of the proc print). 
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Let's have a better look at the the Log Window.  We can double click the Title Bar (indicated by the 
arrow below) to zoom the window and make it bigger. 

 

Now we can see the Log Window better.  The log tells us that work.test has five observations and 
three variables (that is right) and it tells us that the proc print took 0.11 seconds.  
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Now that the excitement of the Log Window has worn off, lets return the window back to its original 
size by clicking the unzoom button, shown below. 

   

 
Now that we are back to the three window configuration, let's type these statements into the Program 
Window. 
proc means data=test; 
run; 
This is shown below. 
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We click on the running bald woman to run the program, and we see the program shown back to us in 
the Log Window and some new output in the Output Window. 
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We double click the Title Bar for the Output Window so we can zoom it and get a better look at our 
data.  The zoomed window is shown below. 
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Now that we have had a good look at the data, we will unzoom the output window.  Say that we really 
just wanted the mean of x and y (and not id).  Instead of retyping the entire program, we can click the 
Program Editor window, and then choose Locals then Recall Text (see below) and that will bring 
back the program we were working on previously so we can edit it and change it.  

 
   

Now that the text has been recalled, we can just delete the id as shown below. 
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We click on the the running person to run the revised program. 

 

 
   

and the result is shown below.  You can see in the Output Window that you have just the means of X 
and Y. 
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What happens when you make an error?  Say that you typed in this program that is clearly incorrect and 
ran it. 
proc means data=test; 
  var x y z; 
run; 
The result is shown below.  In the Log Window you can see the error message in red, saying Variable 
Z not (the rest of the message is not found). 
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When this happens, you can click the Program Editor Window, recall the program (see below), fix the 
error, and then run the program again.  
  

 

Summary  

Running programs in SAS display manager can sometimes be like a repeating loop.  You  

• type in your in the Program Editor  
• Run it (by clicking the running person)  
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• You look at the Log Window and Output Window find some problems or changes you want to 
make   

• Go back to the Program Editor   
• Recall your program (Locals then Recall Text from the pull-down).  
• etc. etc. etc.  

 

Descriptive statistics 

1. Introduction 

This module illustrates how to obtain basic descriptive statistics using SAS.  We illustrate this using a 
data file about 26 automobiles with their make, price, mpg, repair record, and whether the car was 
foreign or domestic. The data file is illustrated below. 

 MAKE PRICE MPG REP78 FOREIGN 
AMC    4099 22 3 0 
AMC    4749 17 3 0 
AMC    3799 22 3 0 
Audi   9690 17 5 1 
Audi   6295 23 3 1 
BMW    9735 25 4 1 
Buick  4816 20 3 0 
Buick  7827 15 4 0 
Buick  5788 18 3 0 
Buick  4453 26 3 0 
Buick  5189 20 3 0 
Buick 10372 16 3 0 
Buick  4082 19 3 0 
Cad.  11385 14 3 0 
Cad.  14500 14 2 0 
Cad.  15906 21 3 0 
Chev.  3299 29 3 0 
Chev.  5705 16 4 0 
Chev.  4504 22 3 0 
Chev.  5104 22 2 0 
Chev.  3667 24 2 0 
Chev.  3955 19 3 0 
Datsun 6229 23 4 1 
Datsun 4589 35 5 1 
Datsun 5079 24 4 1 
Datsun 8129 21 4 1  

The program below reads the data and creates a temporary data file called auto.  The descriptive 
statistics shown in this module are all performed on this data file called auto.  

 DATA auto ; 
  input MAKE $ PRICE MPG REP78 FOREIGN ; 
DATALINES; 
AMC    4099 22 3 0 
AMC    4749 17 3 0 
AMC    3799 22 3 0 
Audi   9690 17 5 1 
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Audi   6295 23 3 1 
BMW    9735 25 4 1 
Buick  4816 20 3 0 
Buick  7827 15 4 0 
Buick  5788 18 3 0 
Buick  4453 26 3 0 
Buick  5189 20 3 0 
Buick 10372 16 3 0 
Buick  4082 19 3 0 
Cad.  11385 14 3 0 
Cad.  14500 14 2 0 
Cad.  15906 21 3 0 
Chev.  3299 29 3 0 
Chev.  5705 16 4 0 
Chev.  4504 22 3 0 
Chev.  5104 22 2 0 
Chev.  3667 24 2 0 
Chev.  3955 19 3 0 
Datsun 6229 23 4 1 
Datsun 4589 35 5 1 
Datsun 5079 24 4 1 
Datsun 8129 21 4 1 
; 
RUN; 
 
PROC PRINT DATA=auto(obs=10); 
RUN;  

The output of the proc print is shown below.  You can compare the program to the output below.  

OBS    MAKE     PRICE    MPG    REP78    FOREIGN 
 
  1    AMC       4099     22      3         0 
  2    AMC       4749     17      3         0 
  3    AMC       3799     22      3         0 
  4    Audi      9690     17      5         1 
  5    Audi      6295     23      3         1 
  6    BMW       9735     25      4         1 
  7    Buick     4816     20      3         0 
  8    Buick     7827     15      4         0 
  9    Buick     5788     18      3         0 
 10    Buick     4453     26      3         0 

2. Using proc freq for frequencies 

We can use proc freq to produce frequency tables.   Below, we use it to make frequency tables for 
make, rep78 and foreign.  

 PROC FREQ DATA=auto; 
  TABLES make ; 
RUN; 
 
PROC FREQ DATA=auto; 
  TABLES rep78 ; 
RUN; 
 
PROC FREQ DATA=auto; 
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  TABLES foreign ; 
RUN;  

Here is the output produced by the proc freq statements above.  

                               Cumulative  Cumulative 
MAKE     Frequency   Percent   Frequency    Percent 
---------------------------------------------------- 
AMC             3      11.5           3       11.5 
Audi            2       7.7           5       19.2 
BMW             1       3.8           6       23.1 
Buick           7      26.9          13       50.0 
Cad.            3      11.5          16       61.5 
Chev.           6      23.1          22       84.6 
Datsun          4      15.4          26      100.0 
 
 
                             Cumulative  Cumulative 
REP78   Frequency   Percent   Frequency    Percent 
--------------------------------------------------- 
    2          3      11.5           3       11.5 
    3         15      57.7          18       69.2 
    4          6      23.1          24       92.3 
    5          2       7.7          26      100.0 
 
 
                             Cumulative  Cumulative 
FOREIGN   Frequency   Percent   Frequency    Percent 
----------------------------------------------------- 
      0         19      73.1          19       73.1 
      1          7      26.9          26      100.0 

Instead of having three separate proc freqs, we could have done this all in one proc freq step as 
illustrated below.  

 PROC FREQ DATA=auto; 
  TABLES make price mpg rep78 foreign ; 
RUN;  

Let's use proc freq to look at a cross tabulation of the repair history of the cars (rep78) for foreign and 
domestic cars (foreign).  The proc freq statements for this are shown below.  

 PROC FREQ DATA=auto; 
  TABLES rep78*foreign ; 
RUN;  

This is the output produced.  

 TABLE OF REP78 BY FOREIGN 
 
REP78     FOREIGN 
 
Frequency| 
Percent  | 
Row Pct  | 
Col Pct  |       0|       1|  Total 
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---------+--------+--------+ 
       2 |      3 |      0 |      3 
         |  11.54 |   0.00 |  11.54 
         | 100.00 |   0.00 | 
         |  15.79 |   0.00 | 
---------+--------+--------+ 
       3 |     14 |      1 |     15 
         |  53.85 |   3.85 |  57.69 
         |  93.33 |   6.67 | 
         |  73.68 |  14.29 | 
---------+--------+--------+ 
       4 |      2 |      4 |      6 
         |   7.69 |  15.38 |  23.08 
         |  33.33 |  66.67 | 
         |  10.53 |  57.14 | 
---------+--------+--------+ 
       5 |      0 |      2 |      2 
         |   0.00 |   7.69 |   7.69 
         |   0.00 | 100.00 | 
         |   0.00 |  28.57 | 
---------+--------+--------+ 
Total          19        7       26 
            73.08    26.92   100.00  

We can show just the cell percentages to make the table easier to read by using the norow, nocol and 
nofreq options on the tables statement to suppress the printing of the row percentages, column 
percentages and frequencies (leaving just the cell percentages).  Note that the options come after the / 
on the tables statement.  

 PROC FREQ DATA=auto; 
  TABLES rep78*foreign / NOROW NOCOL NOFREQ ; 
RUN;  

The output is shown below.  

 TABLE OF REP78 BY FOREIGN 
 
REP78     FOREIGN 
 
Percent |       0|       1|  Total 
--------+--------+--------+ 
      2 |  11.54 |   0.00 |  11.54 
--------+--------+--------+ 
      3 |  53.85 |   3.85 |  57.69 
--------+--------+--------+ 
      4 |   7.69 |  15.38 |  23.08 
--------+--------+--------+ 
      5 |   0.00 |   7.69 |   7.69 
--------+--------+--------+ 
Total         19        7       26 
           73.08    26.92   100.00  

The order of the options does not matter.  We would have gotten the same output had we written the 
command like this.  

 PROC FREQ DATA=auto; 
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  TABLES rep78*foreign / NOFREQ NOROW NOCOL ; 
RUN;  

3. Using proc means for summary statistics 

To produce summary statistics, proc means can be used.   Below, proc means is used to get descriptive 
statistics for the variable mpg.  

 PROC MEANS DATA=auto; 
  VAR price mpg; 
RUN; 

The results of the proc means are shown below.  

 Analysis Variable : MPG 
 
 N          Mean       Std Dev       Minimum       Maximum 
---------------------------------------------------------- 
26    20.9230769     4.7575042    14.0000000    35.0000000 
----------------------------------------------------------  

Suppose we would like to get the summary statistics separately for foreign and domestic cars (indicated 
by the variable foreign).   We can use the class statement as shown below to get separate results for the 
different values of foreign.  

PROC MEANS DATA=auto; 
  CLASS foreign ; 
  VAR mpg; 
RUN; 

As you see below, the results are presented separately for the seven foreign cars (foreign equals 1) and 
the 19 domestic cars (when foreign is 0).  

 Analysis Variable : MPG 
 
FOREIGN  N Obs   N    Mean      Std Dev     Minimum   Maximum 
------------------------------------------------------------- 
      0     19  19    19.78     4.0356598   14.0000   29.00 
      1      7   7    24.00     5.5075705   17.0000   35.00 
--------------------------------------------------------------  

4. Using proc univariate for detailed summary statistics 

You can use proc univariate to get more detailed summary statistics, as shown below.  

 PROC UNIVARIATE DATA=auto; 
  VAR mpg; 
RUN;  

And here are the results of the proc univariate.  

 Univariate Procedure 
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Variable=MPG 
 
                 Moments 
 N                26  Sum Wgts         26 
 Mean       20.92308  Sum             544 
 Std Dev    4.757504  Variance   22.63385 
 Skewness   0.935473  Kurtosis     1.7927 
 USS           11948  CSS        565.8462 
 CV         22.73807  Std Mean   0.933023 
 T:Mean=0   22.42503  Pr>|T|       0.0001 
 Num ^= 0         26  Num > 0          26 
 M(Sign)          13  Pr>=|M|      0.0001 
 Sgn Rank      175.5  Pr>=|S|      0.0001 
 
            Quantiles(Def=5) 
 100% Max        35       99%        35 
  75% Q3         23       95%        29 
  50% Med        21       90%        26 
  25% Q1         17       10%        15 
   0% Min        14        5%        14 
                           1%        14 
 Range           21 
 Q3-Q1            6 
 Mode            22 
 
                 Extremes 
    Lowest    Obs     Highest    Obs 
        14(      15)       24(      25) 
        14(      14)       25(       6) 
        15(       8)       26(      10) 
        16(      18)       29(      17) 
        16(      12)       35(      24)  

To obtain separate univariate results for foreign and domestic cars, you would naturally think about the 
class statement that we used with proc means.  While many SAS PROCs permit the use of the class 
statement, proc univariate does not permit the class statement.  Instead, we can use proc sort to sort 
the data by foreign and then with the proc univariate use the by statement as illustrated below.  

PROC SORT DATA=auto; 
  BY foreign; 
RUN; 
 
PROC UNIVARIATE DATA=auto; 
  BY foreign; 
  VAR mpg; 
RUN;  

As you see in the output below, you get a complete set of output for the case where foreign is 0 and 
then another set of output when foreign is 1.   

FOREIGN=0 
 
Univariate Procedure 
 
Variable=MPG 
 
                 Moments 
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 N                19  Sum Wgts         19 
 Mean       19.78947  Sum             376 
 Std Dev     4.03566  Variance   16.28655 
 Skewness   0.477379  Kurtosis   0.041198 
 USS            7734  CSS        293.1579 
 CV         20.39296  Std Mean   0.925844 
 T:Mean=0   21.37453  Pr>|T|       0.0001 
 Num ^= 0         19  Num > 0          19 
 M(Sign)         9.5  Pr>=|M|      0.0001 
 Sgn Rank         95  Pr>=|S|      0.0001 
 
            Quantiles(Def=5) 
 100% Max        29       99%        29 
  75% Q3         22       95%        29 
  50% Med        20       90%        26 
  25% Q1         16       10%        14 
   0% Min        14        5%        14 
                           1%        14 
 Range           15 
 Q3-Q1            6 
 Mode            22 
 
                 Extremes 
    Lowest    Obs     Highest    Obs 
        14(      12)       22(      16) 
        14(      11)       22(      17) 
        15(       5)       24(      18) 
        16(      15)       26(       7) 
        16(       9)       29(      14)  
 
FOREIGN=1 
 
Univariate Procedure 
 
Variable=MPG 
                 Moments 
 N                 7  Sum Wgts          7 
 Mean             24  Sum             168 
 Std Dev    5.507571  Variance   30.33333 
 Skewness   1.340812  Kurtosis   3.286052 
 USS            4214  CSS             182 
 CV         22.94821  Std Mean   2.081666 
 T:Mean=0   11.52923  Pr>|T|       0.0001 
 Num ^= 0          7  Num > 0           7 
 M(Sign)         3.5  Pr>=|M|      0.0156 
 Sgn Rank         14  Pr>=|S|      0.0156 
 
            Quantiles(Def=5) 
 100% Max        35       99%        35 
  75% Q3         25       95%        35 
  50% Med        23       90%        35 
  25% Q1         21       10%        17 
   0% Min        17        5%        17 
                           1%        17 
 Range           18 
 Q3-Q1            4 
 Mode            23 
 
                 Extremes 
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    Lowest    Obs     Highest    Obs 
        17(       1)       23(       2) 
        21(       7)       23(       4) 
        23(       4)       24(       6) 
        23(       2)       25(       3) 
        24(       6)       35(       5)  

5. Problems to look out for 

• If you make a crosstab with proc freq and one of the variables has large number of values (say 
10 or more) the crosstab table could be very hard to read.  In such cases, try using the list option 
on the tables statement, e.g.,  
  TABLES rep78*foreign / LIST ;   

• When using the by statement in proc univariate, if you choose a by variable with a large 
number of values (say 5, 10, or more) it will produce a very large amount of output. In such 
cases, you may try to use proc means with a class statement instead of proc univariate.  

1. Introduction and description of data  

We will illustrate doing some basic statistical tests in SAS, including  t-tests, Chi Square, Correlation, 
Regression, and Analysis of Variance.  We demonstrate this using the auto data file.  The program 
below reads the data and creates a temporary data file called auto.  (Please note that we have made the 
values of mpg to be missing for the AMC cars.  This differs from the other example data files where 
the AMC cars have valid data for mpg.) 

DATA auto ; 
  LENGTH make $ 20 ; 
  INPUT make $ 1-17 price mpg rep78 hdroom trunk weight  
        length turn displ gratio foreign ; 
CARDS; 
AMC Concord        4099  . 3 2.5 11 2930 186 40 121 3.58 0 
AMC Pacer          4749  . 3 3.0 11 3350 173 40 258 2.53 0 
AMC Spirit         3799  . . 3.0 12 2640 168 35 121 3.08 0 
Audi 5000          9690 17 5 3.0 15 2830 189 37 131 3.20 1 
Audi Fox           6295 23 3 2.5 11 2070 174 36  97 3.70 1 
BMW 320i           9735 25 4 2.5 12 2650 177 34 121 3.64 1 
Buick Century      4816 20 3 4.5 16 3250 196 40 196 2.93 0 
Buick Electra      7827 15 4 4.0 20 4080 222 43 350 2.41 0 
Buick LeSabre      5788 18 3 4.0 21 3670 218 43 231 2.73 0 
Buick Opel         4453 26 . 3.0 10 2230 170 34 304 2.87 0 
Buick Regal        5189 20 3 2.0 16 3280 200 42 196 2.93 0 
Buick Riviera     10372 16 3 3.5 17 3880 207 43 231 2.93 0 
Buick Skylark      4082 19 3 3.5 13 3400 200 42 231 3.08 0 
Cad. Deville      11385 14 3 4.0 20 4330 221 44 425 2.28 0 
Cad. Eldorado     14500 14 2 3.5 16 3900 204 43 350 2.19 0 
Cad. Seville      15906 21 3 3.0 13 4290 204 45 350 2.24 0 
Chev. Chevette     3299 29 3 2.5  9 2110 163 34 231 2.93 0 
Chev. Impala       5705 16 4 4.0 20 3690 212 43 250 2.56 0 
Chev. Malibu       4504 22 3 3.5 17 3180 193 31 200 2.73 0 
Chev. Monte Carlo  5104 22 2 2.0 16 3220 200 41 200 2.73 0 
Chev. Monza        3667 24 2 2.0  7 2750 179 40 151 2.73 0 
Chev. Nova         3955 19 3 3.5 13 3430 197 43 250 2.56 0 
Datsun 200         6229 23 4 1.5  6 2370 170 35 119 3.89 1 
Datsun 210         4589 35 5 2.0  8 2020 165 32  85 3.70 1 
Datsun 510         5079 24 4 2.5  8 2280 170 34 119 3.54 1 
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Datsun 810         8129 21 4 2.5  8 2750 184 38 146 3.55 1 
Dodge Colt         3984 30 5 2.0  8 2120 163 35  98 3.54 0 
Dodge Diplomat     4010 18 2 4.0 17 3600 206 46 318 2.47 0 
Dodge Magnum       5886 16 2 4.0 17 3600 206 46 318 2.47 0 
Dodge St. Regis    6342 17 2 4.5 21 3740 220 46 225 2.94 0 
Fiat Strada        4296 21 3 2.5 16 2130 161 36 105 3.37 1 
Ford Fiesta        4389 28 4 1.5  9 1800 147 33  98 3.15 0 
Ford Mustang       4187 21 3 2.0 10 2650 179 43 140 3.08 0 
Honda Accord       5799 25 5 3.0 10 2240 172 36 107 3.05 1 
Honda Civic        4499 28 4 2.5  5 1760 149 34  91 3.30 1 
Linc. Continental 11497 12 3 3.5 22 4840 233 51 400 2.47 0 
Linc. Mark V      13594 12 3 2.5 18 4720 230 48 400 2.47 0 
Linc. Versailles  13466 14 3 3.5 15 3830 201 41 302 2.47 0 
Mazda GLC          3995 30 4 3.5 11 1980 154 33  86 3.73 1 
Merc. Bobcat       3829 22 4 3.0  9 2580 169 39 140 2.73 0 
Merc. Cougar       5379 14 4 3.5 16 4060 221 48 302 2.75 0 
Merc. Marquis      6165 15 3 3.5 23 3720 212 44 302 2.26 0 
Merc. Monarch      4516 18 3 3.0 15 3370 198 41 250 2.43 0 
Merc. XR-7         6303 14 4 3.0 16 4130 217 45 302 2.75 0 
Merc. Zephyr       3291 20 3 3.5 17 2830 195 43 140 3.08 0 
Olds 98            8814 21 4 4.0 20 4060 220 43 350 2.41 0 
Olds Cutl Supr     5172 19 3 2.0 16 3310 198 42 231 2.93 0 
Olds Cutlass       4733 19 3 4.5 16 3300 198 42 231 2.93 0 
Olds Delta 88      4890 18 4 4.0 20 3690 218 42 231 2.73 0 
Olds Omega         4181 19 3 4.5 14 3370 200 43 231 3.08 0 
Olds Starfire      4195 24 1 2.0 10 2730 180 40 151 2.73 0 
Olds Toronado     10371 16 3 3.5 17 4030 206 43 350 2.41 0 
Peugeot 604       12990 14 . 3.5 14 3420 192 38 163 3.58 1 
Plym. Arrow        4647 28 3 2.0 11 3260 170 37 156 3.05 0 
Plym. Champ        4425 34 5 2.5 11 1800 157 37  86 2.97 0 
Plym. Horizon      4482 25 3 4.0 17 2200 165 36 105 3.37 0 
Plym. Sapporo      6486 26 . 1.5  8 2520 182 38 119 3.54 0 
Plym. Volare       4060 18 2 5.0 16 3330 201 44 225 3.23 0 
Pont. Catalina     5798 18 4 4.0 20 3700 214 42 231 2.73 0 
Pont. Firebird     4934 18 1 1.5  7 3470 198 42 231 3.08 0 
Pont. Grand Prix   5222 19 3 2.0 16 3210 201 45 231 2.93 0 
Pont. Le Mans      4723 19 3 3.5 17 3200 199 40 231 2.93 0 
Pont. Phoenix      4424 19 . 3.5 13 3420 203 43 231 3.08 0 
Pont. Sunbird      4172 24 2 2.0  7 2690 179 41 151 2.73 0 
Renault Le Car     3895 26 3 3.0 10 1830 142 34  79 3.72 1 
Subaru             3798 35 5 2.5 11 2050 164 36  97 3.81 1 
Toyota Celica      5899 18 5 2.5 14 2410 174 36 134 3.06 1 
Toyota Corolla     3748 31 5 3.0  9 2200 165 35  97 3.21 1 
Toyota Corona      5719 18 5 2.0 11 2670 175 36 134 3.05 1 
Volvo 260         11995 17 5 2.5 14 3170 193 37 163 2.98 1 
VW Dasher          7140 23 4 2.5 12 2160 172 36  97 3.74 1 
VW Diesel          5397 41 5 3.0 15 2040 155 35  90 3.78 1 
VW Rabbit          4697 25 4 3.0 15 1930 155 35  89 3.78 1 
VW Scirocco        6850 25 4 2.0 16 1990 156 36  97 3.78 1 
; 
RUN; 

2. T-tests 

We can use proc ttest to perform a t-test to determine whether the average mpg for domestic cars differ 
from the foreign cars. 

PROC TTEST DATA=auto; 
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  CLASS foreign; 
  VAR mpg; 
RUN; 

Here is the output produced by the proc ttest.  The results show that foreign cars have significantly 
higher gas mileage ( mpg ) than domestic cars. Note that the overall N is 71 (not 74).  This is because 
mpg was missing for 3 of the observations, so those observations were omitted from the analysis. 

TTEST PROCEDURE 
 
Variable: MPG 
 
FOREIGN       N         Mean      Std Dev    Std Error      Minimum      Maximum 
-------------------------------------------------------------------------------- 
      0      49  19.79591837   4.85188791   0.69312684  12.00000000  34.00000000 
      1      22  24.77272727   6.61118690   1.40950978  14.00000000  41.00000000 
 
Variances        T       DF    Prob>|T| 
--------------------------------------- 
Unequal    -3.1685     31.6      0.0034 
Equal      -3.5597     69.0      0.0007 
 
For H0: Variances are equal, F' = 1.86    DF = (21,48)    Prob>F' = 0.0776 

Note that the output provides two t values, one assuming the the variances are Unequal and another 
assuming that the variances are Equal, and below that is shown a test of whether the variances are 
equal.   The test for equal variances has an F value of 1.86, with a p value of 0.0776 indicating that the 
variances of the two groups do not significantly differ, therefore the Equal variance t-test would be the 
appropriate test to use.  In this case, we would repot a t value of -3.5597 with a p value of 0.007, 
concluding that the mean mpg for foreign cars is significantly greater than the mpg for domestic 
cars.  Had the F test of equal variances been significant, then the Unequal variance t value (-3.1685) 
would have been the appropriate value to use.  This is especially important when the sample sizes for 
the 2 groups differ, because when the variances of the two groups differ and the sample sizes of the two 
groups differ, then the results assuming Equal variances can be quite inaccurate and could differ from 
the Unequal variance result.. 

3. Chi-square tests 

We can use proc freq to examine the repair records of the cars (rep78, where 1 is the word repair 
record, 5 is the best repair record) by foreign (foreign coded 1, domestic coded 0).  Using the chi2 
option we can request a chi-square test that tests if these two variables are independent, as shown below. 

PROC FREQ DATA=auto; 
  TABLES rep78*foreign / CHISQ   ; 
RUN; 

The results are shown below, first giving the crosstab and then the chi-square test. 

TABLE OF REP78 BY FOREIGN 
 
REP78     FOREIGN 
 
Frequency| 
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Percent  | 
Row Pct  | 
Col Pct  |       0|       1|  Total 
---------+--------+--------+ 
       1 |      2 |      0 |      2 
         |   2.90 |   0.00 |   2.90 
         | 100.00 |   0.00 | 
         |   4.17 |   0.00 | 
---------+--------+--------+ 
       2 |      8 |      0 |      8 
         |  11.59 |   0.00 |  11.59 
         | 100.00 |   0.00 | 
         |  16.67 |   0.00 | 
---------+--------+--------+ 
       3 |     27 |      3 |     30 
         |  39.13 |   4.35 |  43.48 
         |  90.00 |  10.00 | 
         |  56.25 |  14.29 | 
---------+--------+--------+ 
       4 |      9 |      9 |     18 
         |  13.04 |  13.04 |  26.09 
         |  50.00 |  50.00 | 
         |  18.75 |  42.86 | 
---------+--------+--------+ 
       5 |      2 |      9 |     11 
         |   2.90 |  13.04 |  15.94 
         |  18.18 |  81.82 | 
         |   4.17 |  42.86 | 
---------+--------+--------+ 
Total          48       21       69 
            69.57    30.43   100.00 
 
Frequency Missing = 5 
 
 
STATISTICS FOR TABLE OF REP78 BY FOREIGN 
Statistic                     DF     Value        Prob 
------------------------------------------------------ 
Chi-Square                     4    27.264       0.001 
Likelihood Ratio Chi-Square    4    29.912       0.001 
Mantel-Haenszel Chi-Square     1    23.851       0.001 
Phi Coefficient                      0.629             
Contingency Coefficient              0.532             
Cramer's V                           0.629             
 
Effective Sample Size = 69 
Frequency Missing = 5 
WARNING: 40% of the cells have expected counts less  
         than 5. Chi-Square may not be a valid test. 

 
Notice the warning that SAS gave at the end of the results. The chi-square is not really valid when you 
have empty cells (or cells with expected values less than 5). In such cases, you can request Fisher's 
exact test (which is valid under such circumstances) with the exact option as shown below. 

PROC FREQ DATA=auto; 
  TABLES rep78*foreign / CHISQ EXACT ; 
RUN; 
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The results are shown below (omitting the crosstab, which is exactly the same as the prior results).  The 
Fisher's Exact Test is significant, showing that there is an association between rep78 and foreign.   In 
other words, the repair records for the domestic cars differ from the repair record of the foreign cars. 

STATISTICS FOR TABLE OF REP78 BY FOREIGN 
 
Statistic                     DF     Value        Prob 
------------------------------------------------------ 
Chi-Square                     4    27.264       0.001 
Likelihood Ratio Chi-Square    4    29.912       0.001 
Mantel-Haenszel Chi-Square     1    23.851       0.001 
Fisher's Exact Test (2-Tail)                  6.27E-06 
Phi Coefficient                      0.629             
Contingency Coefficient              0.532             
Cramer's V                           0.629             

4. Correlation 

Let's use proc corr to examine the correlations among price mpg and weight. 

PROC CORR DATA=auto; 
  VAR price mpg weight ; 
RUN; 

The results of the proc corr are shown below.   

Correlation Analysis 
   3 'VAR' Variables:  PRICE    MPG      WEIGHT 
 
                               Simple Statistics 
Variable           N        Mean     Std Dev         Sum     Minimum     Maximum 
PRICE             74        6165        2949      456229        3291       15906 
MPG               71    21.33803     5.88447        1515    12.00000    41.00000 
WEIGHT            74        3019   777.19357      223440        1760        4840 
 
 
Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0/Number of 
Observations 
                   PRICE               MPG            WEIGHT 
PRICE            1.00000          -0.47774           0.53861 
                  0.0               0.0001            0.0001 
                      74                71                74 
 
MPG             -0.47774           1.00000          -0.80749 
                  0.0001            0.0               0.0001 
                      71                71                71 
 
WEIGHT           0.53861          -0.80749           1.00000 
                  0.0001            0.0001            0.0 
                      74                71                74 

The top portion of the output shows simple descriptive statistics for the variables (note that the N for 
mpg is 71 because it has 3 missing observations).  The second part of the output shows the correlation 
matrix for the price, mpg, and weight   Each entry shows the correlation, and below that the 2 tailed p 
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value for the hypothesis test that the correlation is 0, and below that is the sample size (N) on which the 
correlation is based.  

By looking at the sample sizes, we can see how proc corr handled the missing values.  Since mpg had 
3 missing values, all the correlations that involved it have an N of 71, whereas the rest of the 
correlations were based on an N of 74.  This is called pairwise deletion of missing data since SAS 
used the maximum number of non-missing values for each pair of variables.  It is possible to ask SAS to 
only perform the correlations on the records which had complete data for all of the variables on the var 
statement.  This is called listwise deletion of missing data, meaning that when any of the variables are 
missing, the entire record will be omitted from analysis.  You can request listwise deletion with the 
nomiss option as illustrated below. 

PROC CORR DATA=auto NOMISS ; 
  VAR price mpg weight ; 
RUN; 

The results are shown below.  Notice that the N for all the simple statistics is 71, and notice that the N is 
not displayed along with the correlations.  That is because the N is 71 for all of them (as shown in the 
title, N = 71). 

Correlation Analysis 
   3 'VAR' Variables:  PRICE    MPG      WEIGHT 
 
                               Simple Statistics 
Variable           N        Mean     Std Dev         Sum     Minimum     Maximum 
PRICE             71        6248        2983      443582        3291       15906 
MPG               71    21.33803     5.88447        1515    12.00000    41.00000 
WEIGHT            71        3021   791.31589      214520        1760        4840 
 
Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 71 
                   PRICE               MPG            WEIGHT 
PRICE            1.00000          -0.47774           0.54176 
                  0.0               0.0001            0.0001 
 
MPG             -0.47774           1.00000          -0.80749 
                  0.0001            0.0               0.0001 
 
WEIGHT           0.54176          -0.80749           1.00000 
                  0.0001            0.0001            0.0 

5. Regression 

Let's perform a regression analysis where we predict price from mpg and weight.   The proc reg 
example below does just this. 

PROC REG DATA=auto; 
  MODEL price = mpg weight ; 
RUN; 

The results are shown below.  Two interesting things to note are... 
    - Only 71 observations are used (not all 74) because mpg had three missing values.  Proc reg deletes 
missing cases using listwise deletion.   If you have lots of missing data, this is important to notice 
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    - Looking at the predictors, the results show that weight is the only variable that significantly predicts 
price (with a t-value of 2.603 and a p-value of 0.0113). 

NOTE: 74 observations read. 
NOTE: 3 observations have missing values. 
NOTE: 71 observations used in computations. 
 
Model: MODEL1 
Dependent Variable: PRICE 
 
Analysis of Variance 
                         Sum of         Mean 
Source          DF      Squares       Square      F Value       Prob>F 
 
Model            2 185670655.62 92835327.809       14.444       0.0001 
Error           68 437038564.86 6427037.7185 
C Total         70 622709220.48 
 
    Root MSE    2535.16029     R-square       0.2982 
    Dep Mean    6247.63380     Adj R-sq       0.2775 
    C.V.          40.57793 
 
Parameter Estimates 
                 Parameter      Standard    T for H0: 
Variable  DF      Estimate         Error   Parameter=0    Prob > |T| 
INTERCEP   1   2394.284967  3647.8753623         0.656        0.5138 
MPG        1    -58.668896   87.29400011        -0.672        0.5038 
WEIGHT     1      1.689685    0.64914497         2.603        0.0113 

6. Analysis of variance (and analysis of covariance) 

Let's compare the average prices among the cars in the different repair groups using Analysis of 
Variance. You might think to use proc anova for such an analysis, but proc anova assumes that the 
sample sizes for all groups are equal, an assumption that is frequently untrue.   Instead, we will use proc 
glm to perform an ANOVA comparing the prices among the repair groups.  Since there are so few cars 
with a repair record (rep78) of 1 or 2, we will use a where statement to omit them, allowing us to 
concentrate on the cars with repair records of 3, 4 and 5.  The proc glm below performs an Analysis of 
Variance testing whether the average mpg for the 3 repair groups (rep78) are the same.  It also 
produces the means for the 3 repair groups. 

PROC GLM DATA=auto2; 
  WHERE (rep78 = 3) OR (rep78 = 4) OR (rep78 = 5); 
  CLASS rep78; 
  MODEL mpg = rep78 ; 
  MEANS rep78 ; 
RUN; 

The results of the proc glm are shown below.  SAS informs us that it used only 57 observations (due to 
the missing values of mpg).  The results suggest that there are significant differences in mpg among the 
three repair groups (based on the F value of 8.08 with a p value of 0.009).  The means for groups 3, 4 
and 5 were 19.43, 21.67, and 27.36 . 

General Linear Models Procedure 
Class Level Information 
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Class    Levels    Values 
REP78         3    3 4 5 
 
Number of observations in data set = 59 
NOTE: Due to missing values, only 57 observations can be used in this analysis. 
General Linear Models Procedure 
 
Dependent Variable: MPG 
                                     Sum of            Mean 
Source                  DF          Squares          Square   F Value     Pr > F 
Model                    2     497.26406926    248.63203463      8.08     0.0009 
Error                   54    1661.40259740     30.76671477 
Corrected Total         56    2158.66666667 
 
                  R-Square             C.V.        Root MSE             MPG Mean 
                  0.230357         25.60050       5.5467752            21.666667 
 
Source                  DF        Type I SS     Mean Square   F Value     Pr > F 
REP78                    2     497.26406926    248.63203463      8.08     0.0009 
 
Source                  DF      Type III SS     Mean Square   F Value     Pr > F 
REP78                    2     497.26406926    248.63203463      8.08     0.0009 
 
Level of        -------------MPG------------- 
REP78       N       Mean              SD 
 
3          28     19.4285714       4.23764934 
4          18     21.6666667       4.93486992 
5          11     27.3636364       8.73238487 

You can use the tukey option on the means statement to request Tukey tests for pairwise comparisons 
among the three means.   

PROC GLM DATA=auto2; 
  CLASS rep78; 
  MODEL price = rep78 ; 
  MEANS rep78 / TUKEY ; 
RUN; 

The results just for the Tukey tests are shown below (the rest of the output is identical).  The Tukey 
comparisons that are significant are indicated by "***".  The group with rep78 of 5 is significantly 
different from 3 and significantly different from 4.  However, the group with rep78 of 3 is not 
significantly different from rep78 of 4. 

Tukey's Studentized Range (HSD) Test for variable: MPG 
 
NOTE: This test controls the type I experimentwise error rate. 
 
Alpha= 0.05  Confidence= 0.95  df= 54  MSE= 30.76671 
Critical Value of Studentized Range= 3.408 
 
Comparisons significant at the 0.05 level are indicated by '***'. 
 
               Simultaneous            Simultaneous 
                   Lower    Difference     Upper 
   REP78        Confidence    Between   Confidence 
 Comparison        Limit       Means       Limit 
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5    - 4           0.581       5.697      10.813   *** 
5    - 3           3.178       7.935      12.692   *** 
 
4    - 5         -10.813      -5.697      -0.581   *** 
4    - 3          -1.800       2.238       6.277 
 
3    - 5         -12.692      -7.935      -3.178   *** 
3    - 4          -6.277      -2.238       1.800 

 
Graphing data in SAS 

1. Introduction and description of data 

This module demonstrates how to obtain basic high resolution graphics using SAS.  This example uses 
a data file about 26 automobiles with their make, mpg, repair record, weight, and whether the car was 
foreign or domestic.  The program below reads the data and creates a temporary data file called 
auto.  The graphs shown in this module are all performed on this data file called auto.  The data can be 
seen with the program statements  

DATA auto ; 
  INPUT make $  mpg rep78 weight foreign ; 
CARDS; 
AMC     22 3 2930 0 
AMC     17 3 3350 0 
AMC     22 . 2640 0 
Audi    17 5 2830 1 
Audi    23 3 2070 1 
BMW     25 4 2650 1 
Buick   20 3 3250 0 
Buick   15 4 4080 0 
Buick   18 3 3670 0 
Buick   26 . 2230 0 
Buick   20 3 3280 0 
Buick   16 3 3880 0 
Buick   19 3 3400 0 
Cad.    14 3 4330 0 
Cad.    14 2 3900 0 
Cad.    21 3 4290 0 
Chev.   29 3 2110 0 
Chev.   16 4 3690 0 
Chev.   22 3 3180 0 
Chev.   22 2 3220 0 
Chev.   24 2 2750 0 
Chev.   19 3 3430 0 
Datsun  23 4 2370 1 
Datsun  35 5 2020 1 
Datsun  24 4 2280 1 
Datsun  21 4 2750 1 
; 
RUN;  

2. Creating charts with proc gchart 
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We create vertical Bar Charts with proc gchart and the vbar statement.   The program below creates a 
vertical bar chart for mpg.  

TITLE 'Simple Vertical Bar Chart '; 
PROC GCHART DATA=auto; 
      VBAR mpg; 
RUN;  

This program produces the following chart.   

 

The vbar statement produces a vertical bar chart, and while optional the title statement allows you to 
label the chart.  Since mpg is a continuous variable the automatic "binning" of the data into five groups 
yields a readable chart.  The midpoint of each bin labels the respective bar.  

You can control the number of bins for a continuous variable with the level= option on the vbar 
statement.   The program below creates a vertical bar chart with seven bins for mpg.  

TITLE 'Bar Chart - Control Number of Bins'; 
PROC GCHART; 
     VBAR mpg/LEVELS=7; 
RUN;  

This program produces the following chart.   
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On the other hand, rep78 has only four categories and SAS's tendency to bin into five categories and 
use midpoints would not do justice to the data.  So when you want to use the actual values of the 
variable to label each bar you will want to use the discrete option on the vbar statement.  

TITLE 'Bar Chart with Discrete Option'; 
PROC GCHART DATA=auto; 
      VBAR rep78/ DISCRETE; 
RUN;  

This program produces the following chart.   

 

Notice that only the values in the dataset for rep78 appear in the bar chart.  

Other charts may be easily produced simply by changing vbar.  For example, you can produce a 
horizontal bar chart by replacing vbar with hbar.  

TITLE 'Horizontal Bar Chart with Discrete'; 
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PROC GCHART DATA=auto; 
      HBAR rep78/ DISCRETE; 
RUN;  

This program produces the following horizontal bar chart.   

 

Use the discrete option to insure that only the values in the dataset for rep78 label bars in the bar 
chart.  With hbar you automatically obtain frequency, cumulative frequency, percent, and cumulative 
percent to the right of each bar.  

You can produce a pie chart by replacing hbar in the above example with pie.  The value=, percent=, 
and slice= options control the location of each of those labels.  

TITLE 'Pie Chart with Discrete'; 
PROC GCHART DATA=auto; 
      PIE rep78/ DISCRETE VALUE=INSIDE 
                 PERCENT=INSIDE SLICE=OUTSIDE; 
RUN;  

This program produces the following pie chart.   
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Use the discrete option to insure that only the values in the dataset for rep78 label slices in the pie 
chart.   

value=inside causes the frequency count to be placed inside the pie slice.  
percent=inside causes the percent to be placed inside the pie slice.  
slice=outside causes the label (value of   rep78) to be placed outside the pie slice.  

We have shown only some of the charts and options available to you.  Additionally you can create city 
block charts (block) and star charts (star), and use options and statements to further control the look of 
charts.  

3. Creating Scatter plots with proc gplot 

To examine the relationship between two continuous variables you will want to produce a scattergram 
using proc gplot, and the plot statement.  The program below creates a scatter plot for 
mpg*weight.  This means that mpg will be plotted on the vertical axis, and weight will be plotted on 
the horizontal axis.  

TITLE 'Scatterplot - Two Variables'; 
PROC GPLOT DATA=auto; 
     PLOT mpg*weight ; 
RUN;  

This program produces the following scattergram.   



 39

 

You can easily tell that there is a negative relationship between mpg and weight.  As weight increases 
mpg decreases.  

You may want to examine the relationship between two continuous variables and see which points fall 
into one or another category of a third variable.  The program below creates a scatter plot for 
mpg*weight with each level of  foreign marked.  You specify mpg*weight=foreign on the plot 
statement to have each level of foreign identified on the plot.  

TITLE 'Scatterplot - Foreign/Domestic Marked'; 
PROC GPLOT DATA=auto; 
     PLOT mpg*weight=foreign; 
RUN;  

This program produces the following scattergram with each foreign and domestic marked.   

 

You can easily tell which level of  foreign you are looking at, as values of zero are in black and values 
of 1 are in red.  Since the default symbol is plus for both, if this graph is printed in black and white you 
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will not be able to tell the levels of  foreign apart.  The next example demonstrates how to use different 
symbols in scattergrams.  

4. Customizing with proc gplot and symbol statements 

The program below creates a scatter plot for mpg*weight with each level of  foreign marked.  The 
proc gplot is specified exactly the same as in the previous example.  The only difference is the 
inclusion of symbol statements to control the look of the graph through the use of the operands V=, I=, 
and C=.  

SYMBOL1 V=circle C=black I=none; 
SYMBOL2 V=star   C=red   I=none; 
 
TITLE 'Scatterplot - Different Symbols'; 
PROC GPLOT DATA=auto; 
     PLOT mpg*weight=foreign; 
 
RUN;  

Symbol1 is used for the lowest value of  foreign which is zero (domestic cars), and symbol2 is used for 
the next lowest value which is one (foreign cars) in this case.  

V= controls the type of point to be plotted.  We requested a circle to be plotted for foreign cars, and a 
star (asterisk) for domestic cars.  
I= none causes SAS not to plot a line joining the points.  
C= controls the color of the plot.  We requested black for domestic cars, and red for foreign 
cars.  (Sometimes the C= option is needed for any options to take effect.)  

This program produces the following scattergram with each foreign and domestic marked and with 
different symbols.   

 

You can easily tell which level of  foreign you are looking at, as values of zero are marked with circles 
in black and values of 1 are marked with asterisks in red.  Now if this graph is printed in black and 
white you will be able to tell the levels of   foreign apart.  
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At times it is useful to plot a regression line along with the scatter gram of points.  The program below 
creates a scatter plot for mpg*weight with such a regression line.  The regression line is produced with 
the I=R operand on the symbol statement.  

SYMBOL1 V=circle C=blue I=r; 
 
TITLE 'Scatterplot - With Regression Line '; 
PROC GPLOT DATA=auto; 
     PLOT mpg*weight ; 
RUN; 
QUIT;  

The symbol statement controls color, the shape of the points, and the production of a regression line.  

I=R causes SAS to plot a regression line. 
V=circle causes a circle to be plotted for each case.  
C=blue causes the points and regression line to appear in blue. Always specify the C= option to insure 
that the symbol statement takes effect.  

This program produces the following scattergram with using blue circles and plotting a regression line.   

 

5. Problems to look out for 

• If SAS seems to be ignoring your symbol statement, then try including a color specification 
(C=).  

• Avoid using the discrete option in proc chart with truly continuous variables, for this causes 
problems with the number of bars.  

 

 

Using where with SAS procedures 
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1. Introduction  

This program builds a SAS file called auto, which we will use to demonstrate the use of the where 
statement. (For information about creating SAS files from raw data, see the SAS Learning Module titled 
Inputting Raw Data into SAS.  

DATA auto ; 
  LENGTH make $ 20 ; 
  INPUT make $ 1-17 price mpg rep78 hdroom trunk weight length turn 
        displ gratio foreign ; 
CARDS; 
AMC Concord        4099 22 3 2.5 11 2930 186 40 121 3.58 0 
AMC Pacer          4749 17 3 3.0 11 3350 173 40 258 2.53 0 
AMC Spirit         3799 22 . 3.0 12 2640 168 35 121 3.08 0 
Audi 5000          9690 17 5 3.0 15 2830 189 37 131 3.20 1 
Audi Fox           6295 23 3 2.5 11 2070 174 36  97 3.70 1 
BMW 320i           9735 25 4 2.5 12 2650 177 34 121 3.64 1 
Buick Century      4816 20 3 4.5 16 3250 196 40 196 2.93 0 
Buick Electra      7827 15 4 4.0 20 4080 222 43 350 2.41 0 
Buick LeSabre      5788 18 3 4.0 21 3670 218 43 231 2.73 0 
Buick Opel         4453 26 . 3.0 10 2230 170 34 304 2.87 0 
Buick Regal        5189 20 3 2.0 16 3280 200 42 196 2.93 0 
Buick Riviera     10372 16 3 3.5 17 3880 207 43 231 2.93 0 
Buick Skylark      4082 19 3 3.5 13 3400 200 42 231 3.08 0 
Cad. Deville      11385 14 3 4.0 20 4330 221 44 425 2.28 0 
Cad. Eldorado     14500 14 2 3.5 16 3900 204 43 350 2.19 0 
Cad. Seville      15906 21 3 3.0 13 4290 204 45 350 2.24 0 
Chev. Chevette     3299 29 3 2.5  9 2110 163 34 231 2.93 0 
Chev. Impala       5705 16 4 4.0 20 3690 212 43 250 2.56 0 
Chev. Malibu       4504 22 3 3.5 17 3180 193 31 200 2.73 0 
Chev. Monte Carlo  5104 22 2 2.0 16 3220 200 41 200 2.73 0 
Chev. Monza        3667 24 2 2.0  7 2750 179 40 151 2.73 0 
Chev. Nova         3955 19 3 3.5 13 3430 197 43 250 2.56 0 
Datsun 200         6229 23 4 1.5  6 2370 170 35 119 3.89 1 
Datsun 210         4589 35 5 2.0  8 2020 165 32  85 3.70 1 
Datsun 510         5079 24 4 2.5  8 2280 170 34 119 3.54 1 
Datsun 810         8129 21 4 2.5  8 2750 184 38 146 3.55 1 
Dodge Colt         3984 30 5 2.0  8 2120 163 35  98 3.54 0 
Dodge Diplomat     4010 18 2 4.0 17 3600 206 46 318 2.47 0 
Dodge Magnum       5886 16 2 4.0 17 3600 206 46 318 2.47 0 
Dodge St. Regis    6342 17 2 4.5 21 3740 220 46 225 2.94 0 
Fiat Strada        4296 21 3 2.5 16 2130 161 36 105 3.37 1 
Ford Fiesta        4389 28 4 1.5  9 1800 147 33  98 3.15 0 
Ford Mustang       4187 21 3 2.0 10 2650 179 43 140 3.08 0 
Honda Accord       5799 25 5 3.0 10 2240 172 36 107 3.05 1 
Honda Civic        4499 28 4 2.5  5 1760 149 34  91 3.30 1 
Linc. Continental 11497 12 3 3.5 22 4840 233 51 400 2.47 0 
Linc. Mark V      13594 12 3 2.5 18 4720 230 48 400 2.47 0 
Linc. Versailles  13466 14 3 3.5 15 3830 201 41 302 2.47 0 
Mazda GLC          3995 30 4 3.5 11 1980 154 33  86 3.73 1 
Merc. Bobcat       3829 22 4 3.0  9 2580 169 39 140 2.73 0 
Merc. Cougar       5379 14 4 3.5 16 4060 221 48 302 2.75 0 
Merc. Marquis      6165 15 3 3.5 23 3720 212 44 302 2.26 0 
Merc. Monarch      4516 18 3 3.0 15 3370 198 41 250 2.43 0 
Merc. XR-7         6303 14 4 3.0 16 4130 217 45 302 2.75 0 
Merc. Zephyr       3291 20 3 3.5 17 2830 195 43 140 3.08 0 
Olds 98            8814 21 4 4.0 20 4060 220 43 350 2.41 0 
Olds Cutl Supr     5172 19 3 2.0 16 3310 198 42 231 2.93 0 

http://www.ats.ucla.edu/stat/sas/modules/input.htm
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Olds Cutlass       4733 19 3 4.5 16 3300 198 42 231 2.93 0 
Olds Delta 88      4890 18 4 4.0 20 3690 218 42 231 2.73 0 
Olds Omega         4181 19 3 4.5 14 3370 200 43 231 3.08 0 
Olds Starfire      4195 24 1 2.0 10 2730 180 40 151 2.73 0 
Olds Toronado     10371 16 3 3.5 17 4030 206 43 350 2.41 0 
Peugeot 604       12990 14 . 3.5 14 3420 192 38 163 3.58 1 
Plym. Arrow        4647 28 3 2.0 11 3260 170 37 156 3.05 0 
Plym. Champ        4425 34 5 2.5 11 1800 157 37  86 2.97 0 
Plym. Horizon      4482 25 3 4.0 17 2200 165 36 105 3.37 0 
Plym. Sapporo      6486 26 . 1.5  8 2520 182 38 119 3.54 0 
Plym. Volare       4060 18 2 5.0 16 3330 201 44 225 3.23 0 
Pont. Catalina     5798 18 4 4.0 20 3700 214 42 231 2.73 0 
Pont. Firebird     4934 18 1 1.5  7 3470 198 42 231 3.08 0 
Pont. Grand Prix   5222 19 3 2.0 16 3210 201 45 231 2.93 0 
Pont. Le Mans      4723 19 3 3.5 17 3200 199 40 231 2.93 0 
Pont. Phoenix      4424 19 . 3.5 13 3420 203 43 231 3.08 0 
Pont. Sunbird      4172 24 2 2.0  7 2690 179 41 151 2.73 0 
Renault Le Car     3895 26 3 3.0 10 1830 142 34  79 3.72 1 
Subaru             3798 35 5 2.5 11 2050 164 36  97 3.81 1 
Toyota Celica      5899 18 5 2.5 14 2410 174 36 134 3.06 1 
Toyota Corolla     3748 31 5 3.0  9 2200 165 35  97 3.21 1 
Toyota Corona      5719 18 5 2.0 11 2670 175 36 134 3.05 1 
Volvo 260         11995 17 5 2.5 14 3170 193 37 163 2.98 1 
VW Dasher          7140 23 4 2.5 12 2160 172 36  97 3.74 1 
VW Diesel          5397 41 5 3.0 15 2040 155 35  90 3.78 1 
VW Rabbit          4697 25 4 3.0 15 1930 155 35  89 3.78 1 
VW Scirocco        6850 25 4 2.0 16 1990 156 36  97 3.78 1 
; 
RUN;  

2. Basic use of the where statement  

The where statement allows us to run procedures on a subset of records. For example, instead of 
printing all records in the file, the following program prints only cars where the value for rep78 is 3 or 
greater.  

 PROC PRINT DATA=auto; 
  WHERE (rep78 >= 3); 
  VAR make rep78; 
RUN;    

Here is the output from the proc print. Note that we have directed SAS to print only two variables: 
make and rep78.  

  OBS    MAKE                 rep78       
   1    AMC Concord            3         
   2    AMC Pacer              3         
   4    Audi 5000              5         
   5    Audi Fox               3         
   6    BMW 320i               4         
   7    Buick Century          3         
   8    Buick Electra          4         
   9    Buick LeSabre          3         
  11    Buick Regal            3         
  12    Buick Riviera          3         
  13    Buick Skylark          3         
  14    Cad. Deville           3         
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  16    Cad. Seville           3         
  17    Chev. Chevette         3         
  18    Chev. Impala           4         
  19    Chev. Malibu           3         
  22    Chev. Nova             3         
  23    Datsun 200             4         
  24    Datsun 210             5         
  25    Datsun 510             4         
  26    Datsun 810             4         
  27    Dodge Colt             5         
  31    Fiat Strada            3         
  32    Ford Fiesta            4         
  33    Ford Mustang           3         
  34    Honda Accord           5         
  35    Honda Civic            4         
  36    Linc. Continental      3         
  37    Linc. Mark V           3         
  38    Linc. Versailles       3         
  39    Mazda GLC              4         
  40    Merc. Bobcat           4         
  41    Merc. Cougar           4         
  42    Merc. Marquis          3         
  43    Merc. Monarch          3         
  44    Merc. XR-7             4         
  45    Merc. Zephyr           3         
  46    Olds 98                4         
  47    Olds Cutl Supr         3         
  48    Olds Cutlass           3         
  49    Olds Delta 88          4         
  50    Olds Omega             3         
  52    Olds Toronado          3         
  54    Plym. Arrow            3         
  55    Plym. Champ            5         
  56    Plym. Horizon          3         
  59    Pont. Catalina         4         
  61    Pont. Grand Prix       3         
  62    Pont. Le Mans          3         
  65    Renault Le Car         3         
  66    Subaru                 5         
  67    Toyota Celica          5         
  68    Toyota Corolla         5         
  69    Toyota Corona          5         
  70    Volvo 260              5         
  71    VW Dasher              4         
  72    VW Diesel              5         
  73    VW Rabbit              4         
  74    VW Scirocco            4         

Consider the following program which compares repair records for foreign and domestic cars by 
creating a table of repairs (rep78) for each separately.  

PROC FREQ DATA=auto;  
  TABLES rep78*foreign ; 
RUN; 
 
TABLE OF rep78 BY FOREIGN       
   
       rep78        FOREIGN                    
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     Frequency=                           
     Percent  =                           
     Row Pct  =                           
     Col Pct  =       0=       1=  Total  
     ============================         
            1 =      2 =      0 =      2  
              =   2.90 =   0.00 =   2.90  
              = 100.00 =   0.00 =         
              =   4.17 =   0.00 =         
     ============================         
            2 =      8 =      0 =      8  
              =  11.59 =   0.00 =  11.59  
              = 100.00 =   0.00 =         
              =  16.67 =   0.00 =         
     ============================         
            3 =     27 =      3 =     30  
              =  39.13 =   4.35 =  43.48  
              =  90.00 =  10.00 =         
              =  56.25 =  14.29 =         
     ============================         
            4 =      9 =      9 =     18  
              =  13.04 =  13.04 =  26.09  
              =  50.00 =  50.00 =         
              =  18.75 =  42.86 =         
     ============================         
            5 =      2 =      9 =     11  
              =   2.90 =  13.04 =  15.94  
              =  18.18 =  81.82 =         
              =   4.17 =  42.86 =         
     ============================         
     Total          48       21       69  
                 69.57    30.43   100.00  

Using the where statement, we restrict the analysis to only cars with a repair rating of 3 or more 
(rep78  >=  3):  

PROC FREQ DATA=auto;  
  WHERE (rep78 >= 3); 
  TABLES rep78*foreign ; 
RUN;  
 
TABLE OF rep78 BY FOREIGN       
       rep78     FOREIGN                    
   
     Frequency=                           
     Percent  =                           
     Row Pct  =                           
     Col Pct  =       0=       1=  Total  
     ============================         
            3 =     27 =      3 =     30  
              =  45.76 =   5.08 =  50.85  
              =  90.00 =  10.00 =         
              =  71.05 =  14.29 =         
     ============================         
            4 =      9 =      9 =     18  
              =  15.25 =  15.25 =  30.51  
              =  50.00 =  50.00 =         
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              =  23.68 =  42.86 =         
     ============================         
            5 =      2 =      9 =     11  
              =   3.39 =  15.25 =  18.64  
              =  18.18 =  81.82 =         
              =   5.26 =  42.86 =         
     ============================         
     Total          38       21       59  
                 64.41    35.59   100.00 

The where statement works with most SAS procedures. The following program prints only records for 
which the car has a repair rating of 2 or less:  

PROC PRINT DATA=auto; 
  WHERE (rep78 <= 2); 
  VAR make price rep78 ; 
RUN;  
  
 OBS    MAKE                 price    rep78 
   3    AMC Spirit            3799      . 
  10    Buick Opel            4453      . 
  15    Cad. Eldorado        14500      2 
  20    Chev. Monte Carlo     5104      2 
  21    Chev. Monza           3667      2 
  28    Dodge Diplomat        4010      2 
  29    Dodge Magnum          5886      2 
  30    Dodge St. Regis       6342      2 
  51    Olds Starfire         4195      1 
  53    Peugeot 604          12990      . 
  57    Plym. Sapporo         6486      . 
  58    Plym. Volare          4060      2 
  60    Pont. Firebird        4934      1 
  63    Pont. Phoenix         4424      . 
  64    Pont. Sunbird         4172      2  

3. Missing values and the where statement  

In the example above, note that some of the records print a '.' instead of a value for rep78. These are 
records where rep78 is missing. SAS stores missing values for numeric variables as '.' and treats them 
as negative infinity, or the lowest number possible. To exclude missing values, modify the where 
statement as follows (the rep78 ^= . indicates rep78 is not equal to missing).  

PROC PRINT DATA=auto; 
  WHERE (rep78 <= 2) and (rep78 ^= .) ; 
  VAR make price rep78 ; 
RUN;    

Note that there are no missing values in the listing.  

OBS    MAKE                 price    rep78 
  15    Cad. Eldorado        14500      2 
  20    Chev. Monte Carlo     5104      2 
  21    Chev. Monza           3667      2 
  28    Dodge Diplomat        4010      2 
  29    Dodge Magnum          5886      2 
  30    Dodge St. Regis       6342      2 
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  51    Olds Starfire         4195      1 
  58    Plym. Volare          4060      2 
  60    Pont. Firebird        4934      1 
  64    Pont. Sunbird         4172      2 

Similarly, this where statement yields the same result:  

PROC PRINT DATA=auto;  
  WHERE (. < rep78 <= 2);  
  VAR make price rep78 ; 
RUN;    

4. More complex where statements  

This program generates summary statistics for price, but only for cars with repair histories of 1 or 2:  

PROC MEANS DATA=auto; 
  WHERE (rep78 = 1) OR (rep78 = 2) ; 
  VAR price ; 
RUN;    

Here is the output from the proc means. By default, proc means will generate the following statistics: 
mean, minimum and maximum values, standard deviation, and the number of non-missing values for 
the analysis variable (in this case price).  

Analysis Variable : price 
N          Mean       Std Dev       Minimum       Maximum 
---------------------------------------------------------- 
10       5687.00       3216.38       3667.00      14500.00 
---------------------------------------------------------- 

To see summary statistics for price for cars with repair histories of 3, 4 or 5, modify the where 
statement accordingly:  

PROC MEANS DATA=auto; 
  WHERE (rep78 = 3) or (rep78 = 4) or (rep78 = 5) ;  
  VAR price ; 
RUN;    

Or:  

PROC MEANS DATA=auto;  
  WHERE (3 <= rep78 <= 5) ; 
  VAR price ; 
RUN;   
 
Analysis Variable : price 
   N          Mean       Std Dev       Minimum       Maximum 
  ---------------------------------------------------------- 
  59       6223.85       2880.45       3291.00      15906.00 
  ---------------------------------------------------------- 

The where statement also works with the in operator as follows:  
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PROC MEANS DATA=auto;  
  WHERE rep78 in (3,4,5);  
  VAR price ; 
RUN;  

5. Problems to look out for 

Be careful when using less than or less than or equal or not equal when you have missing data.  Be 
sure to separately exclude the missing cases if you want them excluded.  
 

Missing data in SAS  

1. Introduction 

This module will explore missing data in SAS, focusing on numeric missing data. It will describe how 
to indicate missing data in your raw data files, how missing data is handled in SAS procedures, and how 
to handle missing data in a SAS data step. Suppose we did a reaction time study with six subjects, and 
the subjects reaction time was measured three times. The data file is shown below. 

DATA times ; 
  INPUT id trial1 trial2 trial3 ; 
CARDS ; 
1 1.5 1.4 1.6  
2 1.5  .  1.9  
3  .  2.0 1.6  
4  .   .  2.2  
5 2.1 2.3 2.2 
6 1.8 2.0 1.9 
; 
RUN ; 
  
PROC PRINT DATA=times ; 
RUN ;   

You might notice that some of the reaction times are coded using a single dot. For example, for subject 
2, the second trial is coded just as a dot. Well, the person measuring response time for that trial did not 
measure the response time properly so the data for that trial was missing.  

OBS    ID    TRIAL1    TRIAL2    TRIAL3 
 1      1      1.5       1.4       1.6 
 2      2      1.5        .        1.9 
 3      3       .        2.0       1.6 
 4      4       .         .        2.2 
 5      5      2.1       2.3       2.2 
 6      6      1.8       2.0       1.9 

In your raw data, missing data is generally coded using a single . to indicate a missing value. SAS 
recognizes a single . as a missing value and knows to interpret it as missing and handles it in special 
ways. Let's examine how SAS handles missing data in procedures. 

2. How SAS handles missing data in SAS procedures 
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As a general rule, SAS procedures that perform computations handle missing data by omitting the 
missing values. (We say procedures that perform computations to indicate that we are not addressing 
procedures like proc contents). The way that missing values are eliminated is not always the same 
among SAS procedures, so let's us look at some examples. First, let's do a proc means on our data file 
and see how SAS proc means handles the missing values. 

PROC MEANS DATA=times ; 
  VAR trial1 trial2 trial3 ; 
RUN ;   

As you see in the output below, proc means computed the means using 4 observations for trial1 and 
trial2 and 6 observations for trial3. In short, proc means used all of the valid data and performed the 
computations on all of the available data. 

Variable  N          Mean       Std Dev       Minimum       Maximum 
------------------------------------------------------------------- 
TRIAL1    4     1.7250000     0.2872281     1.5000000     2.1000000 
TRIAL2    4     1.9250000     0.3774917     1.4000000     2.3000000 
TRIAL3    6     1.9000000     0.2683282     1.6000000     2.2000000 
------------------------------------------------------------------- 

As you see below, proc freq likewise performed its computations using just the available data. Note 
that the percentages are computed based on just the total number of non-missing cases. 

PROC FREQ DATA=times ; 
  TABLES trial1 trial2 trial3 ; 
RUN ;   
 
                              Cumulative  Cumulative 
TRIAL1   Frequency   Percent   Frequency    Percent 
---------------------------------------------------- 
   1.5          2      50.0           2       50.0 
   1.8          1      25.0           3       75.0 
   2.1          1      25.0           4      100.0 
 
Frequency Missing = 2 
 
 
                              Cumulative  Cumulative 
TRIAL2   Frequency   Percent   Frequency    Percent 
---------------------------------------------------- 
   1.4          1      25.0           1       25.0 
     2          2      50.0           3       75.0 
   2.3          1      25.0           4      100.0 
 
Frequency Missing = 2 
 
 
                              Cumulative  Cumulative 
TRIAL3   Frequency   Percent   Frequency    Percent 
---------------------------------------------------- 
   1.6          2      33.3           2       33.3 
   1.9          2      33.3           4       66.7 
   2.2          2      33.3           6      100.0 



 50

It is possible that you might want the the percentages to be computed out of the total number of values, 
and even report the percentage missing right in the table itself. You can request this using the missing 
option on the tables statement of proc freq as shown below (just for trial1). 

PROC FREQ DATA=times ; 
  TABLES trial1 / MISSING ; 
RUN ;   

As you see, now the percentages are computed out of the total number of observations, and the 
percentage missing are shown right in the table as well. 

                              Cumulative  Cumulative 
TRIAL1   Frequency   Percent   Frequency    Percent 
---------------------------------------------------- 
     .          2      33.3           2       33.3 
   1.5          2      33.3           4       66.7 
   1.8          1      16.7           5       83.3 
   2.1          1      16.7           6      100.0 

Let's look at how proc corr handles missing data. We would expect that it would do the computations 
based on the available data, and omit the missing values. Here is an example program. 

PROC CORR DATA=times ; 
  VAR trial1 trial2 trial3 ; 
RUN ;   

The output of this program is shown below.  Note how the missing values were excluded. For each pair 
of variables, proc corr used the number of pairs that had valid data. For the pair formed by trial1 and 
trial2,  there were 3 pairs with valid data.  For the pairing of trial1 and trial3 there were 4 valid pairs, 
and likewise there were 4 valid pairs for trial2 and trial3.  Since this used all of the valid pairs of data, 
this is often called pairwise deletion of missing data. 

Correlation Analysis 
   3 'VAR' Variables:  TRIAL1   TRIAL2   TRIAL3 
                                     Simple Statistics 
 
Variable      N          Mean       Std Dev           Sum       Minimum       
Maximum 
TRIAL1        4      1.725000      0.287228      6.900000      1.500000      
2.100000 
TRIAL2        4      1.925000      0.377492      7.700000      1.400000      
2.300000 
TRIAL3        6      1.900000      0.268328     11.400000      1.600000      
2.200000 
 
 
Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / Number of 
Observations 
 
 
                  TRIAL1            TRIAL2            TRIAL3 
TRIAL1           1.00000           0.98198           0.85280 
                  0.0               0.1210            0.1472 
                       4                 3                 4 
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TRIAL2           0.98198           1.00000           0.76089 
                  0.1210            0.0               0.2391 
                       3                 4                 4 
 
TRIAL3           0.85280           0.76089           1.00000 
                  0.1472            0.2391            0.0 
                       4                 4                 6 

It is possible to ask SAS to only perform the correlations on the observations that had complete data for 
all of the variables on the var statement. For example, you might want the correlations of the reaction 
times just for the observations that had non-missing data on all of the trials. This is called listwise 
deletion of missing data meaning that when any of the variables are missing, the entire observation is 
omitted from the analysis. You can request listwise deletion within proc corr with the nomiss option as 
illustrated below. 

PROC CORR DATA=times NOMISS ; 
  VAR trial1 trial2 trial3 ; 
RUN ;   

As you see in the results below, the N for all the simple statistics is the same, 3, which corresponds to 
the number of cases with complete non-missing data for trial1 trial2 and trial3. Since the N is the same 
for all of the correlations (i.e., 3), the N is not displayed along with the correlations. 

Correlation Analysis 
   3 'VAR' Variables:  TRIAL1   TRIAL2   TRIAL3 
 
                                     Simple Statistics 
Variable    N          Mean       Std Dev           Sum       Minimum       Maximum 
TRIAL1      3      1.800000      0.300000      5.400000      1.500000      2.100000 
TRIAL2      3      1.900000      0.458258      5.700000      1.400000      2.300000 
TRIAL3      3      1.900000      0.300000      5.700000      1.600000      2.200000 
 
Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 3 
 
                  TRIAL1            TRIAL2            TRIAL3 
 
TRIAL1           1.00000           0.98198           1.00000 
                  0.0               0.1210            0.0001 
 
TRIAL2           0.98198           1.00000           0.98198 
                  0.1210            0.0               0.1210 
 
TRIAL3           1.00000           0.98198           1.00000 
                  0.0001            0.1210            0.0 

3. Summary of how missing values are handled in SAS procedures  

It is important to understand how SAS procedures handle missing data if you have missing data. To 
know how a procedure handles missing data, you should consult the SAS manual. Here is a brief 
overview of how some common SAS procedures handle missing data.   

• - proc means 
For each variable, the number of non-missing values are used  
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• proc freq 
By default, missing values are excluded and percentages are based on the number of non-
missing values. If you use the missing option on the tables statement, the percentages are based 
on the total number of observations (non-missing and missing) and the percentage of missing 
values are reported in the table.  

• proc corr 
By default, correlations are computed based on the number of pairs with non-missing data 
(pairwise deletion of missing data). The nomiss option can be used on the proc corr statement 
to request that correlations be computed only for observations that have non-missing data for all 
variables on the var statement (listwise deletion of missing data).  

• proc reg 
If any of the variables on the model or var statement are missing, they are excluded from the 
analysis (i.e., listwise deletion of missing data)  

• proc factor 
Missing values are deleted listwise, i.e., observations with missing values on any of the 
variables in the analysis are omitted from the analysis.  

• proc glm 
The handling of missing values in proc glm can be complex to explain. If you have an analysis 
with just one variable on the left side of the model statement (just one outcome or dependent 
variable), observations are eliminated if any of the variables on the model statement are missing. 
Likewise, if you are performing a repeated measures ANOVA or a MANOVA, then 
observations are eliminated if any of the variables in the model statement are missing. For other 
situations, see the SAS/STAT manual about proc glm.  

• For other procedures, see the SAS manual for information on how missing data is handled.  

4. Missing values in assignment statements 

It is important to understand how missing values are handled in assignment statements. Consider the 
example shown below. 

DATA times2 ; 
  SET times ; 
  avg = (trial1 + trial2 + trial3) / 3 ; 
RUN ; 
  
PROC PRINT DATA=times2 ; 
RUN ;   

The proc print below illustrates how missing values are handled in assignment statements. The 
variable avg is based on the variables trial1 trial2 and trial3. If any of those variables were missing, 
the value for avg was set to missing. This meant that avg was missing for observations 2, 3 and 4. 

OBS    ID    TRIAL1    TRIAL2    TRIAL3    AVG 
 1      1      1.5       1.4       1.6     1.5 
 2      2      1.5        .        1.9      . 
 3      3       .        2.0       1.6      . 
 4      4       .         .        2.2      . 
 5      5      2.1       2.3       2.2     2.2 
 6      6      1.8       2.0       1.9     1.9 
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In fact, SAS included a NOTE: in the Log to let you know about the missing values that were created. 
The Log entry from this example is shown below. 

222        DATA times2 ; 
223          SET times ; 
224          avg = (trial1 + trial2 + trial3) / 3 ; 
225        RUN ; 
NOTE: Missing values were generated as a result of performing an operation on 
      missing values. 
      Each place is given by: (Number of times) at (Line):(Column). 
      3 at 224:17   3 at 224:26   3 at 224:36 
NOTE: The data set WORK.TIMES2 has 6 observations and 5 variables.   

This note tells us that three missing values were created in the program at line 224. This makes sense, 
we know that 3 missing values were created for avg and that avg is created on line 224. 

As a general rule, computations involving missing values yield missing values. For example, 

2 + 2 yields 4 
2 + . yields . 
2 / 2 yields 1 
. / 2 yields . 
2 * 3 yields 6 
2 * . yields . 

whenever you add, subtract, multiply, divide, etc., values that involve missing data, the result it missing. 

In our reaction time experiment, the average reaction time avg is missing for three out of six cases. We 
could try just averaging the data for the non-missing trials by using the mean function as shown in the 
example below. 

DATA times3 ; 
  SET times ; 
  avg = MEAN(trial1, trial2, trial3) ; 
RUN ; 
  
PROC PRINT DATA=times3 ; 
RUN ;   

The results below show that avg now contains the average of the non-missing trials.  

OBS    ID    TRIAL1    TRIAL2    TRIAL3    AVG 
 1      1      1.5       1.4       1.6     1.5 
 2      2      1.5        .        1.9     1.7 
 3      3       .        2.0       1.6     1.8 
 4      4       .         .        2.2     2.2 
 5      5      2.1       2.3       2.2     2.2 
 6      6      1.8       2.0       1.9     1.9 

Had there been a large number of trials, say 50 trials, then it would be annoying to have to type 
avg = mean(trial1, trial2, trial3 .... trial50) 
Here is a shortcut you could use in this kind of situation  
avg = mean(of trial1-trial50) 
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Also, if we wanted to get the sum of the times instead of the average, then we could just use the sum 
function instead of the mean function. The syntax of the sum function is just like the mean function, 
but it returns the sum of the non-missing values. 

Finally, you can use the N function to determine the number of non-missing values in a list of variables, 
as illustrated below. 

DATA times4 ; 
  SET times ; 
  n = N(trial1, trial2, trial3) ; 
RUN ; 
  
PROC PRINT DATA=times4 ; 
RUN ;   

As you see below, observations 1, 5 and 6 had three valid values, observations 2 and 3 had two valid 
values, and observation 4 had only one valid value.  

OBS    ID    TRIAL1    TRIAL2    TRIAL3    N 
 1      1      1.5       1.4       1.6     3 
 2      2      1.5        .        1.9     2 
 3      3       .        2.0       1.6     2 
 4      4       .         .        2.2     1 
 5      5      2.1       2.3       2.2     3 
 6      6      1.8       2.0       1.9     3 

You might feel uncomfortable with the variable avg for observation 4 since it is not really an average at 
all. We can use the variable n to create avg only when there are two or more valid values, but if the 
number of non-missing values is 1 or less, then make avg to be missing. This is illustrated below. 

DATA times5 ; 
  SET times ; 
  n = N(trial1, trial2, trial3) ; 
  IF n >= 2 THEN avg = MEAN(trial1, trial2, trial3) ; 
  IF n <= 1 THEN avg=. ;  
RUN ;  
 
PROC PRINT DATA=times5 ;  
RUN ; 

In the output below, you see that avg now contains the average reaction time for the non-missing values, 
except for observation 4 where the value is assigned to missing because it had only 1 valid observation. 

OBS    ID    TRIAL1    TRIAL2    TRIAL3    N    AVG 
 1      1      1.5       1.4       1.6     3    1.5 
 2      2      1.5        .        1.9     2    1.7 
 3      3       .        2.0       1.6     2    1.8 
 4      4       .         .        2.2     1     . 
 5      5      2.1       2.3       2.2     3    2.2 
 6      6      1.8       2.0       1.9     3    1.9 

5. Missing values in logical statements 
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It is important to understand how missing values are handled in logical statements.  For example, say 
that you want to create a 0/1 value for trial1 that is 0 if it is 1.5 or less, and 1 if it is over 1.5.  We show 
this below (incorrectly, as you will see). 

DATA times2 ; 
  SET times ; 
  if (trial1 <= 1.5) then trial1a = 0; else trial1a = 1 ; 
RUN ; 
 
proc print data=times2; 
  var id trial1 trial1a; 
run; 

And as you can see in the output, the values for trial1a are wrong when id is 3 or 4, when trial1 is 
missing.  This is because SAS treats a missing value as the smallest possible value (e.g., negative 
infinity) and that value is less than 1.5, so then the value for trial1a becomes 0. 

Obs    id    trial1    trial1a 
 1      1      1.5        0 
 2      2      1.5        0 
 3      3       .         0 
 4      4       .         0 
 5      5      2.1        1 
 6      6      1.8        1 

Instead, we will explicitly exclude missing values to make sure they are treated properly, as shown 
below. 

DATA times2 ; 
  SET times ; 
  trial1a = .; 
  if (trial1 <= 1.5) and (trial1 > .) then trial1a = 0; 
  if (trial1 > 1.5) then trial1a = 1 ; 
RUN ; 
 
proc print data=times2; 
  var id trial1 trial1a; 
run; 

And now we get the results that we wish.  The value for trial1a is only 0 when it is less than or equal to 
1.5 and it is not missing.  The value for trial1a is only 0 when it is over 1.5, as shown below. 

Obs    id    trial1    trial1a 
 
 1      1      1.5        0 
 2      2      1.5        0 
 3      3       .         . 
 4      4       .         . 
 5      5      2.1        1 
 6      6      1.8        1 

6. Problems to look out for 
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• When creating or recoding variables that involve missing values, always pay attention to the 
SAS log to detect when you are creating missing values.   

SAS system options 

This module will illustrate some of the system options offered by the SAS system.  

1. SAS system options 

System options are global instructions that affect the entire SAS session and control the way SAS 
performs operations. SAS system options differ from SAS data set options and statement options in that 
once you invoke a system option, it remains in effect for all subsequent data and proc steps in a SAS 
job, unless you specify them.  
 
In order to view which options are available and in effect for your SAS session, use proc options. 

PROC OPTIONS; 
RUN; 

Here is some sample output produced by the proc options statement above. 

PORTABLE OPTIONS: 
 
 NOCAPS            Translate quoted strings and titles to upper case? 
 CENTER            Center SAS output? 
 DATE              Date printed in title? 
 ERRORS=20         Maximum number of observations with error messages 
 FIRSTOBS=1        First observation of each data set to be processed 
 FMTERR            Treat missing format or informat as an error? 
 LABEL             Allow procedures to use variable labels? 
 LINESIZE=96       Line size for printed output 
 MISSING=.         Character printed to represent numeric missing values 
 NOTES             Print SAS notes on log? 
 NUMBER            Print page number on each page of SAS output? 
 OBS=MAX           Number of last observation to be processed 
 PAGENO=1          Resets the current page number on the print file 
 PAGESIZE=54       Number of lines printed per page of output 
 PROBSIG=0         Number of significant figures guaranteed when printing P-values 
 REPLACE           Allow replacement of permanent SAS data sets? 
 SOURCE            List SAS source statements on log? 
 NOSOURCE2         List included SAS source statements on log? 
 YEARCUTOFF=1900   Cutoff year for DATE7. informat 

Not every SAS system option is listed above, but many of the most common options are listed. Of 
course, it is not necessary to understand every SAS option in order to run a SAS job. This module will 
discuss some of the more common SAS system options that the typical user would use to customize 
their SAS sessions.  

2. Log, output and procedure options 

Log, output and procedure options specify the ways in which SAS output is written to the SAS log and 
procedure output file.  
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Below are some commonly used log, output, and procedure options: 
 
center controls whether SAS procedure output is centered. By default, output is always centered. To 
specify not centered, use nocenter, which will print results to the output window as left justified.  
 
date prints the date and time to the log and output window. By default, the date and time is always 
printed. To suppress the printing of the date, use nodate. 
 
label allows SAS procedures to use labels with variables. By default, labels are permitted. To suppress 
the printing of labels, use nolabel. 
 
notes controls whether notes are printed to the SAS log. By default, notes are printed. To suppress the 
printing of notes, use nonotes. 
 
number controls whether page numbers are printed on the first title line of each page of printed output. 
By default, page numbers are printed. To suppress the printing of page numbers, use nonumber. 
 
linesize= specifies the line size (printer line width) for the SAS log and the SAS procedure output file 
used by the data step and procedures. 
 
pagesize= specifies the number of lines that can be printed per page of SAS output. 
 
missing= specifies the character to be printed for missing numeric variable values. 
 
formchar= specifies the the list of graphics characters that define table boundaries.  
 
Below is sample syntax for setting some of these options. 

OPTIONS NOCENTER NODATE NONOTES LINESIZE=80 MISSING=.  
        FORMCHAR = '|----|+|---+=|-/<>*'; 

3. SAS data set control options 

SAS data set control options specify how SAS data sets are input, processed, and output.  
 
Below are some commonly used SAS data set control options: 
 
firstobs= causes SAS to begin reading at a specified observation in a data set. If SAS is processing a 
file of raw data, this option forces SAS to begin reading at a specified line of data. The default is 
firstobs=1. 
 
obs= specifies the last observation from a data set or the last record from a raw data file that SAS is to 
read. To return to using all observations in a data set use obs=all replace specifies whether permanently 
stored SAS data sets are to be replaced. By default, the SAS system will over-write existing SAS data 
sets if the SAS data set is re-specified in a data step. To suppress this option, use noreplace. 
 
Below is sample syntax for invoking some of these options. 
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OPTIONS OBS=100 NOREPLACE; 

4. Error handling options 

Error handling options specify how the SAS System reports on and recovers from error conditions.  
 
Below are two commonly used error handling options: 
 
errors= controls the maximum number of observations for which complete error messages are printed. 
The default maximum number of complete error messages is errors=20 
 
fmterr (which is in effect by default if not specified) controls whether the SAS System generates an 
error message when the system cannot find a format to associate with a variable. Turning this option off 
is useful when you have a SAS system data set with custom formats, but you do not have the 
corresponding SAS format library. In this situation, SAS will generate an ERROR message for every 
unknown format it encounters and will terminate the SAS job without running any following data and 
proc steps. Thus, in order to override this default option and read a SAS system data set without 
requiring a SAS format library, use nofmterr 
 
Below is sample syntax for invoking these options. 

OPTIONS ERRORS=100 NOFMTERR; 
RUN; 

5. Reading and writing data options 

Reading and writing data options control the ways in which data are input to, and output from, the SAS 
system.  
 
Below are some commonly used reading and writing data options: 
 
caps specifies whether lowercase characters input to the SAS System are translated to uppercase. The 
default is nocaps. 
 
probsig= controls the number of significant digits of p-values in some statistical procedures.  
 
yearcutoff= specifies the first year of a 100-year span used as the default by various informats and 
functions. (For more information on yearcutoff and Y2K issues with dates in SAS, see Statistical 
Computing and the Year 2000 and Using dates in SAS). 
 
Below is sample syntax for invoking these options. 

OPTIONS CAPS PROBSIG=3 YEARCUTOFF=1900; 

It should also be noted that these data set options are global options, as opposed to local data set options 
that are specified within a data or proc step, and remain in effect until the data or proc step ends. For 
more on local data set options, such as obs, keep and drop, see Subsetting data in SAS. 

http://www.ats.ucla.edu/stat/mult_pkg/library/y2k.htm
http://www.ats.ucla.edu/stat/mult_pkg/library/y2k.htm
http://www.ats.ucla.edu/stat/sas/modules/dates.htm
http://www.ats.ucla.edu/stat/sas/modules/subset.htm
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An overview of the syntax of SAS procedures 

1. Introduction 

This module will illustrate the general syntax of SAS procedures. We will use the auto data file shown 
below to illustrate the syntax of SAS procedures.  

DATA auto ; 
  input MAKE $ PRICE MPG REP78 FOREIGN ; 
DATALINES; 
AMC    4099 22 3 0 
AMC    4749 17 3 0 
AMC    3799 22 3 0 
Audi   9690 17 5 1 
Audi   6295 23 3 1 
BMW    9735 25 4 1 
Buick  4816 20 3 0 
Buick  7827 15 4 0 
Buick  5788 18 3 0 
Buick  4453 26 3 0 
Buick  5189 20 3 0 
Buick 10372 16 3 0 
Buick  4082 19 3 0 
Cad.  11385 14 3 0 
Cad.  14500 14 2 0 
Cad.  15906 21 3 0 
Chev.  3299 29 3 0 
Chev.  5705 16 4 0 
Chev.  4504 22 3 0 
Chev.  5104 22 2 0 
Chev.  3667 24 2 0 
Chev.  3955 19 3 0 
Datsun 6229 23 4 1 
Datsun 4589 35 5 1 
Datsun 5079 24 4 1 
Datsun 8129 21 4 1 
; 
RUN;  

2. Using a procedure with no options  

Now, lets have a look at the use of SAS procedures using proc means as an example.  Here we show 
that it is possible to use proc means with no options at all.  By default, it uses the last data file created 
(i.e., auto) and it makes means for all of the numeric variables in the file.  

PROC MEANS ; 
RUN;  

Here you see the results, the means from auto and it displays the N, mean, Std Dev, Min and Max for 
all of the numeric variables.  

 Variable   N          Mean       Std Dev       Minimum       Maximum 
-------------------------------------------------------------------- 
PRICE     23       6507.57       3094.96       3299.00      15906.00 
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MPG       23    21.0434783     4.8003623    14.0000000    35.0000000 
REP78     23     3.4347826     0.6623709     3.0000000     5.0000000 
FOREIGN   23     0.3043478     0.4704720             0     1.0000000 
--------------------------------------------------------------------  

3. Using options on the PROC statement 

We can use the data= option to tell proc means for what file we want the means. The data= option 
comes right after proc means.  Even though the data= option is optional, we strongly recommend using 
it every time because it avoids errors of omission when you revise your programs.  

PROC MEANS DATA=auto; 
RUN;  

As you see, the results are identical to those above.  

 Variable   N          Mean       Std Dev       Minimum       Maximum 
-------------------------------------------------------------------- 
PRICE     23       6507.57       3094.96       3299.00      15906.00 
MPG       23    21.0434783     4.8003623    14.0000000    35.0000000 
REP78     23     3.4347826     0.6623709     3.0000000     5.0000000 
FOREIGN   23     0.3043478     0.4704720             0     1.0000000 
--------------------------------------------------------------------  

We can use the n, mean and std options to tell proc means that we just want the N, mean and standard 
deviation for the data.   

PROC MEANS DATA=auto N MEAN STD ; 
RUN;  

The output, shown below, shows just the N, mean, and standard deviation, just as we requested.  

Variable   N          Mean       Std Dev 
---------------------------------------- 
PRICE     23       6507.57       3094.96 
MPG       23    21.0434783     4.8003623 
REP78     23     3.4347826     0.6623709 
FOREIGN   23     0.3043478     0.4704720 
----------------------------------------  

These examples have shown us that you can have options on the proc statement, for example after proc 
means we used the data= n mean and std options.  

4. Using additional statements 

Proc means also supports additional statements.   Here we use the var statement to say which variables 
we want the means for proc means.  

PROC MEANS DATA=auto2; 
  VAR price ; 
RUN;  

As you would expect, the output shows the results just for the variable price.  
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Analysis Variable : PRICE 
 
 N          Mean       Std Dev       Minimum       Maximum 
---------------------------------------------------------- 
23       6507.57       3094.96       3299.00      15906.00 
---------------------------------------------------------- 

Here we also use the class statement to request means broken down by foreign (i.e., foreign and 
domestic cars).  

PROC MEANS DATA=auto; 
  CLASS foreign ; 
  VAR price ; 
RUN;  

As we requested, the means of price are shown for the two levels of foreign.  

Analysis Variable : PRICE 
     FOREIGN  N Obs   N          Mean       Std Dev       Minimum       Maximum 
------------------------------------------------------------------------------- 
           0     16  16       6245.50       3470.04       3299.00      15906.00 
           1      7   7       7106.57       2101.83       4589.00       9735.00 
------------------------------------------------------------------------------- 

These examples have shown that you can have additional statements with a proc (for example, the var 
and class statement). Each proc has its own set of additional statements that are valid for that proc.  

5. Options on additional statements  

It is also possible to have options on the additional statements (the statements after the proc 
statement).  We will illustrate this using proc reg.  

Here we use proc reg to predict price from mpg.  We use the model statement to tell proc reg that we 
want to predict price from mpg.  

PROC REG DATA=auto ; 
  MODEL price = mpg ; 
RUN;  

Here is the output from the proc reg.  

Model: MODEL1   
Dependent Variable: PRICE                                               
 
Analysis of Variance 
 
                         Sum of         Mean 
Source          DF      Squares       Square      F Value       Prob>F 
 
Model            1 54620027.581 54620027.581        5.712       0.0251 
Error           24 229491191.53 9562132.9806 
C Total         25 284111219.12 
 
    Root MSE    3092.26988     R-square       0.1922 
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    Dep Mean    6651.73077     Adj R-sq       0.1586 
    C.V.          46.48820 
 
Parameter Estimates 
 
                 Parameter      Standard    T for H0:                
Variable  DF      Estimate         Error   Parameter=0    Prob > |T| 
 
INTERCEP   1         13152  2786.6930753         4.720        0.0001 
MPG        1   -310.689641  129.99546608        -2.390        0.0251 

Notice that we don't get standardized estimates (betas).  We have to ask proc reg to give those to us.  In 
particular, we use the stb option on the model statement, as shown below.  Note that the stb option 
comes after a / .  Options on a proc statement come right after the name of the proc, but options for 
subsequent statements must follow a slash / .  

PROC REG DATA=auto ; 
  MODEL price = mpg / STB; 
RUN;  

The output is the same as the output above, except that it also includes this portion shown below that 
has the standardized estimates (betas).  

              Standardized 
Variable  DF      Estimate 
 
INTERCEP   1    0.00000000 
MPG        1   -0.43846180 

6. More examples 

We have illustrated the general syntax of SAS procedures using proc means and proc reg.  Let's look 
at a few more examples, this time using proc freq.  As you may imagine, proc freq is used for 
generating frequency tables.  From what we have learned, we would expect that proc freq would have: 
   

- Options on the proc freq statement that would influence the way that the tables look.  
- Additional statements that would specify what tables to produce.  
- Options on the additional statements that would influence how those particular tables look.  

Let's look at some examples.    

First, consider the program below.  As you might expect, the program above would generate frequency 
tables for every variable in the auto data file.  

PROC FREQ DATA=auto; 
RUN;  

If we use the page option, proc freq will start every table on a new page.  Note that this influences all 
of the tables produced in that proc freq step.  

PROC FREQ DATA=auto PAGE; 
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RUN;  

We have also seen that a SAS procedure can have one or more optional statements.  Below we show 
that we can have one or more tables statements to specify the frequency tables we want, in this case, 
tables for rep78 and price.  Because we used the page option, each table will start on a new page.  This 
influences both the table made for rep78 and price.  (Note that we could have specified tables rep78 
price; and gotten the same result, but we wanted to illustrate having more than one tables statement.)  

PROC FREQ DATA=auto PAGE; 
  TABLES rep78 ; 
  TABLES price ; 
RUN;  

As we might expect, we could supply options on each of the tables statements to determine how those 
particular tables are shown.  The example below requests frequency tables for rep78 and price, but the 
table for rep78 will omit percentages because it used the nopercent option.  Both tables will appear on 
a new page (because the page option influences all of the tables) but only rep78 will suppress the 
printing of percentages because the nopercent option only applies to that one tables statement.  

PROC FREQ DATA=auto PAGE; 
  TABLES rep78 / NOPERCENT ; 
  TABLES price ; 
RUN;  

7. Problems to look out for 

When you use options, it is easy to confuse an option that goes on the proc statement with options that 
follow on subsequent statements.  

 
Common error messages in SAS 

When a SAS program is executed, SAS generates a log.  

1. The log 

• Echoes program statements  
• Provides information about computer resources  
• Provides diagnostic information  

Understanding the log enables you to identify and correct errors in your program. The log contains three 
types of messages:  

• Notes  
• Warnings  
• Errors  

Although notes and warnings will not cause the program to terminate, they are worthy of your attention, 
since they may alert you to potential problems.  
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An error message is more serious, since it indicates that the program has failed and stopped execution.  

However, the majority of errors are easily corrected.  

2. Finding and correcting errors 

1. Start at the beginning 
Do not become alarmed if your program has several errors in it. Sometimes there is a single error in the 
beginning of the program that causes the others. Correcting this error may eliminate all those that 
follow. Start at the beginning of your program and work down.  

2. Debug your programs one step at a time. 
SAS executes programs in steps, so even if you have an error in a step written in the beginning of your 
program, SAS will try to execute all subsequent steps, which wastes not only your time, but computer 
resources as well. Simplify your work. Correct your programs one step at a time, before proceeding to 
the next step. As mentioned above, often a single error in the beginning of the program can create a 
cascading error effect. Correcting an error in a previous step may eliminate other errors.  

Look at the statements immediately above and immediately following the line with the error. SAS will 
underline the error where it detects it, but sometimes the actual error is in a different place in your 
program, typically the preceding line.  

4. Look for common errors first. 
Most errors are caused by a few very common mistakes.  

3. Common errors  

3.1. Missing semicolon 
This is by far the most common error. A missing semicolon will cause SAS to misinterpret not only the 
statement where the semicolon is missing, but possibly several statements that follow. Consider the 
following program, which is correct, except for the missing semicolon:  

  
proc print data =  auto 
    var make mpg; 
run; 
  

The missing semicolon causes SAS to read the two statements as a single statement. As a result, the var 
statement is read as an option to the procedure. Since there is no var option in proc print, the program 
fails.  

  
      proc print data = auto 
44        var make mpg; 
          ------------ 
          202 202  202 
45        run; 
 
ERROR 202-322: The option or parameter is not recognized. 
NOTE: The SAS System stopped processing this step because of errors. 
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The syntax for the following program is absolutely correct, except for the missing semicolon on the 
comment:  

  
* Build a file named auto2 
 
data auto2; 
      set auto; 
     ratio=mpg/weight; 
run; 
 
 
34   * Build a file named auto2 
35 
36     data auto2; 
37       set auto; 
         ------- 
         180 
ERROR 180-322: Statement is not valid or it is used out of proper order. 
38       ratio=mpg/weight; 
         -------  
         180 
ERROR 180-322: Statement is not valid or it is used out of proper order. 
39     run; 
  

Taken out of the context of the program, both statements are correct.  

 set auto; 
  ratio=mpg/weight; 
  

However, SAS flags them as errors, because it fails to read the data statement correctly. Instead it reads 
this statement as part of the comment.  

 * Build a file named auto2      data auto2;  

Why? Because the first semicolon it encounters is after the word auto2. Consequently the two correct 
statements are now errors.  

3.1 Misspellings 

Sometimes SAS will correct your spelling mistakes for you by making its best guess at what you meant 
to do. When this happens, SAS will continue execution and issue a warning explaining the assumption 
it has made.. Consider for example, the following program:  

DAT auto ; 
  INPUT make $  mpg rep78 weight foreign ; 
CARDS; 
AMC     22 3 2930 0 
AMC     17 3 3350 0 
AMC     22 . 2640 0 
; 
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run; 

Note that the word "DATA" is misspelled. If we were to run this program, SAS would correct the 
spelling and run the program, but issue a warning.  

68   DAT auto ; 
     ---- 
14 69 INPUT make $ mpg rep78 weight foreign ;  
   70 CARDS; WARNING 14-169: Assuming the symbol DATA was misspelled as DAT.  
NOTE: The data set WORK.AUTO has 26 observations and 5 variables.  

Sometimes SAS identifies a spelling error in a note, which does not cause the program to fail. Never 
assume that a program that has run without errors is correct! Always review the SAS log for notes and 
warning as well as errors.  

The following program runs successfully, but is it correct?  

data auto2; 
  set auto; 
  ratio = mpg/wieght; 
run; 

A careful review of the SAS log reveals that it is not. 

75   data auto2; 
76      set auto; 
77      ratio = mpg/wieght; 
78   run; 
 
NOTE: Variable WIEGHT is uninitialized. 
NOTE: Missing values were generated as a result of performing an 
      operation on missing values. 
      Each place is given by: 
      (Number of times) at (Line):(Column).  6 at 77:15 
NOTE: The data set WORK.AUTO2 has 26 observations and 7 variables. 

Sometimes missing values are legitimate. However, when a variable is missing data for every record in 
the file, there may be a problem with the program, as illustrated above. More often, when your program 
contains spelling errors, the step will terminate and SAS will issue an error statement or a note 
underlining the word, or words, it does not recognize.  

65   proc print 
66   var make mpg weight; 
     ---- 
     76 
67   run; 
 
ERROR 76-322: Syntax error, statement will be ignored. 
NOTE: The SAS System stopped processing this step because of errors. 

In this example, there is nothing wrong with the var statement. Adding a semicolon to the proc print 
solves the problem.  

proc print;  



 67

   var make mpg weight; 
run; 

3.2 Unmatched quotes/comments 

Unclosed quotes and unclosed comments will result in a variety of errors because SAS will fail to read 
subsequent statements correctly. If you are running interactively, your program may appear to be doing 
nothing, because SAS is waiting for the end of the quoted string or comment before continuing.  For 
example, if we were to run the following program 

proc print; 
  var make mpg; 
  Title "Auto File '; 
run; 

SAS would not read the run statement. Instead it reads it as part of the title statement, because the title 
statement is missing the closing double quotes. When run, the program would appear to be doing 
nothing. System messages would indicate that it is running, which in fact it is. However, SAS is reading 
the rest of the program, waiting for the end of the step, which it will never find because it has become 
part of the title statement. When executed, the program will disappear from the program editor.  

 

Nothing appears in the output window (not shown).   If we check the log, it indicates the program is 
running.  

 

If we correct the program by adding the double quotes, and the program will now run. 
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Note that SAS includes the string 'run; in the the title when it prints the output listing.  

Auto File ';run;                        
 
OBS    MAKE      MPG 
 1    AMC        22 
 2    AMC        17 
 3    AMC        22 
 4    Audi       17 
 5    Audi       23 
 6    BMW        25 
 7    Buick      20 
 8    Buick      15 
 9    Buick      18 
10    Buick      26 
11    Buick      20 
12    Buick      16 
13    Buick      19 
14    Cad.       14 
15    Cad.       14 
16    Cad.       21 
17    Chev.      29 
18    Chev.      16 
19    Chev.      22 
20    Chev.      22 
21    Chev.      24 
22    Chev.      19 
23    Datsun     23 
24    Datsun     35 
25    Datsun     24 
26    Datsun     21 

3.3 Mixing proc and data statements 

Since the data and proc steps perform very different functions in SAS, statements that are valid for one 
will probably cause an error when used in the other. Although a program may include several steps, 
steps are processed separately.  

A step ends in one of three ways:  

1. SAS encounters a keyword that begins a new step (either proc or data) 
2. SAS encounters the run statement, which instructs it to run the previous step(s) 
3. SAS encounters the end of the program.  
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Each data, proc and run statement causes the previous step to execute. Consequently, once a new step 
has begun, you may not go back and add statements to an earlier step. Consider this program, for 
example.  

data auto2; 
   set auto; 
proc sort; by make; 
   ratio = mpg/weight; 
run; 

SAS creates the new file auto2 when it reaches the end of the data step. This occurs when it encounters 
the beginning of a new step (in this example proc sort). Consequently, the assignment statement is 
invalid because the data step has been terminated, and an assignment statement cannot be used in a 
procedure.  

40   data auto2; 
41      set auto; 
 
NOTE: The data set WORK.AUTO2 has 26 observations and 5 variables. 
NOTE: The DATA statement used 0.12 seconds. 
 
42   proc sort; by make; 
43      ratio = mpg/weight; 
        ------ 
        180 
44   run; 
 
ERROR 180-322: Statement is not valid or it is used out of proper order. 
NOTE: The SAS System stopped processing this step because of errors. 

Simply moving the statement solves the problem.  

data auto2; 
   set auto; 
   ratio = mpg/weight; 
proc sort; by make; 
run; 

3.4 Using options with the wrong proc  

Similarly, although many options work with a variety of procedures, some are only valid when used 
with a particular procedure. Remember to evaluate all errors in context. A perfectly correct statement or 
option may cause an error not because it was written incorrectly, but because it is being used in the 
wrong place.  

88   proc freq data = auto2; 
89   var make; 
     --- 
     180 
90   run; 
 
ERROR 180-322: Statement is not valid or it is used out of proper order. 
NOTE: The SAS System stopped processing this step because of errors. 
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The var statement is not valid when used with proc freq. Change the statement to tables and the 
program runs successfully.  

proc freq data = auto2; 
  tables make; 
run; 

Conversely, the tables statement may not work with other procedures.  

92   proc means data = auto2; 
93        tables make; 
          ------            
          180 
94        run; 
 
ERROR 180-322: Statement is not valid or it is used out of proper order. 
NOTE: The SAS System stopped processing this step because of errors. 

In this example, the var statement is correct:  

proc means data = auto2; 
  var make; 
run; 

4. Understanding common error messages 

Variable uninitialized 
Variable not found  

These errors mean that your program includes a reference to a variable name that SAS has never seen. 
The mostly likely cause is a spelling error. If all variables and programming statements are spelled 
correctly, check that you are in fact reading the correct data set and not one with a similar name.  

• Check spelling 
Has the variable name been spelled correctly?  

• Consider data errors 
Are you reading the correct data set? 
Have the data changed? 
Has the variable been dropped? 
Consider logic errors 
Are you using a variable before it has been built? 
Consider the log generated when the following program is run:  

 106  data auto2; 
107     set auto; 
108     if tons > .5; 
109     tons = weight/2000; 
110  run; 
 
NOTE: The data set WORK.AUTO2 has 0 observations      
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Although the program ran with no errors, the new data set has no observations in it. Since we would 
expect most cars to weigh more than half a ton, there is probably an error in the program logic. In this 
case, we are subsetting on a variable that has not yet been defined.  

Changing the order of the programming statements yields a different result:  

 118  data auto2; 
119     set auto; 
120     tons = weight/2000; 
121     if tons > .5; 
122  run; 
 
NOTE: The data set WORK.AUTO2 has 26 observations.  

Invalid option  
This means that the option is not valid for the procedure in which it is being used.  
Check procedure/options  
Is the option appropriate for the procedure?  
 
Option or parameter not recognized  
This error means that although the option may be correct as written, it is not being used correctly in the 
program.  
Check procedure/options  
Is the option appropriate for the procedure?  
Look for missing semicolon. 
Is there a missing semicolon in a preceding statement?  
 
Statement is not valid or is used out of proper order  
This means that the statement itself is incorrect as written.  
Check your syntax 

Inputting data into SAS 

This module will show how to input raw data into SAS, showing how to read instream data and external 
raw data files using some common raw data formats.  Section 3 shows how to read external raw data 
files on a PC, UNIX/AIX, and Macintosh, while sections 4-6 give examples showing how to read the 
external raw data files on a PC, however these examples are easily converted to work on UNIX/AIX or 
a Macintosh based on the examples shown in section 3.  

1. Reading free formatted data instream 

One of the most common ways to read data into SAS is by reading the data instream in a data step - 
that is, by typing the data directly into the syntax of your SAS program. This approach is good for 
relatively small datasets. Spaces are usually used to "delimit" (or separate) free formatted data. For 
example:  

  
DATA cars1; 
 INPUT make $ model $ mpg weight price; 
CARDS; 
AMC Concord 22 2930 4099 
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AMC Pacer   17 3350 4749 
AMC Spirit  22 2640 3799 
Buick Century 20 3250 4816 
Buick Electra 15 4080 7827 
; 
RUN;  

After reading in the data with a data step, it is usually a good idea to print the first few cases of your 
dataset to check that things were read correctly.  

title "cars1 data"; 
PROC PRINT DATA=cars1(obs=5); 
RUN;  

Here is the output produced by the proc print statement above.  

cars1 data             
 
OBS   MAKE      MODEL     MPG    WEIGHT    PRICE 
1     AMC      Concord     22     2930      4099 
2     AMC      Pacer       17     3350      4749 
3     AMC      Spirit      22     2640      3799 
4     Buick    Century     20     3250      4816 
5     Buick    Electra     15     4080      7827 

2. Reading fixed formatted data instream 

Fixed formatted data can also be read instream. Usually, because there are no delimiters (such as spaces, 
commas, or tabs) to separate fixed formatted data, column definitions are required for every variable in 
the dataset. That is, you need to provide the beginning and ending column numbers for each variable. 
This also requires the data to be in the same columns for each case. For example, if we rearrange the 
cars data from above, we can read it as fixed formatted data:  

DATA cars2; 
  INPUT make $ 1-5 model $ 6-12 mpg 13-14 weight 15-18 price 19-22; 
CARDS; 
AMC  Concord2229304099 
AMC  Pacer  1733504749 
AMC  Spirit 2226403799 
BuickCentury2032504816 
BuickElectra1540807827 
; 
RUN; 
 
TITLE "cars2 data"; 
PROC PRINT DATA=car2(obs=5); 
RUN;  

The benefit of fixed formatted data is that you can fit more information on a line when you do not use 
delimiters such as spaces or commas.  
 
Here is the output produced by the proc print statement above.  

cars2 data             
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OBS    MAKE      MODEL     MPG    WEIGHT    PRICE 
1     AMC      Concord     22     2930      4099 
2     AMC      Pacer       17     3350      4749 
3     AMC      Spirit      22     2640      3799 
4     Buick    Century     20     3250      4816 
5     Buick    Electra     15     4080      7827 

3. Reading fixed formatted data from an external file 

Suppose you are using a PC and you have a file named cars3.dat, that is stored in the c:\carsdata 
directory of your computer.  Here's what the data in the file cars3.dat look like:  

AMC  Concord2229304099 
AMC  Pacer  1733504749 
AMC  Spirit 2226403799 
BuickCentury2032504816 
BuickElectra1540807827  

To read the file cars3.dat, use the following syntax.  

 DATA cars3; 
  INFILE "c:\carsdata\cars3.dat"; 
  INPUT make $ 1-5 model $ 6-12 mpg 13-14 weight 15-18 price 19-22; 
RUN; 
 
TITLE "cars3 data"; 
PROC PRINT DATA=cars3(obs=5); 
RUN;  

Here is the output produced by the proc print statement above.  

cars3 data             
 
OBS    MAKE      MODEL     MPG    WEIGHT    PRICE 
1     AMC      Concord     22     2930      4099 
2     AMC      Pacer       17     3350      4749 
3     AMC      Spirit      22     2640      3799 
4     Buick    Century     20     3250      4816 
5     Buick    Electra     15     4080      7827 

Suppose you were working on UNIX.  The UNIX version of this program, assuming the file cars3.dat 
is located in the directory ~/carsdata, would use the syntax shown below.  (Note that the "~" in the 
UNIX pathname above refers to the user's HOME directory. Hence, the directory called carsdata that is 
located in the users HOME directory.)  

DATA cars3; 
  INFILE "~/carsdata/cars3.dat"; 
  INPUT make $ 1-5 model $ 6-12 mpg 13-14 weight 15-18 price 19-22; 
RUN; 
 
TITLE "cars3 data"; 
PROC PRINT DATA=cars3(obs=5); 
RUN;  
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Likewise, suppose you were working on a Macintosh.  The Macintosh version of this program, 
assuming cars3.dat is located on your hard drive (called Hard Drive) in a folder called carsdata 
would look like this.  

DATA cars3; 
  INFILE 'Hard Drive:carsdata:cars3.dat'; 
  INPUT make $ 1-5 model $ 6-12 mpg 13-14 weight 15-18 price 19-22; 
RUN; 
 
TITLE "cars3 data"; 
PROC PRINT DATA=cars3(OBS=5); 
RUN;  

In examples 4, 5 and 6 below, you can change the infile statement as these examples have shown to 
make the programs appropriate for UNIX or for the Macintosh.  

4. Reading free formatted (space delimited) data from an external file 

Free formatted data that is space delimited can also be read from an external file. For example, suppose 
you have a space delimited file named cars4.dat, that is stored in the c:\carsdata directory of your 
computer.  
 
Here's what the data in the file cars4.dat look like:  

AMC Concord 22 2930 4099 
AMC Pacer   17 3350 4749 
AMC Spirit  22 2640 3799 
Buick Century 20 3250 4816 
Buick Electra 15 4080 7827  

To read the data from cars4.dat into SAS, use the following syntax:  

DATA cars4; 
  INFILE "c:\carsdata\cars4.dat"; 
  INPUT make $ model $ mpg weight price; 
RUN; 
 
TITLE "cars4 data"; 
PROC PRINT DATA=cars4(OBS=5); 
RUN;  

Here is the output produced by the proc print statement above.  

cars4 data             
 
OBS    MAKE      MODEL     MPG    WEIGHT    PRICE 
1     AMC      Concord     22     2930      4099 
2     AMC      Pacer       17     3350      4749 
3     AMC      Spirit      22     2640      3799 
4     Buick    Century     20     3250      4816 
5     Buick    Electra     15     4080      7827  

5. Reading free formatted (comma delimited) data from an external file  
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Free formatted data that is comma delimited can also be read from an external file. For example, 
suppose you have a comma delimited file named cars5.dat, that is stored in the c:\carsdata directory of 
your computer.  
 
Here's what the data in the file cars5.dat look like:  

AMC,Concord,22,2930,4099 
AMC,Pacer,17,3350,4749 
AMC,Spirit,22,2640,3799 
Buick,Century,20,3250,4816 
Buick,Electra,15,4080,7827  

To read the data from cars5.dat into SAS, use the following syntax:  

DATA cars5; 
  INFILE "c:\carsdata\cars5.dat" delimiter=','; 
  INPUT make $ model $ mpg weight price; 
RUN; 
 
TITLE "cars5 data"; 
PROC PRINT DATA=cars5(OBS=5); 
RUN;  

Here is the output produced by the proc print statement above.  

cars5 data             
 
OBS    MAKE      MODEL     MPG    WEIGHT    PRICE 
1     AMC      Concord     22     2930      4099 
2     AMC      Pacer       17     3350      4749 
3     AMC      Spirit      22     2640      3799 
4     Buick    Century     20     3250      4816 
5     Buick    Electra     15     4080      7827  

6. Reading free formatted (tab delimited) data from an external file 

Free formatted data that is TAB delimited can also be read from an external file. For example, suppose 
you have a tab delimited file named cars6.dat, that is stored in the c:\carsdata directory of your 
computer.  
 
Here's what the data in the file cars6.dat look like:  

AMC Concord 22 2930 4099 
AMC Pacer 17 3350 4749 
AMC Spirit 22 2640 3799 
Buick Century 20 3250 4816 
Buick Electra 15 4080 7827  

To read the data from cars6.dat into SAS, use the following syntax:  

DATA cars6; 
  INFILE "c:\carsdata\cars6.dat" DELIMITER='09'x; 
  INPUT make $ model $ mpg weight price; 
RUN; 
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TITLE "cars6 data"; 
PROC PRINT DATA=cars6(OBS=5); 
RUN;  

Here is the output produced by the proc print statement above.  

cars6 data             
 
OBS    MAKE      MODEL     MPG    WEIGHT    PRICE 
1     AMC      Concord     22     2930      4099 
2     AMC      Pacer       17     3350      4749 
3     AMC      Spirit      22     2640      3799 
4     Buick    Century     20     3250      4816 
5     Buick    Electra     15     4080      7827 

7. Problems to look out for 

• If you read a file that is wider than 80 columns, you may need to use the lrecl= parameter on the 
infile statement.  

 

Using dates 

1. Reading dates in data 

This module will show how to read date variables, use date functions, and use date display formats in 
SAS. You are assumed to be familiar with data steps for reading data into SAS, and assignment 
statements for computing new variables. If any of the concepts are completely new, you may want to 
look at For more information below for directions to other learning modules. The data file used in the 
first example is presented next.  

John  1 Jan 1960 
Mary 11 Jul 1955 
Kate 12 Nov 1962 
Mark  8 Jun 1959 

The program below reads the data and creates a temporary data file called dates.  Note that the dates are 
read in the data step, and the format date11. is used to read the date.  

 DATA dates; 
   INPUT  name $ 1-4 @6 bday date11.; 
CARDS; 
John  1 Jan 1960 
Mary 11 Jul 1955 
Kate 12 Nov 1962 
Mark  8 Jun 1959 
; 
RUN; 
PROC PRINT DATA=dates; 
RUN;  
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The output of the proc print is presented below.  Compare the dates in the data to the values of bday. 
Note that for John the date is 1 Jan 1960 and the value for bday is 0.  This is because dates are stored 
internally in SAS as the number of days from Jan 1,1960. Since Mary was born before 1960 the value 
of bday for her is negative (-1635).  

OBS    NAME     BDAY 
 
 1     John        0 
 2     Mary    -1635 
 3     Kate     1046 
 4     Mark     -207 

In order to see the dates in a way that we understand you would have to format the output. We use the 
date9. format to see dates in the form ddmmmyyyy. This is specified on a format statement.  

 PROC PRINT DATA=dates; 
   FORMAT bday date9. ; 
RUN;   

Here is the output produced by the proc print statement above.  

OBS    NAME         BDAY 
 
 1     John    01JAN1960 
 2     Mary    11JUL1955 
 3     Kate    12NOV1962 
 4     Mark    08JUN1959 

Let's look at the following data. At first glance it looks like the dates are so different that they couldn't 
be read. They do have two things in common: 

1) they all have numeric months,  
2) they all are ordered month, day, and then year.  

John 1 1 1960 
Mary 07/11/1955 
Joan 07-11-1955 
Kate 11.12.1962 
Mark 06081959 

These dates can be read with the same format, mmddyy11. An example of the use of that format in a 
data step follows.  

DATA dates; 
   INPUT  name $ 1-4 @6 bday mmddyy11.; 
CARDS; 
John 1 1 1960 
Mary 07/11/1955 
Joan 07-11-1955 
Kate 11.12.1962 
Mark 06081959 
; 
RUN; 
PROC PRINT DATA=dates; 
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   FORMAT bday date9. ; 
RUN; 

The results of the above proc print show that all of the dates are read correctly.  

OBS    NAME         BDAY 
 
 1     John    01JAN1960 
 2     Mary    11JUL1955 
 3     Joan    11JUL1955 
 4     Kate    12NOV1962 
 5     Mark    08JUN1959 

There is a wide variety of formats available for use in reading dates into SAS. The following is a 
sample of some of those formats.  

Informat   Description        Range   Width    Sample 
--------   -----------        -----   -------  ------ 
JULIANw.   Julian date        5-32    5        65001 
           YYDDD 
DDMMYYw.   date values        6-32    6        14/8/1963 
MONYYw.    month and year     5-32    5        JUN64 
YYMMDDw.   date values        6-32    8        65/4/29 
YYQw.      year and quarter   4-32    4        65/1 

Consider the following data in which the order is month, year, and day.  

 7 1948 11 
 1 1960  1 
10 1970 15 
12 1971 10   

You may read these data with each portion of the date in a separate variable as in the data step that 
follows.  

DATA dates; 
   INPUT  month 1-2 year 4-7 day 9-10; 
   bday=MDY(month,day,year); 
CARDS; 
 7 1948 11 
 1 1960  1 
10 1970 15 
12 1971 10 
; 
RUN; 
 
PROC PRINT DATA=dates; 
   FORMAT bday date9. ; 
RUN; 

Notice the function mdy(month,day,year) in the data step. This function is used to create a date value 
from the individual components. The result of the proc print follows.  

OBS  MONTH  YEAR  DAY       BDAY 
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 1      7   1948   11  11JUL1948 
 2      1   1960    1  01JAN1960 
 3     10   1970   15  15OCT1970 
 4     12   1971   10  10DEC1971 

2. SAS dates and Y2K 

Consider the following data, which are the same as above except that only 2 digits are used to signify 
the year, and year appears last.  

 7 11 18 
 7 11 48 
 1  1 60 
10 15 70 
12 10 71 

Reading the data is the same as we just did.  

DATA dates; 
   INPUT  month day year ; 
   bday=MDY(month,day,year); 
CARDS; 
 7 11 18 
 7 11 48 
 1  1 60 
10 15 70 
12 10 71 
; 
RUN; 
 
PROC PRINT DATA=dates; 
   FORMAT bday date9. ; 
RUN; 

The results of the proc print are shown below.  

OBS  MONTH  DAY    YEAR         BDAY 
 
 1      7    11     18     11JUL1918 
 2      7    11     48     11JUL1948 
 3      1     1     60     01JAN1960 
 4     10    15     70     15OCT1970 
 5     12    10     71     10DEC1971 

Two digit years work here because SAS assumes a cutoff (yearacutoff) before which value 2 digit 
years are interpreted as Year 2000 and above and after which they are interpreted as 1999 and below. 
The default yearcutoff differs for different versions of SAS:  

SAS 6.12 and before (YEARCUTOFF=1900) 
SAS 7 and 8         (YEARCUTOFF=1920) 

If you have files which use 2 digits to signify the year portion of a date, be sure to see the discussion of 
SAS on our web page "Statistical Computing and the Year 2000" at 
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http://www.ats.ucla.edu/stat/y2k.htm . 
Pay particular attention to the yearacutoff= option..  

The options statement in the program that follows changes the yearacutoff value to 1920. This causes 
in 2 digit years lower than 20 to be read as after the year 2000. Running the same program then will 
yield different results when this option is set.  

OPTIONS YEARCUTOFF=1920; 
 
DATA dates; 
   INPUT  month day year ; 
   bday=MDY(month,day,year); 
CARDS; 
 7 11 18 
 7 11 48 
 1  1 60 
10 15 70 
12 10 71 
; 
RUN; 
 
PROC PRINT DATA=dates; 
   FORMAT bday date9. ; 
RUN; 

The results of the proc print are shown below. The first observation is now read as occurring in 2018 
instead of 1918.  

OBS    MONTH    DAY    YEAR         BDAY 
 
 1        7      11     18     11JUL2018 
 2        7      11     48     11JUL1948 
 3        1       1     60     01JAN1960 
 4       10      15     70     15OCT1970 
 5       12      10     71     10DEC1971 

There is no complete answer to the Y2K problem, but with the yearacutoff= option SAS provides some 
powerful tools to help. The ultimate answer is to use 4 digit years.  

3. Computations with elapsed dates 

SAS date variables make computations involving dates very convenient. For example, to calculate 
everyone's age on January 1, 2000 use the following conversion in the data step.  

 age2000=(mdy(1,1,2000)-bday)/365.25 ;   

The program with this calculation in context follows.  

OPTIONS YEARCUTOFF=1900; /* sets the cutoff back to the default */ 
 
DATA dates; 
   INPUT  name $ 1-4 @6 bday mmddyy11.; 
   age2000=(=MDY(1,1,2000)-bday)/365.25 ; 
CARDS; 

http://www.ats.ucla.edu/stat/mult_pkg/library/y2k.htm
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John 1 1 1960 
Mary 07/11/1955 
Joan 07-11-1955 
Kate 11.12.1962 
Mark 06081959 
; 
RUN; 
 
PROC PRINT DATA=dates; 
   FORMAT bday date9. ; 
RUN; 

The results of the proc print are shown below. AGE2000 now is the age in years as of January 1, 
2000.  

OBS    NAME         BDAY    AGE2000 
 
 1     John    01JAN1960    40.0000 
 2     Mary    11JUL1955    44.4764 
 3     Joan    11JUL1955    44.4764 
 4     Kate    12NOV1962    37.1362 
 5     Mark    08JUN1959    40.5667 

4. Other useful date functions 

There are a number of useful functions for use with date variables. The following is a list of some of 
those functions.  

 Function   Description             Sample 
--------   ---------------------   ----------------- 
month()    Extracts Month          m=MONTH(bday); 
day()      Extracts Day            d=DAY(bday) ; 
year()     Extracts Year           y=YEAR(bday); 
weekday()  Extracts Day of Week    wk_d=WEEKDAY(bday); 
qtr()      Extracts Quarter        q=QTR(bday); 

The following program demonstrates the use of these functions.  

DATA dates; 
   INPUT  name $ 1-4 @6 bday mmddyy11.; 
    m=MONTH(bday); 
    d=DAY(bday) ; 
    y=YEAR(bday); 
    wk_d=WEEKDAY(bday); 
    q=QTR(bday); 
CARDS; 
John 1 1 1960 
Mary 07/11/1955 
Joan 07-11-1955 
Kate 11.12.1962 
Mark 06081959 
; 
RUN; 
 
PROC PRINT DATA=dates; 
   VAR bday m d y; 
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   FORMAT bday date9. ; 
RUN; 
 
PROC PRINT DATA=dates; 
   VAR bday wk_d q; 
   FORMAT bday date9. ; 
RUN; 

The results of the proc prints are shown below. The new variables contain the month, day, year, day of 
the week and quarter.  

OBS         BDAY     M     D      Y 
 
 1     01JAN1960     1     1    1960 
 2     11JUL1955     7    11    1955 
 3     11JUL1955     7    11    1955 
 4     12NOV1962    11    12    1962 
 5     08JUN1959     6     8    1959 
 
OBS         BDAY    WK_D    Q 
 
 1     01JAN1960      6     1 
 2     11JUL1955      2     3 
 3     11JUL1955      2     3 
 4     12NOV1962      2     4 
 5     08JUN1959      2     2 

5. Summary 

• Dates are read with date formats, most commonly date9. and mmddyy10.  
• Date functions can be used to create date values from their components (mdy(m,d,y)), and to 

extract the components from a date value (month(),day(), etc.).  
• The yearacutoff option may be used to control where the 2000 break comes if you have to read 

two digit years.  

6. Problems to look out for 

• Dates are mixed within a field such that no single date format can read them.  Solution: Read 
the field as a character field, test the string, and use the input function and appropriate format to 
read the value into the date variable.  

• There is no format capable of reading the date.  Solution: read the date as components and use a 
function to produce a date value.  

• Sometimes the default for yearacutoff is not the default for the version of the package 
mentioned above.  Solution: to determine the current setting for yearacutoff simply run a 
program containing  
PROC OPTIONS YEARCUTOFF; RUN;. 
This will result in output containing the current value of yearacutoff.  

 
Creating and recoding variables in SAS 

1. Creating and replacing variables in SAS 
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We will illustrate creating and replacing variables in SAS using a data file about 26 automobiles with 
their make, price, mpg, repair record in 1978 (rep78), and whether the car was foreign or domestic 
(foreign).  The program below reads the data and creates a temporary data file called "auto".  Please 
note that there are two missing values for mpg in the data file (coded as a single period).   

We will create one new variable to go along with the existing ones. First, we will create cost so that it 
gives us the price in thousands of dollars. Then we will create mpgpd which will stand for miles per 
gallon per thousand dollars.  In each case, we just type the variable name, followed by an equal sign, 
followed by an expression for the value.  

 
DATA auto; 
  INPUT make $ price mpg rep78 foreign; 
  cost = ROUND( price / 1000 ); 
  mpgptd = mpg / price; 
DATALINES; 
AMC    4099 22 3 0 
AMC    4749 17 3 0 
AMC    3799 22 3 0 
Audi   9690  . 5 1 
Audi   6295 23 3 1 
BMW    9735 25 4 1 
Buick  4816 20 3 0 
Buick  7827 15 4 0 
Buick  5788 18 3 0 
Buick  4453 26 3 0 
Buick  5189 20 3 0 
Buick 10372 16 3 0 
Buick  4082 19 3 0 
Cad.  11385 14 3 0 
Cad.  14500 14 2 0 
Cad.  15906 21 3 0 
Chev.  3299 29 3 0 
Chev.  5705 16 4 0 
Chev.  4504  . 3 0 
Chev.  5104 22 2 0 
Chev.  3667 24 2 0 
Chev.  3955 19 3 0 
Datsun 6229 23 4 1 
Datsun 4589 35 5 1 
Datsun 5079 24 4 1 
Datsun 8129 21 4 1 
; 
RUN; 
PROC PRINT DATA=auto; 
RUN; 

Here is the output of the proc print.  You can compare the output to the original data. 

OBS    MAKE      PRICE    MPG    REP78    FOREIGN    COST     MPGPTD 
 
  1    AMC        4099     22      3         0         4     .0053672 
  2    AMC        4749     17      3         0         5     .0035797 
  3    AMC        3799     22      3         0         4     .0057910 
  4    Audi       9690      .      5         1        10     .        
  5    Audi       6295     23      3         1         6     .0036537 
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  6    BMW        9735     25      4         1        10     .0025681 
  7    Buick      4816     20      3         0         5     .0041528 
  8    Buick      7827     15      4         0         8     .0019164 
  9    Buick      5788     18      3         0         6     .0031099 
 10    Buick      4453     26      3         0         4     .0058388 
 11    Buick      5189     20      3         0         5     .0038543 
 12    Buick     10372     16      3         0        10     .0015426 
 13    Buick      4082     19      3         0         4     .0046546 
 14    Cad.      11385     14      3         0        11     .0012297 
 15    Cad.      14500     14      2         0        15     .0009655 
 16    Cad.      15906     21      3         0        16     .0013203 
 17    Chev.      3299     29      3         0         3     .0087905 
 18    Chev.      5705     16      4         0         6     .0028046 
 19    Chev.      4504      .      3         0         5     .        
 20    Chev.      5104     22      2         0         5     .0043103 
 21    Chev.      3667     24      2         0         4     .0065449 
 22    Chev.      3955     19      3         0         4     .0048040 
 23    Datsun     6229     23      4         1         6     .0036924 
 24    Datsun     4589     35      5         1         5     .0076269 
 25    Datsun     5079     24      4         1         5     .0047253 
 26    Datsun     8129     21      4         1         8     .0025833 

Note that cost is just a one or two-digit value. The vehicle that achieves the best mpgptd is the Chev. 
for observation 17 which gets 9+ miles per gallon for every thousand dollars in price. The Cad. in 
observation 14 has the worst mpgptd. 

Also note that there are two missing values for mpgptd because of the missing values in mpg. 

2. Recoding variables in SAS 

The variable rep78 is coded 1 through 5 standing for poor, fair, average, good and excellent. We would 
like to change rep78 so that it has only three values, 1 through 3, standing for below average, average, 
and above average. We will do this by creating a new variable called repair and recoding the values of 
rep78 into it. 

We will also create a new variable called himpg that is a dummy coding of mpg. All vehicles with 
better than 20 mpg will be coded 1 and those with 20 or less will be coded 0. 

SAS does not have a recode command, so we will use a series of if-then/else commands in a data step 
to do the job. This data step creates a temporary data file called auto2.   

DATA auto2; 
  SET auto; 
        
  repair = .; 
  IF (rep78=1) or (rep78=2) THEN repair = 1; 
  IF (rep78=3) THEN repair = 2; 
  IF (rep78=4) or (rep78=5) THEN repair = 3; 
    
  himpg = .; 
  IF (mpg <= 20) THEN himpg = 0;  
  IF (mpg >  20) THEN himpg = 1; 
RUN; 
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Note that we begin by setting repair and himpg to missing, just in case we make a mistake in the 
recoding.  Proc freq will show us how the recoding worked. 

PROC FREQ DATA=auto2; 
  TABLES repair*rep78 repair*himpg / MISSING; 
RUN;   
TABLE OF REPAIR BY REP78 
 
REPAIR     REP78 
 
Frequency| 
Percent  | 
Row Pct  | 
Col Pct  |       2|       3|       4|       5|  Total 
---------+--------+--------+--------+--------+ 
       1 |      3 |      0 |      0 |      0 |      3 
         |  11.54 |   0.00 |   0.00 |   0.00 |  11.54 
         | 100.00 |   0.00 |   0.00 |   0.00 | 
         | 100.00 |   0.00 |   0.00 |   0.00 | 
---------+--------+--------+--------+--------+ 
       2 |      0 |     15 |      0 |      0 |     15 
         |   0.00 |  57.69 |   0.00 |   0.00 |  57.69 
         |   0.00 | 100.00 |   0.00 |   0.00 | 
         |   0.00 | 100.00 |   0.00 |   0.00 | 
---------+--------+--------+--------+--------+ 
       3 |      0 |      0 |      6 |      2 |      8 
         |   0.00 |   0.00 |  23.08 |   7.69 |  30.77 
         |   0.00 |   0.00 |  75.00 |  25.00 | 
         |   0.00 |   0.00 | 100.00 | 100.00 | 
---------+--------+--------+--------+--------+ 
Total           3       15        6        2       26 
            11.54    57.69    23.08     7.69   100.00 
 
 
TABLE OF REPAIR BY HIMPG 
 
REPAIR     HIMPG 
 
Frequency| 
Percent  | 
Row Pct  | 
Col Pct  |       0|       1|  Total 
---------+--------+--------+ 
       1 |      1 |      2 |      3 
         |   3.85 |   7.69 |  11.54 
         |  33.33 |  66.67 | 
         |   7.69 |  15.38 | 
---------+--------+--------+ 
       2 |      9 |      6 |     15 
         |  34.62 |  23.08 |  57.69 
         |  60.00 |  40.00 | 
         |  69.23 |  46.15 | 
---------+--------+--------+ 
       3 |      3 |      5 |      8 
         |  11.54 |  19.23 |  30.77 
         |  37.50 |  62.50 | 
         |  23.08 |  38.46 | 
---------+--------+--------+ 
Total          13       13       26 
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            50.00    50.00   100.00 

Uh oh, there's a problem with himpg. There are no missing values for himpg even though there were 
two missing values of mpg.  SAS treats missing values (values coded with a . ) as the smallest number 
possible (i.e., negative infinity).  When we recoded mpg we wrote 

    IF (mpg <= 20) THEN himpg = 0;  

which converted all values of mpg that were 20 or less into a value of 0 for himpg.  Since a missing 
value is also less than 20, the missing values got recoded to 0 as well.  (It is unforeseen mistakes like 
this that make it so important to check every variable that you recode.)  Let's try recoding himpg again, 
being careful to properly treat missing values like this: 

    IF (mpg <= 20) THEN himpg = 0;  

The complete program, with the fixed if statement, is shown below. 

DATA auto2; 
  SET auto; 
        
  repair = .; 
  IF (rep78=1) or (rep78=2) THEN repair = 1; 
  IF (rep78=3) THEN repair = 2; 
  IF (rep78=4) or (rep78=5) THEN repair = 3; 
    
  himpg = .; 
  IF (.  < mpg <= 20) THEN himpg = 0;  
  IF (mpg >  20) THEN himpg = 1; 
RUN; 

Now let's use proc freq again to check the recoding. 

PROC FREQ DATA=auto3; 
  TABLES repair*himpg / MISSING; 
RUN; 
TABLE OF REPAIR BY HIMPG 
 
REPAIR     HIMPG 
 
Frequency| 
Percent  | 
Row Pct  | 
Col Pct  |       .|       0|       1|  Total 
---------+--------+--------+--------+ 
       1 |      0 |      1 |      2 |      3 
         |   0.00 |   3.85 |   7.69 |  11.54 
         |   0.00 |  33.33 |  66.67 | 
         |   0.00 |   9.09 |  15.38 | 
---------+--------+--------+--------+ 
       2 |      1 |      8 |      6 |     15 
         |   3.85 |  30.77 |  23.08 |  57.69 
         |   6.67 |  53.33 |  40.00 | 
         |  50.00 |  72.73 |  46.15 | 
---------+--------+--------+--------+ 
       3 |      1 |      2 |      5 |      8 
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         |   3.85 |   7.69 |  19.23 |  30.77 
         |  12.50 |  25.00 |  62.50 | 
         |  50.00 |  18.18 |  38.46 | 
---------+--------+--------+--------+ 
Total           2       11       13       26 
             7.69    42.31    50.00   100.00 

There, that's better, this time there are two missing values for himpg. 

3. Problems to look out for 

Watch out for math errors, such as, division by zero and square root of a negative number.  

4. Helpful hints and suggestions 

• Set values to missing and then recode them.  
• Use new variable names when you create or recode variables. Avoid constructions like this, 

total = total + sub1 + sub2; that reuse the variable name total.  
• Use the missing option with proc freq to make sure all missing values are accounted for.  

Using SAS functions for making and recoding variables 

1. Introduction 

A SAS function returns a value from a computation or system manipulation that requires zero or more 
arguments. Most functions use arguments supplied by the user; however, a few obtain their arguments 
from the operating system. Here is the syntax of a function:  

function-name(argument1, argument2) 

We will illustrate some functions using the following dataset that includes name, x, test1, test2, and 
test3. 

DATA getdata; 
  INPUT name $14. x test1 test2 test3; 
DATALINES; 
John Smith       4.2 86.5 84.55 81 
Samuel Adams     9.0 70.3 82.37 . 
Ben Johnson     -6.2 82.1 84.81 87 
Chris Adraktas   9.5 94.2 92.64 93 
John Brown        .  79.7 79.07 72 
; 
RUN;     

The data set funct1 will create new variables using the int, round and mean numeric functions. What 
happens to tave due to the missing value of test3? 

DATA funct1; 
  SET getdata; 
  t1int = INT(test1);  t2int = INT(test2);      /* integer part of a number */ 
  t1rnd = ROUND(test1);t2rnd = ROUND(test2,.1); /* round to nearest whole number */ 
  tave = MEAN(test1, test2, test3);             /* mean across variables */ 
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RUN; 
  
PROC PRINT DATA=funct1; 
  VAR test1 test2 test3 t1int t2int t1rnd t2rnd tave; 
RUN;  
 
OBS    TEST1    TEST2    TEST3    T1INT    T2INT    T1RND    T2RND      TAVE 
 1      86.5    84.55      81       86       84       87      84.6    84.0167 
 2      70.3    82.37       .       70       82       70      82.4    76.3350 
 3      82.1    84.81      87       82       84       82      84.8    84.6367 
 4      94.2    92.64      93       94       92       94      92.6    93.2800 
 5      79.7    79.07      72       79       79       80      79.1    76.9233 

Now let's try some more math functions. What happens when there is a missing or negative value of x? 

DATA funct2; 
  SET getdata; 
  xsqrt = SQRT(x);     /* square root */ 
  xlog = LOG(x);      /* log base 10 */ 
  xexp = EXP(x);      /* e raised to the power */ 
RUN; 
  
PROC PRINT DATA=funct2; 
  VAR x xsqrt xlog xexp; 
RUN;  
 
OBS      X      XSQRT       XLOG         XEXP 
 1      4.2    2.04939    1.43508       66.69 
 2      9.0    3.00000    2.19722     8103.08 
 3     -6.2     .          .             0.00 
 4      9.5    3.08221    2.25129    13359.73 
 5       .      .          .              . 

This time we'll try some string functions. In particular, look closely at the substr function that is used in 
fname and lname. 

DATA funct3; 
  SET getdata; 
  c1  = UPCASE(name);     /* convert to upper case */ 
  c2  = SUBSTR(name,3,8); /* substring */ 
  len = LENGTH(name);     /* length of string */ 
  ind = INDEX(name,' ');  /* position in string */ 
  fname = SUBSTR(name,1,INDEX(name,' ')); 
  lname = SUBSTR(name,INDEX(name,' ')); 
RUN; 
  
PROC PRINT DATA=funct3; 
  VAR name c1 c2 len ind fname lname; 
RUN;  
 
OBS        NAME              C1            C2      LEN   IND   FNAME    LNAME 
 1    John Smith       JOHN SMITH       hn Smith    10    5    John     Smith 
 2    Samuel Adams     SAMUEL ADAMS     muel Ada    12    7    Samuel   Adams 
 3    Ben Johnson      BEN JOHNSON      n Johnso    11    4    Ben      Johnson 
 4    Chris Adraktas   CHRIS ADRAKTAS   ris Adra    14    6    Chris    Adraktas 
 5    John Brown       JOHN BROWN       hn Brown    10    5    John     Brown 
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2. Random numbers in SAS 

Random numbers are more useful than you might imagine.  They are used extensively in Monte Carlo 
studies, as well as in many other situations.  We will look at two of SAS's random number functions.  

• UNIFORM(SEED) - generates values from a random uniform distribution between 0 and 1  
• NORMAL(SEED) - generates values from a random normal distribution with mean 0 and 

standard deviation 1  

The statements if x>.5 then coin = 'heads' and else coin = 'tails' create a random variable called coins 
that has values 'heads' and 'tails'.  The data sets random1 and random2 use a seed value of -
1.  Negative seed values will result in different random numbers being generated each time. 

DATA random1; 
    x = UNIFORM(-1); 
    y = 50 + 3*NORMAL(-1); 
    IF x>.5 THEN coin = 'heads'; 
      ELSE coin = 'tails'; 
RUN; 
  
DATA random2; 
    x = UNIFORM(-1); 
    y = 50 + 3*NORMAL(-1); 
    IF x>.5 THEN coin = 'heads'; 
      ELSE coin = 'tails'; 
RUN; 
  
PROC PRINT DATA=random1; 
  VAR x y coin; 
RUN; 
PROC PRINT DATA=random2; 
  VAR x y coin; 
RUN;  
 
OBS       X          Y       COIN 
 1     0.24441    49.7470    heads 
  
OBS       X          Y       COIN 
 1     0.16922    49.1155    tails 

Sometimes we will want to generate the same random numbers each time so that we can debug our 
programs. To do this we just enter the same positive number as the seed value.  The data sets random3 
and random4 illustrate how to generate the same results each time. 

data random3; 
    x = UNIFORM(123456); 
    y = 50 + 3*NORMAL(123456); 
    IF x>.5 THEN coin = 'heads'; 
      ELSE coin = 'tails'; 
RUN; 
  
data random4; 
    x = UNIFORM(123456); 
    y = 50 + 3*NORMAL(123456); 
    IF x>.5 THEN coin = 'heads'; 
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      ELSE coin = 'tails'; 
RUN; 
  
PROC PRINT DATA=random3; 
  VAR x y coin; 
RUN; 
PROC PRINT DATA=random4; 
  VAR x y coin; 
RUN; 
 
OBS       X          Y       COIN 
 1     0.73902    48.7832    heads 
  
OBS       X          Y       COIN 
 1     0.73902    48.7832    heads 

Now let's generate 100 random coin tosses and compute a frequency table of the results. 

DATA random5; 
  DO i=1 to 100; 
    x = UNIFORM(123456); 
    IF x>.5 THEN coin = 'heads'; 
      ELSE coin = 'tails'; 
    OUTPUT; 
  END; 
RUN; 
  
PROC FREQ DATA=random5; 
  table coin; 
RUN; 
 
                             Cumulative  Cumulative 
COIN    Frequency   Percent   Frequency    Percent 
--------------------------------------------------- 
heads         48      48.0          48       48.0 
tails         52      52.0         100      100.0 

3. Problems to look out for 

Watch out for math errors, such as division by zero, square root of a negative number and taking the log 
of a negative number. 

4. For more information 

For information on functions is SAS consult the SAS Language manual. 

 

Subsetting data in SAS 

1. Introduction 

This module demonstrates how to select variables using the keep and drop statements, using keep and 
drop data step options records, and using the subsetting if and delete statement(s). Selecting variables: 
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The SAS file structure is similar to a spreadsheet. Data values are stored as variables, which are like 
fields or columns on a spreadsheet. Sometimes data files contain information that is superfluous to a 
particular analysis, in which case we might want to change the data file to contain only variables of 
interest. Programs will run more quickly and occupy less storage space if files contain only necessary 
variables. The following program builds a SAS file called auto. (For information about creating SAS 
files from raw data, see the SAS Learning Module on Inputting Data into SAS .)  

DATA auto ; 
  LENGTH make $ 20 ; 
  INPUT make $ 1-17 price mpg rep78 hdroom trunk weight length turn 
        displ gratio foreign ; 
CARDS; 
AMC Concord        4099 22 3 2.5 11 2930 186 40 121 3.58 0 
AMC Pacer          4749 17 3 3.0 11 3350 173 40 258 2.53 0 
AMC Spirit         3799 22 . 3.0 12 2640 168 35 121 3.08 0 
Audi 5000          9690 17 5 3.0 15 2830 189 37 131 3.20 1 
Audi Fox           6295 23 3 2.5 11 2070 174 36  97 3.70 1 
BMW 320i           9735 25 4 2.5 12 2650 177 34 121 3.64 1 
Buick Century      4816 20 3 4.5 16 3250 196 40 196 2.93 0 
Buick Electra      7827 15 4 4.0 20 4080 222 43 350 2.41 0 
Buick LeSabre      5788 18 3 4.0 21 3670 218 43 231 2.73 0 
Buick Opel         4453 26 . 3.0 10 2230 170 34 304 2.87 0 
Buick Regal        5189 20 3 2.0 16 3280 200 42 196 2.93 0 
Buick Riviera     10372 16 3 3.5 17 3880 207 43 231 2.93 0 
Buick Skylark      4082 19 3 3.5 13 3400 200 42 231 3.08 0 
Cad. Deville      11385 14 3 4.0 20 4330 221 44 425 2.28 0 
Cad. Eldorado     14500 14 2 3.5 16 3900 204 43 350 2.19 0 
Cad. Seville      15906 21 3 3.0 13 4290 204 45 350 2.24 0 
Chev. Chevette     3299 29 3 2.5  9 2110 163 34 231 2.93 0 
Chev. Impala       5705 16 4 4.0 20 3690 212 43 250 2.56 0 
Chev. Malibu       4504 22 3 3.5 17 3180 193 31 200 2.73 0 
Chev. Monte Carlo  5104 22 2 2.0 16 3220 200 41 200 2.73 0 
Chev. Monza        3667 24 2 2.0  7 2750 179 40 151 2.73 0 
Chev. Nova         3955 19 3 3.5 13 3430 197 43 250 2.56 0 
Datsun 200         6229 23 4 1.5  6 2370 170 35 119 3.89 1 
Datsun 210         4589 35 5 2.0  8 2020 165 32  85 3.70 1 
Datsun 510         5079 24 4 2.5  8 2280 170 34 119 3.54 1 
Datsun 810         8129 21 4 2.5  8 2750 184 38 146 3.55 1 
Dodge Colt         3984 30 5 2.0  8 2120 163 35  98 3.54 0 
Dodge Diplomat     4010 18 2 4.0 17 3600 206 46 318 2.47 0 
Dodge Magnum       5886 16 2 4.0 17 3600 206 46 318 2.47 0 
Dodge St. Regis    6342 17 2 4.5 21 3740 220 46 225 2.94 0 
Fiat Strada        4296 21 3 2.5 16 2130 161 36 105 3.37 1 
Ford Fiesta        4389 28 4 1.5  9 1800 147 33  98 3.15 0 
Ford Mustang       4187 21 3 2.0 10 2650 179 43 140 3.08 0 
Honda Accord       5799 25 5 3.0 10 2240 172 36 107 3.05 1 
Honda Civic        4499 28 4 2.5  5 1760 149 34  91 3.30 1 
Linc. Continental 11497 12 3 3.5 22 4840 233 51 400 2.47 0 
Linc. Mark V      13594 12 3 2.5 18 4720 230 48 400 2.47 0 
Linc. Versailles  13466 14 3 3.5 15 3830 201 41 302 2.47 0 
Mazda GLC          3995 30 4 3.5 11 1980 154 33  86 3.73 1 
Merc. Bobcat       3829 22 4 3.0  9 2580 169 39 140 2.73 0 
Merc. Cougar       5379 14 4 3.5 16 4060 221 48 302 2.75 0 
Merc. Marquis      6165 15 3 3.5 23 3720 212 44 302 2.26 0 
Merc. Monarch      4516 18 3 3.0 15 3370 198 41 250 2.43 0 
Merc. XR-7         6303 14 4 3.0 16 4130 217 45 302 2.75 0 
Merc. Zephyr       3291 20 3 3.5 17 2830 195 43 140 3.08 0 
Olds 98            8814 21 4 4.0 20 4060 220 43 350 2.41 0 

http://www.ats.ucla.edu/stat/sas/modules/input.htm
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Olds Cutl Supr     5172 19 3 2.0 16 3310 198 42 231 2.93 0 
Olds Cutlass       4733 19 3 4.5 16 3300 198 42 231 2.93 0 
Olds Delta 88      4890 18 4 4.0 20 3690 218 42 231 2.73 0 
Olds Omega         4181 19 3 4.5 14 3370 200 43 231 3.08 0 
Olds Starfire      4195 24 1 2.0 10 2730 180 40 151 2.73 0 
Olds Toronado     10371 16 3 3.5 17 4030 206 43 350 2.41 0 
Peugeot 604       12990 14 . 3.5 14 3420 192 38 163 3.58 1 
Plym. Arrow        4647 28 3 2.0 11 3260 170 37 156 3.05 0 
Plym. Champ        4425 34 5 2.5 11 1800 157 37  86 2.97 0 
Plym. Horizon      4482 25 3 4.0 17 2200 165 36 105 3.37 0 
Plym. Sapporo      6486 26 . 1.5  8 2520 182 38 119 3.54 0 
Plym. Volare       4060 18 2 5.0 16 3330 201 44 225 3.23 0 
Pont. Catalina     5798 18 4 4.0 20 3700 214 42 231 2.73 0 
Pont. Firebird     4934 18 1 1.5  7 3470 198 42 231 3.08 0 
Pont. Grand Prix   5222 19 3 2.0 16 3210 201 45 231 2.93 0 
Pont. Le Mans      4723 19 3 3.5 17 3200 199 40 231 2.93 0 
Pont. Phoenix      4424 19 . 3.5 13 3420 203 43 231 3.08 0 
Pont. Sunbird      4172 24 2 2.0  7 2690 179 41 151 2.73 0 
Renault Le Car     3895 26 3 3.0 10 1830 142 34  79 3.72 1 
Subaru             3798 35 5 2.5 11 2050 164 36  97 3.81 1 
Toyota Celica      5899 18 5 2.5 14 2410 174 36 134 3.06 1 
Toyota Corolla     3748 31 5 3.0  9 2200 165 35  97 3.21 1 
Toyota Corona      5719 18 5 2.0 11 2670 175 36 134 3.05 1 
Volvo 260         11995 17 5 2.5 14 3170 193 37 163 2.98 1 
VW Dasher          7140 23 4 2.5 12 2160 172 36  97 3.74 1 
VW Diesel          5397 41 5 3.0 15 2040 155 35  90 3.78 1 
VW Rabbit          4697 25 4 3.0 15 1930 155 35  89 3.78 1 
VW Scirocco        6850 25 4 2.0 16 1990 156 36  97 3.78 1 
; 
RUN; 
PROC CONTENTS DATA=auto; 
RUN; 

The proc contents provides information about the file. 

CONTENTS PROCEDURE 
 
Data Set Name: WORK.AUTO        Observations:         74  
Member Type:   DATA             Variables:            12  
  
 
-----Alphabetic List of Variables and Attributes----- 
 
 #    Variable    Type    Len    Pos 
------------------------------------ 
10    DISPL       Num       8     84 
12    FOREIGN     Num       8    100 
11    GRATIO      Num       8     92 
 5    HDROOM      Num       8     44 
 8    LENGTH      Num       8     68 
 1    MAKE        Char     20      0 
 3    MPG         Num       8     28 
 2    PRICE       Num       8     20 
 4    REP78       Num       8     36 
 6    TRUNK       Num       8     52 
 9    TURN        Num       8     76 
 7    WEIGHT      Num       8     60 
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2. Subsetting variables 

For example, if we wanted to examine the relationship between mpg and price for various makes, but 
had no interest in the automobile's dimensions, we could create a smaller file, by keeping only these 
three variables. 

DATA auto2;  
   SET auto; 
   KEEP make mpg price; 
RUN; 

To verify the contents of the new file, run the proc contents command again. 

PROC CONTENTS DATA=AUTO2;  
RUN; 
 
CONTENTS PROCEDURE 
Data Set Name: WORK.AUTO2      Observations:         74   
Member Type:   DATA           Variables:            3    
-----Alphabetic List of Variables and Attributes----- 
 
#    Variable    Type    Len    Pos 
----------------------------------- 
1    MAKE        Char     20      0 
3    MPG         Num       8     28 
2    PRICE       Num       8     20 

Note that the number of observations, or records, remains unchanged. This program makes a smaller 
version of auto called auto2 that just has the three variables make mpg and price. The new file, named 
auto2, is identical to auto except that it contains only the variables listed in the keep statement. To 
compare the contents of the two files, run proc contents on each. 

PROC CONTENTS DATA = auto; 
RUN;  
PROC CONTENTS DATA = auto2;  
RUN; 

The output is shown below. 

CONTENTS PROCEDURE 
Data Set Name: WORK.AUTO   Observations:         74  
Member Type:   DATA        Variables:            12  
 
-----Alphabetic List of Variables and Attributes----- 
 
 #    Variable    Type    Len    Pos 
------------------------------------ 
10    DISPL       Num       8     84 
12    FOREIGN     Num       8    100 
11    GRATIO      Num       8     92 
 5    HDROOM      Num       8     44 
 8    LENGTH      Num       8     68 
 1    MAKE        Char     20      0 
 3    MPG         Num       8     28 
 2    PRICE       Num       8     20 
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 4    REP78       Num       8     36 
 6    TRUNK       Num       8     52 
 9    TURN        Num       8     76 
 7    WEIGHT      Num       8     60 
 
CONTENTS PROCEDURE 
Data Set Name: WORK.AUTO2    Observations:        74  
Member Type:   DATA          Variables:            3 
 
-----Alphabetic List of Variables and Attributes----- 
 
#    Variable    Type    Len    Pos 
----------------------------------- 
1    MAKE        Char     20      0 
3    MPG         Num       8     28 
2    PRICE       Num       8     20 

Conversely, we can obtain the same results by using the drop statement. 

DATA auto3;  
   SET auto; 
   DROP rep78 hdroom trunk weight length turn displ gratio foreign; 
RUN; 

The keep statement names variables to include, while the drop statement names variables to exclude.  

Proc contents confirms the results. 

PROC CONTENTS DATA = auto3; 
RUN; 
CONTENTS PROCEDURE 
Data Set Name: WORK.AUTO3     Observations: 74 
Member Type:   DATA           Variables:     3 
 
-----Alphabetic List of Variables and Attributes-----                       
 
#    Variable    Type    Len    Pos 
----------------------------------- 
1    MAKE        Char     20    0  
3    MPG         Num       8    28  
2    PRICE       Num       8    20  

Notice that the number of observations in all the examples above remain constant. The keep and drop 
statements control the selection of variables only.  

3. Subsetting observations 

The above illustrates the use of keep and drop statements and data step options to select variables. 

The subsetting if is typically used to control the selection of records in the file. Records, or observations 
in SAS, correspond to rows in a spreadsheet application. 

The auto file contains a variable rep78 with data values from 1 to 5, and missing, which we ascertain 
from running the following program. 
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PROC FRFEQ DATA = auto ; 
  TABLES rep78 / MISSING ; 
RUN ; 
                                Cumulative  Cumulative  
   REP78   Frequency   Percent   Frequency    Percent   
   ---------------------------------------------------  
       .          5       6.8           5        6.8    
       1          2       2.7           7        9.5    
       2          8      10.8          15       20.3    
       3         30      40.5          45       60.8    
       4         18      24.3          63       85.1    
       5         11      14.9          74      100.0 

Note that this program includes the / missing option on the tables statement. Without it, SAS will print 
only frequencies for non-missing values.  

If we are only interested in cars with data for rep78 is missing, we may eliminate records with missing 
data from the file by using a subsetting if. 

DATA auto2; 
   SET auto; 
   IF rep78 ^= . ; 
RUN; 

This program creates a new file auto2 which will be identical to auto, except that it will include only 
observations where rep78 has a value other than missing. proc freq verifies the change. 

PROC FREQ DATA=auto2; 
  TABLES rep78 / MISSING ; 
RUN; 
                               Cumulative  Cumulative 
REP78    Frequency   Percent   Frequency    Percent  
--------------------------------------------------- 
    1           2       2.9           2        2.9   
    2           8      11.6          10       14.5   
    3          30      43.5          40       58.0   
    4          18      26.1          58       84.1   
    5          11      15.9          69      100.0 

The subsetting if specifies which observations to keep, i.e., only cars with data for rep78. Alternately, 
we may use the delete statement to specify which observations to eliminate from the file. 
 
The following program keeps in the output file only cars with repair ratings of 3 or less.  

DATA auto2; 
  SET auto; 
  IF rep78 > 3 THEN DELETE ; 
RUN; 

Check the results, using proc freq. 

PROC FREQ DATA = auto2; 
  TABLES rep78 / MISSING ; 
RUN; 
                              



 96

                               Cumulative  Cumulative   
  REP78   Frequency   Percent   Frequency    Percent    
  ---------------------------------------------------   
      .          5      11.1           5       11.1     
      1          2       4.4           7       15.6     
      2          8      17.8          15       33.3     
      3         30      66.7          45      100.0 

Using the subsetting if statement as follows, yields the same result. 

DATA auto2; 
  SET auto; 
IF (rep78 <= 3); 

The results from proc freq confirm this. 

PROC FREQ DATA = auto2; 
  TABLES rep78 / MISSING; 
RUN; 
                                   Cumulative  Cumulative 
      REP78   Frequency   Percent   Frequency    Percent 
      --------------------------------------------------- 
          .          5      11.1           5       11.1 
          1          2       4.4           7       15.6 
          2          8      17.8          15       33.3 
          3         30      66.7          45      100.0 

Note that missing values are included, since missing values are smaller than any other value. To delete 
missing values, change the program as follows. 

DATA auto2; 
  SET auto; 
  IF (rep78 <= 3) AND (rep78 ^= .); 
run; 

Proc freq confirms that missing values have been deleted. 

PROC FREQ DATA = auto2; 
  TABLES rep78 / MISSING ; 
RUN; 
      REP78   Frequency   Percent   Frequency    Percent 
      --------------------------------------------------- 
          1          2       5.0           2        5.0 
          2          8      20.0          10       25.0 
          3         30      75.0          40      100.0 

4. Problems to look out for 

• When you create a subset of your original data, sometimes you may drop variables or cases that 
you did not intend to drop. If you find variables or cases are gone that should not be gone, 
double check your subsetting commands.  

Labeling 
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1. Introduction 

This module illustrates how to create and use labels in SAS. There are two main items that can be 
labeled, variables and values. Once created these labels will appear in the output of statistical 
procedures and reports that you may produce from SAS. They are also displayed by some of the 
SAS/GRAPH procedures.  

The program below reads the data and creates a temporary data file called auto.  The labeling shown in 
this module are all applied to this data file called auto.  

DATA auto ; 
  INPUT make $  mpg rep78 weight foreign ; 
CARDS; 
AMC     22 3 2930 0 
AMC     17 3 3350 0 
AMC     22 . 2640 0 
Audi    17 5 2830 1 
Audi    23 3 2070 1 
BMW     25 4 2650 1 
Buick   20 3 3250 0 
Buick   15 4 4080 0 
Buick   18 3 3670 0 
Buick   26 . 2230 0 
Buick   20 3 3280 0 
Buick   16 3 3880 0 
Buick   19 3 3400 0 
Cad.    14 3 4330 0 
Cad.    14 2 3900 0 
Cad.    21 3 4290 0 
Chev.   29 3 2110 0 
Chev.   16 4 3690 0 
Chev.   22 3 3180 0 
Chev.   22 2 3220 0 
Chev.   24 2 2750 0 
Chev.   19 3 3430 0 
Datsun  23 4 2370 1 
Datsun  35 5 2020 1 
Datsun  24 4 2280 1 
Datsun  21 4 2750 1 
; 
RUN; 
PROC CONTENTS DATA=auto; 
RUN; 

The output of the proc contents is shown below.  You can see in this portion of the output of the proc 
contents that there are no labels attached to the variables in this file. 

-----Alphabetic List of Variables and Attributes----- 
 
#    Variable    Type    Len    Pos 
----------------------------------- 
5    FOREIGN     Num       8     32 
1    MAKE        Char      8      0 
2    MPG         Num       8      8 
3    REP78       Num       8     16 
4    WEIGHT      Num       8     24 
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2. Creating variable labels 

We use the label statement in the data step to assign labels to the variables.  You could also assign 
labels to variables in proc steps, but then the labels only exist for that step.  When labels are assigned in 
the data step they are available for all procedures that use that data set. 
 
The following program assigns variable labels to rep78, mpg and foreign. 

DATA  auto2; 
   SET auto; 
   LABEL  rep78  ="1978 Repair Record" 
          mpg    ="Miles Per Gallon" 
          foreign="Where Car Was Made"; 
RUN; 
 
PROC CONTENTS DATA=auto2; 
RUN; 

Looking at the output produced by the proc contents step shows that the labels were indeed 
assigned.  The relevant part of this output follows. 

  -----Alphabetic List of Variables and Attributes----- 
 
#    Variable    Type    Len    Pos    Label 
--------------------------------------------------------- 
5    FOREIGN     Num       8     32    Where Car Was Made 
1    MAKE        Char      8      0 
2    MPG         Num       8      8    Miles Per Gallon 
3    REP78       Num       8     16    1978 Repair Record 
4    WEIGHT      Num       8     24 

These labels will also appear on the output of other procedures giving a fuller description of the 
variables involved.  This is demonstrated in the proc means below. 

PROC MEANS DATA=auto2; 
RUN; 

Looking at the output produced by the proc means shows that the labels were indeed assigned.  Look at 
the column titled Label. The relevant part of this output follows. 

Variable  Label                N       Mean  Std Dev    Minimum 
-------------------------------------------------------------- 
MPG       Miles Per Gallon    26 20.9230769   4.7575042    14 
REP78     1978 Repair Record  24  3.2916667   0.8064504     2 
WEIGHT                        26    3099.23 695.0794089  2020 
FOREIGN   Where Car Was Made  26  0.2692308   0.4523443     0 
------------------------------------------------------------- 

3. Creating and using value labels 

Labeling values is a two step process.  First, you must create the label formats with proc format using a 
value statement.  Next, you attach the label format to the variable with a format statement.  This 
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format statement can be used in either proc or data steps.  An example of the proc format step for 
creating the value formats, forgnf and $makef follows. 

PROC FORMAT; 
  VALUE  forgnf 0="domestic" 
                1="foreign" ; 
  VALUE  $makef "AMC"    ="American Motors" 
                "Buick"  ="Buick (GM)" 
                "Cad."   ="Cadallac (GM)" 
                "Chev."  ="Cheverolet (GM)" 
                "Datsun" ="Datsun (Nissan)"; 
RUN; 

You may include any number of value statements to create label formats as needed.  Since make is a 
variable that contains character values, when you define the formats for it you have to precede the 
format name with a $ so the format name becomes $makef.  Additionally, for character variables the 
values of the variables must be enclosed in quotes.   
 
Now that the formats forgnf and $makef have been created, they must be linked to the variables, 
foreign and make.  This is accomplished by including a format statement in either a proc or a data 
step.  In the program below the format statement is used in a proc freq. 

PROC FREQ DATA=auto2; 
   FORMAT  foreign forgnf. 
           make    $makef.; 
   TABLES foreign make; 
RUN; 

Notice that the formats forgnf. and $makef. are each followed by a period in the format 
statement.  This is the way that SAS tells the difference between the name of a format and the name of a 
variable in a format statement.   

The output of the frequencies procedure for foreign displays the newly defined labels instead of the 
values of the variable. 

                  Where Car Was Made 
 
                                Cumulative  Cumulative 
 FOREIGN   Frequency   Percent   Frequency    Percent 
------------------------------------------------------ 
domestic         19      73.1          19       73.1 
foreign           7      26.9          26      100.0  

The output of the frequencies procedure for make displays the newly defined labels instead of the 
values of the variable.  Values for which formats haven't been defined (Audi and BMW) appear in the 
table without modification. 

MAKE              Frequency   Percent   Frequency    Percent 
------------------------------------------------------------- 
American Motors          3      11.5           3       11.5 
Audi                     2       7.7           5       19.2 
BMW                      1       3.8           6       23.1 
Buick (GM)               7      26.9          13       50.0 
Cadallac (GM)            3      11.5          16       61.5 
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Cheverolet (GM)          6      23.1          22       84.6 
Datsun (Nissan)          4      15.4          26      100.0 

If you link formats to variables in a data step where a permanent file is created, then every time you use 
that file SAS expects to find the formats.  Thus you will have to supply the proc format code in each 
program that uses the file.  Since this can make each of your programs much longer than you might like, 
I would like to provide a tip for accomplishing this task without repeating the code for the proc format 
in every program.  Assuming that a small program containing only the proc format is stored in a file 
called fmats.sas in a directory on your C: drive called myfiles, the following statement will bring that 
code into your current program: 
 
%INCLUDE 'C:\myfiles\fmats.sas';  
 
This should save time and make maintenance of your programs easier.  The remainder of your program 
would follow this statement.  

4. Problems to look out for 

• Common errors in dealing with value labels are; 1) leaving off the period at the end of the 
format in a format statement, and 2) leaving off the dollar sign before a character format.   

• If you leave out the proc format code in a program using a permanent file where formats are 
defined SAS will require the formats be available fro use.  In this case you can either follow the 
instructions for including code (%include) above, or copy the proc format code into your 
current program.  You can also include the nofmterr option to allow the program to run with 
out errors.  

• Another common error is to reference the format with a format statement before defining the 
format with proc format code.  Simply move your proc format code to the beginning of the 
program to fix this problem.  

 

Using proc sort and by statements  

1. Introduction 

This module will examine the use of proc sort and use of the by statement with SAS procedures.  The 
program below creates a data file called auto that we will use in our examples. Note that this file has a 
duplicate record for the BMW. 

DATA auto ; 
  INPUT make $  mpg rep78 weight foreign ; 
CARDS ; 
AMC     22 3 2930 0 
AMC     17 3 3350 0 
AMC     22 . 2640 0 
Audi    17 5 2830 1 
Audi    23 3 2070 1 
BMW     25 4 2650 1 
BMW     25 4 2650 1 
Buick   20 3 3250 0 
Buick   15 4 4080 0 
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Buick   18 3 3670 0 
Buick   26 . 2230 0 
Buick   20 3 3280 0 
Buick   16 3 3880 0 
Buick   19 3 3400 0 
Cad.    14 3 4330 0 
Cad.    14 2 3900 0 
Cad.    21 3 4290 0 
Chev.   29 3 2110 0 
Chev.   16 4 3690 0 
Chev.   22 3 3180 0 
Chev.   22 2 3220 0 
Chev.   24 2 2750 0 
Chev.   19 3 3430 0 
Datsun  23 4 2370 1 
Datsun  35 5 2020 1 
Datsun  24 4 2280 1 
Datsun  21 4 2750 1 
; 
RUN ; 
  
PROC PRINT DATA=auto ; 
RUN ;   

The output from the program is shown below. The proc print shows that the data file has been 
successfully created. 

OBS    MAKE      MPG    REP78    WEIGHT    FOREIGN 
 
  1    AMC        22      3       2930        0 
  2    AMC        17      3       3350        0 
  3    AMC        22      .       2640        0 
  4    Audi       17      5       2830        1 
  5    Audi       23      3       2070        1 
  6    BMW        25      4       2650        1 
  7    BMW        25      4       2650        1 
  8    Buick      20      3       3250        0 
  9    Buick      15      4       4080        0 
 10    Buick      18      3       3670        0 
 11    Buick      26      .       2230        0 
 12    Buick      20      3       3280        0 
 13    Buick      16      3       3880        0 
 14    Buick      19      3       3400        0 
 15    Cad.       14      3       4330        0 
 16    Cad.       14      2       3900        0 
 17    Cad.       21      3       4290        0 
 18    Chev.      29      3       2110        0 
 19    Chev.      16      4       3690        0 
 20    Chev.      22      3       3180        0 
 21    Chev.      22      2       3220        0 
 22    Chev.      24      2       2750        0 
 23    Chev.      19      3       3430        0 
 24    Datsun     23      4       2370        1 
 25    Datsun     35      5       2020        1 
 26    Datsun     24      4       2280        1 
 27    Datsun     21      4       2750        1 

2. Sorting data with proc sort 
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We can use proc sort to sort this data file. The program below sorts the auto data file on the variable 
foreign (1=foreign car, 0=domestic car) and saves the sorted file as auto2. The original file remains 
unchanged since we used out=auto2 to specify that the sorted data should be placed in  auto2. 

PROC SORT DATA=auto OUT=auto2 ; 
  BY foreign ; 
RUN ; 
  
PROC PRINT DATA=auto2 ; 
RUN ;   

From the proc print below, you can see that auto2 is indeed sorted on foreign. The observations where 
foreign is 0 precede all of the observations where foreign is 1.  Note that the order of the observations 
within each group remain unchanged, (i.e., the observations where foreign is 0 remain in the same 
order).  

OBS    MAKE      MPG    REP78    WEIGHT    FOREIGN 
 
  1    AMC        22      3       2930        0 
  2    AMC        17      3       3350        0 
  3    AMC        22      .       2640        0 
  4    Buick      20      3       3250        0 
  5    Buick      15      4       4080        0 
  6    Buick      18      3       3670        0 
  7    Buick      26      .       2230        0 
  8    Buick      20      3       3280        0 
  9    Buick      16      3       3880        0 
 10    Buick      19      3       3400        0 
 11    Cad.       14      3       4330        0 
 12    Cad.       14      2       3900        0 
 13    Cad.       21      3       4290        0 
 14    Chev.      29      3       2110        0 
 15    Chev.      16      4       3690        0 
 16    Chev.      22      3       3180        0 
 17    Chev.      22      2       3220        0 
 18    Chev.      24      2       2750        0 
 19    Chev.      19      3       3430        0 
 20    Audi       17      5       2830        1 
 21    Audi       23      3       2070        1 
 22    BMW        25      4       2650        1 
 23    BMW        25      4       2650        1 
 24    Datsun     23      4       2370        1 
 25    Datsun     35      5       2020        1 
 26    Datsun     24      4       2280        1 
 27    Datsun     21      4       2750        1 

Suppose you wanted the data sorted, but with the foreign cars (foreign=1) first and the domestic cars 
(foreign=0) second. The example below shows the use of the descending keyword to tell SAS that you 
want to sort by foreign, but you want the sort order reversed (i.e., largest to smallest).  

PROC SORT DATA=auto OUT=auto3 ; 
  BY DESCENDING foreign ; 
RUN ; 
  
PROC PRINT DATA=auto3 ; 
RUN ;   
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You can see in the proc print below that the data is now ordered by foreign, but highest to lowest. 

OBS    MAKE      MPG    REP78    WEIGHT    FOREIGN 
 
  1    Audi       17      5       2830        1 
  2    Audi       23      3       2070        1 
  3    BMW        25      4       2650        1 
  4    BMW        25      4       2650        1 
  5    Datsun     23      4       2370        1 
  6    Datsun     35      5       2020        1 
  7    Datsun     24      4       2280        1 
  8    Datsun     21      4       2750        1 
  9    AMC        22      3       2930        0 
 10    AMC        17      3       3350        0 
 11    AMC        22      .       2640        0 
 12    Buick      20      3       3250        0 
 13    Buick      15      4       4080        0 
 14    Buick      18      3       3670        0 
 15    Buick      26      .       2230        0 
 16    Buick      20      3       3280        0 
 17    Buick      16      3       3880        0 
 18    Buick      19      3       3400        0 
 19    Cad.       14      3       4330        0 
 20    Cad.       14      2       3900        0 
 21    Cad.       21      3       4290        0 
 22    Chev.      29      3       2110        0 
 23    Chev.      16      4       3690        0 
 24    Chev.      22      3       3180        0 
 25    Chev.      22      2       3220        0 
 26    Chev.      24      2       2750        0 
 27    Chev.      19      3       3430        0 

It is also possible to sort on more than one variable at a time.  Perhaps you would like the data sorted on 
foreign (this time we will go back to the normal sort order for foreign) and then sorted by rep78 within 
each level of foreign.  The example below shows how this can be done. 

PROC SORT DATA=auto OUT=auto4 ; 
  BY foreign rep78 ; 
RUN ; 
  
PROC PRINT DATA=auto4 ; 
RUN ;   

You can see in the proc print below that the data is now ordered by foreign, domestic cars (foreign=0) 
followed by foreign (foreign=1) cars. Within the domestic cars, the data is sorted by rep78 and within 
foreign cars the data is also sorted by rep78. 

OBS    MAKE      MPG    REP78    WEIGHT    FOREIGN 
 
  1    AMC        22      .       2640        0 
  2    Buick      26      .       2230        0 
  3    Cad.       14      2       3900        0 
  4    Chev.      22      2       3220        0 
  5    Chev.      24      2       2750        0 
  6    AMC        22      3       2930        0 
  7    AMC        17      3       3350        0 
  8    Buick      20      3       3250        0 
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  9    Buick      18      3       3670        0 
 10    Buick      20      3       3280        0 
 11    Buick      16      3       3880        0 
 12    Buick      19      3       3400        0 
 13    Cad.       14      3       4330        0 
 14    Cad.       21      3       4290        0 
 15    Chev.      29      3       2110        0 
 16    Chev.      22      3       3180        0 
 17    Chev.      19      3       3430        0 
 18    Buick      15      4       4080        0 
 19    Chev.      16      4       3690        0 
 20    Audi       23      3       2070        1 
 21    BMW        25      4       2650        1 
 22    BMW        25      4       2650        1 
 23    Datsun     23      4       2370        1 
 24    Datsun     24      4       2280        1 
 25    Datsun     21      4       2750        1 
 26    Audi       17      5       2830        1 
 27    Datsun     35      5       2020        1 

In the output above, note how the missing values of rep78 were treated.  Since a missing value is 
treated as the lowest value possible (e.g., negative infinity), the missing values come before all other 
values of rep78. 

3. Removing duplicates with proc sort 

At the beginning of this page, we noted that there was a duplicate observation in auto, that there were 
two identical records for BMW.  We can use proc sort to remove the duplicate observations from our 
data file using the noduuplicates option, as long as the duplicate observations are next to each 
other.  The example below sorts the data by foreign and removes the duplicates at the same time.  Note 
that it did not matter what variable we chose for sorting the data.  As you see in the output below, the 
extra observation for BMW was deleted.  

OBS    MAKE      MPG    REP78    WEIGHT    FOREIGN 
 
  1    AMC        22      .       2640        0 
  2    Buick      26      .       2230        0 
  3    Cad.       14      2       3900        0 
  4    Chev.      22      2       3220        0 
  5    Chev.      24      2       2750        0 
  6    AMC        22      3       2930        0 
  7    AMC        17      3       3350        0 
  8    Buick      20      3       3250        0 
  9    Buick      18      3       3670        0 
 10    Buick      20      3       3280        0 
 11    Buick      16      3       3880        0 
 12    Buick      19      3       3400        0 
 13    Cad.       14      3       4330        0 
 14    Cad.       21      3       4290        0 
 15    Chev.      29      3       2110        0 
 16    Chev.      22      3       3180        0 
 17    Chev.      19      3       3430        0 
 18    Buick      15      4       4080        0 
 19    Chev.      16      4       3690        0 
 20    Audi       23      3       2070        1 
 21    BMW        25      4       2650        1 
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 22    BMW        25      4       2650        1 
 23    Datsun     23      4       2370        1 
 24    Datsun     24      4       2280        1 
 25    Datsun     21      4       2750        1 
 26    Audi       17      5       2830        1 
 27    Datsun     35      5       2020        1 

When you use the noduplicates option, the SAS Log displays a note telling you how many duplicates 
were removed.  As you see below, SAS informs us that 1 duplicate observation was deleted. 

PROC SORT DATA=auto OUT=auto5 NODUPLICATES ; 
  BY foreign ; 
RUN ; 
  
NOTE: 1 duplicate observations were deleted. 
NOTE: The data set WORK.AUTO3 has 26 observations and 5 variables. 

It is common for duplicate observations to be next to each other in the same file, but if the duplicate 
observations are not next to each other, there is another strategy you can use to remove the 
duplicates.  You can sort the data file by all of the variables (which can be indicated with the special 
keyword _ALL_), which would force the duplicate observations to be next to each other.  This is 
illustrated below. 

PROC SORT DATA=auto OUT=auto6 NODUPLICATES ; 
  BY _all_ ; 
RUN ; 

4. Obtaining separate analyses with sorted data 

Sometimes you would like to obtain results separately for different groups.  For example, you might 
want to get the mean mpg and weight separately for foreign and domestic cars.  As you see below, it is 
possible to use proc means with the class statement to get these results. 

PROC MEANS DATA=auto ; 
  CLASS foreign ; 
  VAR foreign weight ; 
RUN ;   

However, what if you wanted to obtain the correlation of weight and mpg separately for foreign and 
domestic cars?  Proc corr does not support a class statement like proc means does, but you can use the 
by statement as in the example below. 

PROC SORT DATA=auto OUT=auto6 ; 
  BY foreign ; 
RUN ; 
  
PROC CORR DATA=auto6 ; 
  BY foreign ; 
  VAR weight mpg ; 
RUN ;   
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As you see in the output below, using the by statement resulted in getting a proc corr for the domestic 
cars and a proc corr for the foreign cars.  In general, using the by statement requests that the proc be 
performed for every level of the by variable (in this case, for every level of foreign). 

FOREIGN=0 
Correlation Analysis 
   2 'VAR' Variables:  WEIGHT   MPG 
 
                                     Simple Statistics 
 
Variable   N          Mean       Std Dev           Sum       Minimum       Maximum 
WEIGHT    19   3347.894737    627.176911         63610   2110.000000   4330.000000 
MPG       19     19.789474      4.035660    376.000000     14.000000     29.000000 
 
Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 19 
 
                  WEIGHT               MPG 
WEIGHT           1.00000          -0.86236 
                  0.0               0.0001 
 
MPG             -0.86236           1.00000 
                  0.0001            0.0 
 
FOREIGN=1 
 
Correlation Analysis 
 
   2 'VAR' Variables:  WEIGHT   MPG 
                                     Simple Statistics 
 
Variable   N          Mean       Std Dev           Sum       Minimum       Maximum 
WEIGHT     8   2452.500000    311.436763         19620   2020.000000   2830.000000 
MPG        8     24.125000      5.111262    193.000000     17.000000     35.000000 
 
Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 8 
 
                  WEIGHT               MPG 
WEIGHT           1.00000          -0.66702 
                  0.0               0.0708 
 
MPG             -0.66702           1.00000 
                  0.0708            0.0 

Here are other examples of where you might use a by statement with the auto data file.  (Note that 
some of these analyses are not very practical because of the small size of the auto data file, so please 
imagine that we would be analyzing a larger version of the auto data file.) 

• You might use a by statement with proc univariate to request univariate statistics for mpg 
separately for foreign and domestic cars so you can seen if  mpg is normally distributed for 
foreign cars and normally distributed for domestic cars.  This also allows you to generate side 
by side box and whisker plots allowing you to compare the distributions of mpg for the 
separate groups.  

• You might use a by statement with proc reg if you would like to do separate regression analyses 
for foreign and domestic cars.  
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• You might use a by statement with proc means even though it has the class statement.  If you 
wanted the means displayed on separate pages, then using the by statement would give you the 
kind of output you desire.  

5. Problems to look out for 

• If you use a BY statement in a procedure, make sure the data has been sorted first.  For example, 
if you use by foreign then be sure that you have first sorted the file by foreign.  

• If you want to delete duplicate observations and the duplicate observations are not next to each 
other, be sure to sort the data on all of the variables (i.e., using  by _ALL_; ) so the 
noduplicates option will work properly and indeed remove duplicate observations.  

Making and using permanent SAS data files (version 8) 

This will illustrate how to make and use SAS data files in version 8.  If you have used SAS version 6.xx, 
you will notice it is much easier to create and use permanent SAS data files in SAS version 8. 
Consider this simple example.  This shows how you can make a SAS version 8 file the traditional way 
using a libname statement.  The file salary will be stored in the directory c:\dissertation\. 
libname diss 'c:\dissertation\'; 
  
data diss.salary; 
  input sal1996-sal2000 ; 
  cards; 
10000 10500 11000 12000 12700 
14000 16500 18000 22000 29000 
; 
run; 
Below we use proc print and proc contents to look at the file that we have created. 
proc print data=diss.salary; 
run; 
  
proc contents data=diss.salary; 
run; 
We can see the data from the proc print and the proc contents shows us the data file that has been 
created, called c:\dissertation\salary.sas7bdat. 
Obs    sal1996    sal1997    sal1998    sal1999    sal2000 
 1      10000      10500      11000      12000      12700 
 2      14000      16500      18000      22000      29000 
 
The CONTENTS Procedure 
 
Data Set Name: DISS.SALARY                                Observations:         2 
Member Type:   DATA                                       Variables:            5 
Engine:        V8                                         Indexes:              0 
Created:       16:53 Thursday, November 16, 2000          Observation Length:   40 
Last Modified: 16:53 Thursday, November 16, 2000          Deleted Observations: 0 
Protection:                                               Compressed:           NO 
Data Set Type:                                            Sorted:               NO 
Label: 
        -----Engine/Host Dependent Information----- 
<output edited to save space> 
File Name:                  c:\dissertation\salary.sas7bdat 
Release Created:            8.0101M0 
Host Created:               WIN_NT 
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-----Alphabetic List of Variables and Attributes----- 
 
#    Variable    Type    Len    Pos 
----------------------------------- 
1    sal1996     Num       8      0 
2    sal1997     Num       8      8 
3    sal1998     Num       8     16 
4    sal1999     Num       8     24 
5    sal2000     Num       8     32 
Below we make a file similar to the one above, but we will illustrate some of the new features in SAS 
version 8.  First, we did not need to use a libname statement.  We were able to specify the name of the 
data file by directly specifying the path name of the file (i.e., c:\dissertation\salarylong).  Also note 
that the names of the variables are over 8 characters long.  They can be up to 32 characters long.  This 
step creates a data file named c:\dissertation\salarylong.sas7bdat . 
data 'c:\dissertation\salarylong'; 
  input Salary1996-Salary2000 ; 
cards; 
10000 10500 11000 12000 12700 
14000 16500 18000 22000 29000 
; 
run; 

Below we can do a proc print and proc contents on this data file.  

proc print data='c:\dissertation\salarylong'; 
run; 
proc contents data='c:\dissertation\salarylong'; 
run; 
Note the names of the variables in the proc print and proc contents below SAS shows the variable 
name as Salary1996 showing that we used an uppercase S.  When you first create a variable, SAS will 
remember the case of each of the letters and show the variable names using the case you originally 
used.  However, you do not need to always refer to the variable as Salary1996, you can refer to it as 
SALARY1996 or as salary1996 or however you like, as long as the variable is spelled properly.  But 
this can help make your variable names more readable for outputs. 
Obs    Salary1996    Salary1997    Salary1998    Salary1999    Salary2000 
 1        10000         10500         11000         12000         12700 
 2        14000         16500         18000         22000         29000 
  
The CONTENTS Procedure 
Data Set Name: c:\dissertation\salarylong                 Observations:         2 
Member Type:   DATA                                       Variables:            5 
Engine:        V8                                         Indexes:              0 
Created:       16:53 Thursday, November 16, 2000          Observation Length:   40 
Last Modified: 16:53 Thursday, November 16, 2000          Deleted Observations: 0 
Protection:                                               Compressed:           NO 
Data Set Type:                                            Sorted:               NO 
Label: 
          -----Engine/Host Dependent Information----- 
<output edited to save space> 
File Name:                  c:\dissertation\salarylong.sas7bdat 
Release Created:            8.0101M0 
Host Created:               WIN_NT 
 
-----Alphabetic List of Variables and Attributes----- 
 
#    Variable      Type    Len    Pos 
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------------------------------------- 
1    Salary1996    Num       8      0 
2    Salary1997    Num       8      8 
3    Salary1998    Num       8     16 
4    Salary1999    Num       8     24 
5    Salary2000    Num       8     32 
When you read and write SAS version 8 files, you can choose whether you wish to use the libname 
statement as we showed in our first example, or if you prefer to write out the name of the file as we 
showed in our second example.  Either will work with SAS version 8 data files.  If you are unsure of 
whether a SAS data file is a version 8 data file, you can look at the extension of the file.  If it ends 
with .sas7bdat then it is a version 8 data file that can be used on the PC or on UNIX.  However, if the 
extension is .sd2 it is a Windows SAS 6.12 file, or if the extension is .ssd01 it is a Unix SAS 6.12 file.  
 

Concatenating data files in SAS 

1. Introduction 

When you have two data files, you may want to combine them by stacking them one on top of the other 
(referred to as concatenating files). Below we have a file called dads and a file containing moms.  

dads  
 
famid name inc  
2     Art  22000  
1     Bill 30000  
3     Paul 25000   
 
moms  
 
famid name inc  
1     Bess 15000  
3     Pat  50000  
2     Amy  18000   

Below we have stacked (concatenated) these files creating a file we called momdad. These examples 
will show how to concatenate files in SAS.  

momdad  
 
famid name inc  
2     Art  22000  
1     Bill 30000  
3     Paul 25000  
1     Bess 15000  
3     Pat  50000  
2     Amy  18000   

2. Concatenating the moms and dads 

The SAS program below creates a SAS data file called dads and a file called moms. It then combines 
them (concatenates them) creating a file called dadmom.  

* Here is a file with information about dads with their family id name and income ;  
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DATA dads;  
  INPUT famid name $ inc ;  
CARDS;  
2 Art  22000  
1 Bill 30000  
3 Paul 25000  
;  
RUN;  
 
* Here is a file with information about moms with their family id name and income ;  
 
DATA moms;  
  INPUT famid name $ inc ;  
CARDS;  
1 Bess 15000  
3 Pat  50000  
2 Amy  18000  
;  
RUN;  
 
* We can combine these files by stacking them one on top the other ;  
* by setting them both together in the same data step as shown below ;  
 
DATA dadmom;  
  SET dads moms;  
RUN;  
 
 * Let's use PROC PRINT to look at the result ;  
 
PROC PRINT DATA=dadmom;  
RUN;   

The output of this program is shown below.  

OBS    FAMID    NAME     INC  
 
1       2      Art     22000  
2       1      Bill    30000  
3       3      Paul    25000  
4       1      Bess    15000  
5       3      Pat     50000  
6       2      Amy     18000 

The output from this program shows that the files were combined properly. The dads and moms are 
stacked together in one file. But, there is a little problem. We can't tell the dads from the moms. Let's try 
doing this again but in such a way that we can tell which observations are the moms and which are the 
dads.  

3. Concatenating the moms and dads, a better example 

In order to tell the dads from the moms, let's create a variable called momdad in the dads and moms 
data files that will contain dad for the dads data file and mom for the moms data file. When we 
combine the two files together the momdad variable will tell us who the moms and dads are.  

DATA dads;  
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  INPUT famid name $ inc ;  
  momdad = "dad";   
CARDS;  
2 Art  22000  
1 Bill   30000  
3 Paul  25000  
;  
RUN;   
DATA moms;  
  INPUT famid name $ inc ;  
  momdad = "mom";   
CARDS;  
1 Bess  15000  
3 Pat   50000  
2 Amy  18000  
;  
RUN;   
DATA dadmom;  
  SET dads moms;  
RUN;   
* Now when we do the proc print you can see the dads from the moms ;   
PROC PRINT DATA=dadmom;  
RUN;   

The output of this program is shown below.  

OBS    FAMID    NAME     INC     MOMDAD 
 
 1       2      Art     22000     dad  
 2       1      Bill    30000     dad  
 3       3      Paul    25000     dad  
 4       1      Bess    15000     mom  
 5       3      Pat     50000     mom  
 6       2      Amy     18000     mom   

Here we get a more desirable result, because we can tell the dads from the moms by looking at the 
variable momdad. This required some thinking ahead because we had to put momdad in both the dads 
data file and the moms data file before we merged the data files.  

4. Problems to look out for 

These above examples cover situations where there are no complications. However, look out for the 
following problems.  

4.1. The two data files have different variable names for the same thing 

For example, income is called dadinc and in the dads file and called mominc in the moms file, as 
shown below.  
DATA dads; 
 INPUT famid name $  dadinc ; 
DATALINES; 
2 Art  22000 
1 Bill 30000 
3 Paul 25000 
; 
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RUN; 
 
DATA moms; 
 INPUT famid name $  mominc ; 
DATALINES; 
1 Bess 15000 
3 Pat  50000 
2 Amy  18000 
; 
RUN; 
 
DATA momdad; 
 SET dads(IN=dad) moms(IN=mom); 
 IF dad=1 THEN momdad="dad"; 
 IF mom=1 THEN momdad="mom"; 
run; 
PROC PRINT DATA=momdad; 
RUN; 
You can see the problem illustrated below.  
 OBS    FAMID    NAME    DADINC    MOMINC    DAD    MOM    MOMDAD 
 
 1       2      Art      22000         .     1      0      dad 
 2       1      Bill     30000         .     1      0      dad 
 3       3      Paul     25000         .     1      0      dad 
 4       1      Bess         .     15000     0      1      mom 
 5       3      Pat          .     50000     0      1      mom 
 6       2      Amy          .     18000     0      1      mom  
Solution #1. The most obvious solution is to choose appropriate variable names for the original files 
(i.e., name the variable inc in both the moms and dads file). This solution is not always possible since 
you might be concatenating files that you did not originally create. To save space, we omit illustrating 
this solution.  

Solution #2. If solution #1 is not possible, then this problem can be addressed using an if statement in a 
data step.  

DATA momdad; 
  SET dads(IN=dad) moms(IN=mom); 
  IF dad=1 THEN 
  DO; 
    momdad="dad"; 
    inc=dadinc; 
  END; 
  IF mom=1 THEN 
  DO; 
    momdad="mom"; 
    inc=mominc; 
  END; 
RUN; 
 
PROC PRINT DATA=momdad; 
RUN; 
The results are shown below, where inc now has the income for both the moms and dads.  
OBS    FAMID    NAME    DADINC    MOMINC    DAD    MOM    MOMDAD     INC 
 
 1       2      Art      22000         .     1      0      dad      22000 
 2       1      Bill     30000         .     1      0      dad      30000 
 3       3      Paul     25000         .     1      0      dad      25000 
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 4       1      Bess         .     15000     0      1      mom      15000 
 5       3      Pat          .     50000     0      1      mom      50000 
 6       2      Amy          .     18000     0      1      mom      18000 
Solution 3. Another way you can fix this is by using the rename option on the set statement of a data 
step to rename the variables just before the files are combined.  
DATA momdad; 
  SET dads(RENAME=(dadinc=inc)) moms(RENAME=(mominc=inc)); 
RUN; 
 
PROC PRINT DATA=momdad; 
RUN; 
The output for Solution 3 is below.  
OBS    FAMID    NAME     INC 
 
 1       2      Art     22000 
 2       1      Bill    30000 
 3       3      Paul    25000 
 4       1      Bess    15000 
 5       3      Pat     50000 
 6       2      Amy     18000 

4.2 The two data files have different lengths for variables of the same name 

In all of the examples above, the variable name was input with the format $ indicating name is an 
alphabetic (string) variable with a default length of 8. What would happen if name in the dads file was 
input using $3. and name in the moms file was input using $4. ? This is illustrated below.  
DATA dads;  
  INPUT famid name $3. inc; 
DATALINES;   
 2 Art  22000  
 1 Bob  30000  
 3 Tom  25000  
 RUN;   
 
DATA moms;   
  INPUT famid name $4. inc;  
DATALINES;   
 1 Bess 15000   
 3 Rory 50000   
 2 Jane 18000   
 RUN;   
 
DATA momdad;  
  SET dads moms; 
RUN;  
PROC PRINT DATA=momdad;  
RUN;  
The output is below.  
OBS    FAMID   NAME     INC  
 1      2      Art     22000  
 2      1      Bob     30000 
 3      3      Tom     25000  
 4      1      Bes     15000 
 5      3      Ror     50000  
 6      2      Jan     18000  
Note that the names for the moms are truncated to be length 3. This is because the length for names in 
the dads file is 3. To fix this, use the length statement in the data step that merges the two files.  
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DATA momdad;  
  LENGTH name $ 4; 
  SET dads moms; 
RUN;  
PROC PRINT DATA=momdad;  
RUN;  
The output is below.  
OBS    NAME   FAMID     INC 
 1     Art       2      22000 
 2     Bob       1      30000 
 3     Tom       3      25000 
 4     Bess      1      15000 
 5     Rory      3      50000 
 6     Jane      2      18000 

4.3 The two data files have variables with the same name but different codes 

This problem is similar to the problem above, except that it has an additional wrinkle, illustrated below. 
In the dads file there is a variable called fulltime that is coded 1 if the dad is working full time, 0 if he 
is not. The moms file also has a variable called fulltime that is coded Y is she is working full time, and 
N if she is not. Not only are these variables of different types (numeric and character), but they are 
coded differently as well.  
DATA dads; 
 INPUT famid name $ inc fulltime; 
DATALINES; 
2 Art  22000 0 
1 Bill 30000 1 
3 Paul 25000 1 
; 
RUN; 
 
DATA moms; 
 INPUT famid name $ inc fulltime $1.; 
DATALINES; 
1 Bess 15000 N 
3 Pat  50000 Y 
2 Amy  18000 N 
; 
RUN; 
Solution #1. Code the variables in the two files in the same way. For example, code fulltime using 0/1 
for both files with 1 indicating working fulltime. This is the simplest solution if you are creating the 
files yourself. We will omit illustrating this solution to save space.  

Solution #2. You may not have created the original raw data files, so solution #1 may not be possible 
for you. In that case, you can create a new variable in each file that has the same coding and will be 
compatible when you merge the files. Below we illustrate this strategy.  

For the dads file, we make a variable called full that is the same as fulltime, and save the file as dads2, 
dropping fulltime. For the moms, we create full by recoding fulltime, and save the file as moms2, also 
dropping fulltime. The files dads2 and moms2 both have the variable full coded the same way (0/1 
where 1=works full time) so we can combine those files together.  

DATA dads; 
 SET dads; 
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 full=fulltime; 
 DROP fulltime; 
RUN; 
 
DATA moms; 
 SET moms; 
 IF fulltime="Y" THEN full=1; 
 IF fulltime="N" THEN full=0; 
 DROP fulltime; 
RUN; 
 
DATA momdad; 
  SET dads moms; 
RUN; 
PROC PRINT DATA=momdad; 
RUN; 
The results are shown below.  
OBS    FAMID    NAME     INC     FULL 
 
 1       2      Art     22000      0 
 2       1      Bill    30000      1 
 3       3      Paul    25000      1 
 4       1      Bess    15000      0 
 5       3      Pat     50000      1 
 6       2      Amy     18000      0 
 
 

Working across variables 

1. Introduction  

This module illustrates (1) how to compute variables manually in a data step and (2) how to work 
across variables using the array statement in a data step.  

Consider the sample program below, which reads in family income data for twelve months.  

DATA faminc; 
   INPUT famid faminc1-faminc12 ; 
CARDS; 
1 3281 3413 3114 2500 2700 3500 3114 3319 3514 1282 2434 2818 
2 4042 3084 3108 3150 3800 3100 1531 2914 3819 4124 4274 4471 
3 6015 6123 6113 6100 6100 6200 6186 6132 3123 4231 6039 6215 
; 
RUN; 
  
PROC PRINT DATA=faminc; 
RUN;  
The output is shown below 
                                                                         F      F      
F 
          F      F      F      F      F      F      F      F      F      A      A      
A 
          A      A      A      A      A      A      A      A      A      M      M      
M 
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    F     M      M      M      M      M      M      M      M      M      I      I      
I 
    A     I      I      I      I      I      I      I      I      I      N      N      
N 
O   M     N      N      N      N      N      N      N      N      N      C      C      
C 
B   I     C      C      C      C      C      C      C      C      C      1      1      
1 
S   D     1      2      3      4      5      6      7      8      9      0      1      
2 
1   1   3281   3413   3114   2500   2700   3500   3114   3319   3514   1282   2434   
2818 
2   2   4042   3084   3108   3150   3800   3100   1531   2914   3819   4124   4274   
4471 
3   3   6015   6123   6113   6100   6100   6200   6186   6132   3123   4231   6039   
6215 

2. Computing variables (manually) 

Computing variables in a data step can be accomplished a number of ways in SAS. For example, if one 
wanted to compute the amount of tax (10%) paid for each month, the simplest way to do this is to 
compute 12 variables (taxinc1-taxinc12) by multiplying each of the (faminc1-faminc12) by .10 as 
illustrated below.  As you see, this requires entering a command computing the tax for each month of 
data (for months 1 to 12).  

DATA faminc1a; 
   SET faminc; 
    taxinc1 = faminc1 * .10 ; 
    taxinc2 = faminc2 * .10 ; 
    taxinc3 = faminc3 * .10 ; 
    taxinc4 = faminc4 * .10 ; 
    taxinc5 = faminc5 * .10 ;  
    taxinc6 = faminc6 * .10 ; 
    taxinc7 = faminc7 * .10 ; 
    taxinc8 = faminc8 * .10 ; 
    taxinc9 = faminc9 * .10 ; 
    taxinc10= faminc10 * .10 ; 
    taxinc11= faminc11 * .10 ; 
    taxinc12= faminc12 * .10 ; 
RUN; 
  
PROC PRINT DATA=faminc1a; 
RUN; 

The output is shown below.  

                                                              F     F     F 
        F     F     F     F     F     F     F     F     F     A     A     A     T 
        A     A     A     A     A     A     A     A     A     M     M     M     A 
   F    M     M     M     M     M     M     M     M     M     I     I     I     X 
   A    I     I     I     I     I     I     I     I     I     N     N     N     I 
O  M    N     N     N     N     N     N     N     N     N     C     C     C     N 
B  I    C     C     C     C     C     C     C     C     C     1     1     1     C 
S  D    1     2     3     4     5     6     7     8     9     0     1     2     1 
 
 
1  1  3281  3413  3114  2500  2700  3500  3114  3319  3514  1282  2434  2818  328.1 
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2  2  4042  3084  3108  3150  3800  3100  1531  2914  3819  4124  4274  4471  404.2 
3  3  6015  6123  6113  6100  6100  6200  6186  6132  3123  4231  6039  6215  601.5          
T        T        T 
     T        T       T      T      T       T        T        T        A        A        
A 
     A        A       A      A      A       A        A        A        X        X        
X 
     X        X       X      X      X       X        X        X        I        I        
I 
     I        I       I      I      I       I        I        I        N        N        
N 
O    N        N       N      N      N       N        N        N        C        C        
C 
B    C        C       C      C      C       C        C        C        1        1        
1 
S    2        3       4      5      6       7        8        9        0        1        
2 
1  341.3    311.4    250    270    350    311.4    331.9    351.4    128.2    243.4    
281.8 
2  308.4    310.8    315    380    310    153.1    291.4    381.9    412.4    427.4    
447.1 
3  612.3    611.3    610    610    620    618.6    613.2    312.3    423.1    603.9    
621.5 

3. Computing variables (using the array statement) 

Another way to compute 12 variables representing the amount of tax paid (10%) for each month is to 
use the array statement.  In the example below, two "arrays" are declared:  Afaminc and Ataxinc.  The 
elements of Afaminc are the variables faminc1-faminc12 and the elements of Ataxinc  are the 
variables taxinc1-taxinc12.  You can refer to the variables faminc1-faminc12 by referring to the 
elements of the array Afaminc.  For example, Afaminc(3) refers to faminc3.  

Note that the array Afaminc is defined using the existing variables faminc1-faminc12 from the dataset 
faminc, whereas the values of the array Ataxinc (taxinc1-taxinc12) are created by multiplying 
Afaminc (faminc1-faminc12) by .10 in the do loop shown below.    

DATA faminc1b; 
   SET faminc ; 
  
   ARRAY Afaminc(12) faminc1-faminc12 ; 
   ARRAY Ataxinc(12) taxinc1-taxinc12 ; 
  
   DO month = 1 TO 12; 
     Ataxinc(month) = Afaminc(month) * .10 ; 
   END; 
RUN; 
 
PROC PRINT DATA=faminc1b; 
   VAR faminc1-faminc12 taxinc1-taxinc12; 
RUN;  
 
   

 The output is shown below:  
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F      F      F 
      F      F      F      F      F      F      F      F      F      A      A      
A      T 
      A      A      A      A      A      A      A      A      A      M      M      
M      A 
      M      M      M      M      M      M      M      M      M      I      I      
I      X 
      I      I      I      I      I      I      I      I      I      N      N      
N      I 
O     N      N      N      N      N      N      N      N      N      C      C      
C      N 
B     C      C      C      C      C      C      C      C      C      1      1      
1      C 
S     1      2      3      4      5      6      7      8      9      0      1      
2      1 
1   3281   3413   3114   2500   2700   3500   3114   3319   3514   1282   2434   
2818   328.1 
2   4042   3084   3108   3150   3800   3100   1531   2914   3819   4124   4274   
4471   404.2 
3   6015   6123   6113   6100   6100   6200   6186   6132   3123   4231   6039   
6215   601.5 
                                                                        T        T        
T 
      T        T       T      T      T       T        T        T        A        A        
A 
      A        A       A      A      A       A        A        A        X        X        
X 
      X        X       X      X      X       X        X        X        I        I        
I 
      I        I       I      I      I       I        I        I        N        N        
N 
O     N        N       N      N      N       N        N        N        C        C        
C 
B     C        C       C      C      C       C        C        C        1        1        
1 
S     2        3       4      5      6       7        8        9        0        1        
2 
1   341.3    311.4    250    270    350    311.4    331.9    351.4    128.2    
243.4    281.8 
2   308.4    310.8    315    380    310    153.1    291.4    381.9    412.4    
427.4    447.1 
3   612.3    611.3    610    610    620    618.6    613.2    312.3    423.1    
603.9    621.5 

In summary, the new variables become new columns of the dataset faminc1b and one can compute new 
variables as transformations of these variables, just like any other variables.    

Note that the array statement cannot loop over observations for any one variable.  If your data are in 
this "long" form, and you need to loop over observations, you must reshape the data to "wide" form in 
order to use the array statement.  (See our SAS macros page for "wide to long" and "long to wide" 
conversion macros).  Another option for looping across observations in the "long" form is to read the 
variable into a vector array using proc iml (Interactive Matrix Language), loop over the elements of the 
vector, and then append the results back to the SAS dataset using proc append.   

4. Collapsing across variables (manually) 

http://www.ats.ucla.edu/stat/sas/macros/default.htm
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Often one needs to sum across variables (also known as collapsing across variables).  For example, let's 
say the quarterly income for each family is desired.  In order to get this information, four quarterly 
variables incqtr1-incqtr4 need to be computed. Again, this can be achieved manually or by using the 
array statement. Below is an example of how to compute four quarterly income variables incqtr1-
incqtr4 by simply adding together the months that comprise a quarter.  

DATA faminc2a; 
   SET faminc; 
    incqtr1 = faminc1+faminc2+faminc3 ; 
    incqtr2 = faminc4+faminc5+faminc6 ; 
    incqtr3 = faminc7+faminc8+faminc9 ; 
    incqtr4 = faminc10+faminc11+faminc12 ; 
RUN; 
  
PROC PRINT DATA=faminc2a; 
   var faminc1-faminc12 incqtr1-incqtr4; 
RUN; 

The output is shown below.  

                                                 F    F    F 
    F    F    F    F    F    F    F    F    F    A    A    A    I     I     I     I 
    A    A    A    A    A    A    A    A    A    M    M    M    N     N     N     N 
    M    M    M    M    M    M    M    M    M    I    I    I    C     C     C     C 
    I    I    I    I    I    I    I    I    I    N    N    N    Q     Q     Q     Q 
O   N    N    N    N    N    N    N    N    N    C    C    C    T     T     T     T 
B   C    C    C    C    C    C    C    C    C    1    1    1    R     R     R     R 
S   1    2    3    4    5    6    7    8    9    0    1    2    1     2     3     4 
1 3281 3413 3114 2500 2700 3500 3114 3319 3514 1282 2434 2818  9808  8700  9947  
6534 
2 4042 3084 3108 3150 3800 3100 1531 2914 3819 4124 4274 4471 10234 10050  8264 
12869 
3 6015 6123 6113 6100 6100 6200 6186 6132 3123 4231 6039 6215 18251 18400 15441 
16485 

5. Collapsing across variables (using the array statement) 

This same result as above can be achieved using the array statement. The example below illustrates 
how to compute the quarterly income variables incqtr1-incqtr4 using the array statement in a more 
elegant fashion.  The array Aincqtr has four elements which are computed in the do loop as the sum of 
sets of three months.  The trick here is that the quarterly intervals begin with months 1,4,7 and 10 
respectively, which can be indexed as (month3 - 2)  where month3 is the set of numbers 
{3,6,9,12}during the execution of the do loop.  Hence, the first element of the array Aincqtr is equal to 
the sum of the first three elements of Afaminc, the second element of the array Aincqtr is equal to the 
sum of the next three elements of Afaminc, etc., until the do loop is finished, as shown below.  

DATA faminc2b; 
   SET faminc ; 
  
   ARRAY Afaminc(12) faminc1-faminc12 ; 
   ARRAY Aincqtr(4)  incqtr1-incqtr4 ; 
  
   DO qtr = 1 TO 4 ; 
     month3 = 3*qtr; 
     Aincqtr(qtr) = Afaminc(month3-2) + Afaminc(month3-1) + Afaminc(month3) ; 
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   END; 
RUN; 
  
  
PROC PRINT DATA=faminc2b; 
   var faminc1-faminc12 incqtr1-incqtr4; 
RUN; 

The output is shown below.  

                                                 F    F    F 
    F    F    F    F    F    F    F    F    F    A    A    A    I     I     I     I 
    A    A    A    A    A    A    A    A    A    M    M    M    N     N     N     N 
    M    M    M    M    M    M    M    M    M    I    I    I    C     C     C     C 
    I    I    I    I    I    I    I    I    I    N    N    N    Q     Q     Q     Q 
O   N    N    N    N    N    N    N    N    N    C    C    C    T     T     T     T 
B   C    C    C    C    C    C    C    C    C    1    1    1    R     R     R     R 
S   1    2    3    4    5    6    7    8    9    0    1    2    1     2     3     4 
1 3281 3413 3114 2500 2700 3500 3114 3319 3514 1282 2434 2818  9808  8700  9947  
6534 
2 4042 3084 3108 3150 3800 3100 1531 2914 3819 4124 4274 4471 10234 10050  8264 
12869 
3 6015 6123 6113 6100 6100 6200 6186 6132 3123 4231 6039 6215 18251 18400 15441 
16485 

6. Identifying patterns across variables (using the array statement) 

The array statement can also be used to identify patterns across variables of a dataset.  Let's say, for 
example, that one needs to know which months had income that was less than half of the income of the 
previous month. To obtain this information, dummy indicators can be created to indicate in which 
months this occurred. In the example below, two arrays are defined, Afaminc and Alowinc, and the 
elements of Afaminc and Alowinc are the variables faminc1-faminc12 and lowinc2-lowinc12, 
respectively, in the SAS dataset faminc4.    

Note that only 11 dummy indicators are needed for a 12 month period because the interest is in the 
change from one month to the next.  In the DO loop, when a month has income that is less than half of 
the income of the previous month, the dummy indicators lowinc2-lowinc12 get assigned a "1".  When 
this is not the case, they are assigned a "0".    

Lastly, a character variable named ever is created (with help from the array statement) indicating 
whether or not there were any months where income was less than half of the income of the previous 
month.  This is accomplished by summing up all of the elements of Alowinc (which contains 1's and 
0's).  If the sum of the elements of Alowinc is greater than zero, than there was at least one month 
where income was less than half of the previous month, and ever equals "Y".  Otherwise, if there were 
no months where income was less than half of the previous month, the sum of the elements of Alowinc 
is zero, and ever equals "N".   

DATA faminc4; 
   SET faminc ; 
  
   ARRAY Afaminc(12) faminc1-faminc12 ; 
   ARRAY Alowinc(2:12) lowinc2-lowinc12 ; 
  
   DO month = 2 to 12 ; 
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     IF Afaminc(month) < ( Afaminc(month-1) / 2) THEN Alowinc(month) = 1; 
       ELSE Alowinc(month) = 0; 
   END; 
  
   sum_low=0; /*THIS INITIALIZES sum_low TO ZERO AT THE BEGINNING OF THE LOOP*/; 
   DO month = 2 to 12 ; 
     sum_low =sum_low + Alowinc(month) ; 
   END; 
  
   IF sum_low GT 0 THEN ever='Y'; 
   IF sum_low EQ 0 THEN ever='N'; 
RUN; 
  
PROC PRINT DATA=faminc4; 
  VAR famid faminc1-faminc12 lowinc2-lowinc12 ever; 
RUN; 

The output is shown below.  

                                                   F    F    F                  L L 
L 
      F    F    F    F    F    F    F    F    F    A    A    A  L L L L L L L L O O 
O 
      A    A    A    A    A    A    A    A    A    M    M    M  O O O O O O O O W W 
W 
  F   M    M    M    M    M    M    M    M    M    I    I    I  W W W W W W W W I I 
I 
  A   I    I    I    I    I    I    I    I    I    N    N    N  I I I I I I I I N N 
N E 
O M   N    N    N    N    N    N    N    N    N    C    C    C  N N N N N N N N C C 
C V 
B I   C    C    C    C    C    C    C    C    C    1    1    1  C C C C C C C C 1 1 
1 E 
S D   1    2    3    4    5    6    7    8    9    0    1    2  2 3 4 5 6 7 8 9 0 1 
2 R 
1 1 3281 3413 3114 2500 2700 3500 3114 3319 3514 1282 2434 2818 0 0 0 0 0 0 0 0 1 0 
0 Y 
2 2 4042 3084 3108 3150 3800 3100 1531 2914 3819 4124 4274 4471 0 0 0 0 0 1 0 0 0 0 
0 Y 
3 3 6015 6123 6113 6100 6100 6200 6186 6132 3123 4231 6039 6215 0 0 0 0 0 0 0 0 0 0 
0 N 
 
 

Match merging data files in SAS 

1. Introduction 

When you have two data files, you can combine them by merging them side by side, matching up 
observations based on an identifier. For example, below we have a data file containing information on 
dads and we have a file containing information on family income called faminc. We would like to 
match merge the files together so we have the dads observation on the same line with the faminc 
observation based on the key variable famid.  

dads  
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famid name inc  
2     Art  22000  
1     Bill 30000  
3     Paul 25000  
faminc  
 
famid faminc96 faminc97 faminc98  
3     75000    76000    77000  
1     40000    40500    41000  
2     45000    45400    45800  

After match merging the files, they would look like this.  

famid name    inc faminc96 faminc97 faminc98  
  1   Bill  30000    40000    40500    41000  
  2   Art   22000    45000    45400    45800  
  3   Paul  25000    75000    76000    77000  

2. One-to-one merge 

There are three steps to match merge the dads file with the faminc file (this is called a one-to-one 
merge because there is a one to one correspondence between the dads and faminc records). These three 
steps are illustrated in the SAS program merge1.sas below.  

1. Use proc sort to sort dads on famid and save that file (we will call it dads2)  
2. Use proc sort to sort faminc on famid and save that file (we will call it faminc2)  
3. merge the dads2 and faminc2 files based on famid  

These three steps are illustrated in the program below. 

* We first created the dads and faminc data files below ;  
 
DATA dads;  
  INPUT famid name $ inc ;  
CARDS;  
2 Art  22000  
1 Bill 30000  
3 Paul 25000  
;  
RUN;  
DATA faminc;  
  INPUT famid faminc96 faminc97 faminc98 ;  
CARDS;  
3 75000 76000 77000  
1 40000 40500 41000  
2 45000 45400 45800  
* 1. Sort the dads file by "famid" & save sorted file as dads2 ;  
PROC SORT DATA=dads OUT=dads2;  
  BY famid;  
RUN;  
* 2. Sort faminc by "famid" & save sorted file as faminc2 ;  
PROC SORT DATA=faminc OUT=faminc2;  
  BY famid;  
RUN;  
* 3. Merge dads2 and faminc2 by famid in a data step ;  
DATA dadfam ;  
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  MERGE dads2 faminc2;  
  BY famid;  
RUN:  
* Let's do a proc print and look at the results. ;  
PROC PRINT DATA=dadfam;  
RUN;  

The output of the program is shown below. 

OBS    FAMID    NAME     INC     FAMINC96    FAMINC97    FAMINC98  
 
 1       1      Bill    30000      40000       40500       41000  
 2       2      Art     22000      45000       45400       45800  
 3       3      Paul    25000      75000       76000       77000  

The output from shows that the match merge worked properly. The dad and faminc are merged side by 
side. The next example considers a one-to-many merge where one observation in one file may have 
multiple matching records in another file. We will see that kind of merge is really no different from the 
one-to-one merge we saw here.  

3. One-to-many merge 

Imagine that we had a file with dads like we saw in the previous example, and we had a file with kids 
where a dad could have more than one kid. Matching up the "dads" with the "kids" is called a "one-to-
many" merge since you are matching one dad observation to possibly many kids records. The dads and 
kids records are shown below.  

dads  
 
famid name inc  
2     Art  22000  
1     Bill 30000  
3     Paul 25000  
kids  
 
famid kidname birth age wt sex  
1     Beth     1    9   60 f  
1     Bob      2    6   40 m  
1     Barb     3    3   20 f  
2     Andy     1    8   80 m  
2     Al       2    6   50 m  
2     Ann      3    2   20 f  
3     Pete     1    6   60 m  
3     Pam      2    4   40 f  
3     Phil     3    2   20 m  

After matching the dads with the kids you get a file that looks like the one below. Bill is matched up 
with his kids Beth, Bob and Barb; Art is matched up with Andy Al, and Ann; and Paul is matched up 
with Pete, Pam and Phil.  

dadkid  
 
FAMID NAME   INC   MOMDAD  KIDNAME  BIRTH  AGE  WT  SEX  
 
  1   Bill  30000   dad     Beth      1     9   60   f  
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  1   Bill  30000   dad     Bob       2     6   40   m  
  1   Bill  30000   dad     Barb      3     3   20   f  
  2   Art   22000   dad     Andy      1     8   80   m  
  2   Art   22000   dad     Al        2     6   50   m  
  2   Art   22000   dad     Ann       3     2   20   f  
  3   Paul  25000   dad     Pete      1     6   60   m  
  3   Paul  25000   dad     Pam       2     4   40   f  
  3   Paul  25000   dad     Phil      3     2   20   m  

Just like the "one-to-one" merge, we follow the same three steps for a "one-to-many" merge. These 
three steps are illustrated in the SAS program merge2.sas below.  

1. Use proc sort to sort dads on famid and save that file (we will call it dads2)  
2. Use proc sort to sort kids on famid and save that file (we will call it kids2)  
3. merge the dads2 and kids2 files based on famid  

The program below illustrates these steps. 

* first we make the "dads" data file ; 
DATA dads;  
  INPUT famid name $ inc ;  
CARDS;  
2 Art  22000  
1 Bill   30000  
3 Paul  25000  
;  
RUN;  
* Next we make the "kids" data file ; 
DATA kids;  
  INPUT famid kidname $ birth age wt sex $ ;  
CARDS;  
1 Beth 1 9 60 f  
1 Bob  2 6 40 m  
1 Barb 3 3 20 f  
2 Andy 1 8 80 m  
2 Al   2 6 50 m  
2 Ann  3 2 20 f  
3 Pete 1 6 60 m  
3 Pam  2 4 40 f  
3 Phil 3 2 20 m  
;  
RUN;  
* 1. sort "dads" on famid and save the sorted file as "dads2" ;  
PROC SORT DATA=dads OUT=dads2;  
  BY famid;  
RUN;  
* 2. sort "kids" on famid and save the sorted file as "kids2" ;  
PROC SORT DATA=kids OUT=kids2;  
  BY famid;  
RUN;  
* 3. merge "dads2" and "kids2" based on famid, creating "dadkid" ;  
DATA dadkid;  
  MERGE dads2 kids2;  
  BY famid;  
RUN;  
* Let's do a PROC PRINT of "dadkid" to see if the merge worked ;  
PROC PRINT DATA=dadkid;  
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RUN;  

The output of the program is shown below. 

OBS FAMID NAME   INC   MOMDAD KIDNAME BIRTH AGE WT SEX  
 
 1    1   Bill  30000   dad    Beth     1    9  60  f 
 2    1   Bill  30000   dad    Bob      2    6  40  m  
 3    1   Bill  30000   dad    Barb     3    3  20  f  
 4    2   Art   22000   dad    Andy     1    8  80  m  
 5    2   Art   22000   dad    Al       2    6  50  m  
 6    2   Art   22000   dad    Ann      3    2  20  f  
 7    3   Paul  25000   dad    Pete     1    6  60  m  
 8    3   Paul  25000   dad    Pam      2    4  40  f  
 9    3   Paul  25000   dad    Phil     3    2  20  m  

The output shows just what we hoped to see, the dads merged along side of their kids. You might have 
wondered what would have happened if the merge statement had reversed the order of the files, had we 
changed step 3 to look like below. 

* 3. merge "dads2" and "kids2" based on famid, creating "dadkid" ;  
DATA dadkid;  
  MERGE kids2 dads2;  
  BY famid;  
RUN;  
* Let's do a PROC PRINT of "dadkid" see what happens ;  
PROC PRINT DATA=dadkid;  
RUN;  

The output with the modified step 3 is shown below. 

OBS FAMID KIDNAME BIRTH AGE WT SEX NAME  INC   MOMDAD 
  
 1    1    Beth     1    9  60  f  Bill 30000   dad  
 2    1    Bob      2    6  40  m  Bill 30000   dad  
 3    1    Barb     3    3  20  f  Bill 30000   dad  
 4    2    Andy     1    8  80  m  Art  22000   dad  
 5    2    Al       2    6  50  m  Art  22000   dad  
 6    2    Ann      3    2  20  f  Art  22000   dad  
 7    3    Pete     1    6  60  m  Paul 25000   dad  
 8    3    Pam      2    4  40  f  Paul 25000   dad  
 9    3    Phil     3    2  20  m  Paul 25000   dad  

This output shows what happened when we switched the order of kids2 and dads2 in the merge 
statement. The merge results are basically the same, except that the order of the variables is modified -- 
the kids variables are on the left and the dads variables are at the right. Other than that, the results are 
the same. 

4. Problems to look out for 

These examples cover situations where there are no complications. We show some examples of 
complications that can arise and how you can solve them below.  

4.1 Mismatching records in one-to-one merge 
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The two data files have may have records that do not match. Below we illustrate this by including an 
extra dad (Karl in famid 4) that does not have a corresponding family, and there are two extra families 
(5 and 6) in the family file that do not have a corresponding dad.  
DATA dads; 
 INPUT famid name $ inc; 
DATALINES; 
2 Art  22000 
1 Bill 30000 
3 Paul 25000 
4 Karl 95000 
; 
RUN; 
 
DATA faminc; 
 INPUT famid faminc96 faminc97 faminc98; 
DATALINES; 
3 75000 76000 77000 
1 40000 40500 41000 
2 45000 45400 45800 
5 55000 65000 70000 
6 22000 24000 28000 
; 
RUN; 
 
PROC SORT DATA=dads; 
 BY famid; 
RUN; 
 
PROC SORT DATA=faminc; 
 BY famid; 
RUN; 
 
DATA merge121; 
  MERGE dads(IN=fromdadx) faminc(IN=fromfamx); 
  BY famid; 
  fromdad = fromdadx; 
  fromfam = fromfamx; 
RUN; 
As you see above, we use the in option to create a 0/1 variable fromdadx that indicates whether the 
resulting file contains a record with data from the dads file. Likewise, we use IN option to create a 0/1 
variable fromfamx that indicates if the observation came from the faminc file. The fromdadx and 
fromfamx variables are temporary, so we make copies of them in fromdad and fromfam so we have 
copies of these variables that stay with the file. We can then use proc print and proc freq to identify 
the mismatching records.  
PROC PRINT DATA=merge121;  
RUN;  

PROC FREQ DATA=merge121;  
TABLES fromdad*fromfam;  
RUN;  

The output below illustrates that there were mismatching records. For famid 4, the value of fromdad is 
1 and fromfam is 0, as we would expect since there was data from dads for famid 4, but no data from 
faminc. Also, as we expect, this record has valid data for the variables from the dads file (name and 
inc) and missing data for the variables from faminc (faminc96 faminc97 and faminc98). We see the 
reverse pattern for famid's5 and 6. 
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OBS   FAMID   NAME    INC    FAMINC96   FAMINC97   FAMINC98   FROMDAD   FROMFAM 
 
 1      1     Bill   30000     40000      40500      41000       1         1    
 2      2     Art    22000     45000      45400      45800       1         1    
 3      3     Paul   25000     75000      76000      77000       1         1    
 4      4     Karl   95000         .          .          .       1         0    
 5      5                .     55000      65000      70000       0         1    
 6      6                .     22000      24000      28000       0         1    
A closer look at the fromdad and fromfam variables reveals that there are three records that have 
matching data: one that has data from the dads only, and two records that have data from the faminc 
file only. The crosstab table below confirms this. 
TABLE OF FROMDAD BY FROMFAM 
 
FROMDAD     FROMFAM 
 
Frequency| 
Percent  | 
Row Pct  | 
Col Pct  |       0|       1|  Total 
---------+--------+--------+ 
       0 |      0 |      2 |      2 
         |   0.00 |  33.33 |  33.33 
         |   0.00 | 100.00 | 
         |   0.00 |  40.00 | 
---------+--------+--------+ 
       1 |      1 |      3 |      4 
         |  16.67 |  50.00 |  66.67 
         |  25.00 |  75.00 | 
         | 100.00 |  60.00 | 
---------+--------+--------+ 
Total           1        5        6 
            16.67    83.33   100.00 
You may want to use this strategy to check the matching of the two files. If there are unexpected 
mismatched records, then you should investigate to understand the cause of the mismatched records.  

Use the where statement in a proc print to eliminate some of the non-matching records. 

4.2 Variables with the same name, but different information 

Below we have the files with the information about the dads and family, but look more closely at the 
names of the variables. In the dads file, there is a variable called inc98, and in the family file there are 
variables inc96, inc97 and inc98. Let's attempt to merge these files and see what happens. 
DATA dads; 
 INPUT famid name $ inc98; 
DATALINES; 
2 Art  22000 
1 Bill 30000 
3 Paul 25000 
; 
RUN; 
 
DATA faminc; 
 INPUT famid inc96 inc97 inc98; 
DATALINES; 
3 75000 76000 77000 
1 40000 40500 41000 
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2 45000 45400 45800 
; 
RUN; 
 
PROC SORT DATA=dads; 
 BY famid; 
RUN; 
 
PROC SORT DATA=faminc; 
 BY famid; 
RUN; 
 
DATA merge121; 
 MERGE faminc dads; 
 BY famid; 
RUN; 
PROC PRINT DATA=merge121;  
RUN;  
The results are shown below. As you see, the variable inc98 has the data from the dads file, the file that 
appears last on the merge statement. When you merge files that have the same variable, SAS will use 
the values from the file that appears last on the merge statement. 
OBS    FAMID    INC96    INC97    INC98    NAME 
 
 1       1      40000    40500    30000    Bill 
 2       2      45000    45400    22000    Art  
 3       3      75000    76000    25000    Paul 
There are a couple of ways you can solve this problem.  

Solution #1. The most obvious solution is to choose variable names in the original files that will not 
conflict with each other. However, you may have files where the names have already been chosen.  

Solution #2. You can rename the variables in a data step using the rename option (which renames the 
variables before doing the merging). This allows you to select variable names that do not conflict with 
each other, as illustrated below. 

DATA merge121;  
MERGE faminc(RENAME=(inc96=faminc96 inc97=faminc97 inc98=faminc98))  
dads(RENAME=(inc98=dadinc98));  
BY famid;  
RUN;  

PROC PRINT DATA=merge121;  
RUN;  

As you can see below, the variables were renamed as specified.  
OBS    FAMID    FAMINC96    FAMINC97    FAMINC98    NAME    DADINC98 
 
 1       1        40000       40500       41000     Bill      30000  
 2       2        45000       45400       45800     Art       22000  
 3       3        75000       76000       77000     Paul      25000  
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Regression with SAS 
Chapter 1 - Simple and Multiple Regression 

Chapter Outline 
    1.0 Introduction 
    1.1 A First Regression Analysis 
    1.2 Examining Data 
    1.3 Simple linear regression 
    1.4 Multiple regression 
    1.5 Transforming variables 
    1.6 Summary 
    1.7 For more information  

1.0 Introduction  

This web book is composed of four chapters covering a variety of topics about using SAS for regression. 
We should emphasize that this book is about "data analysis" and that it demonstrates how SAS can be 
used for regression analysis, as opposed to a book that covers the statistical basis of multiple 
regression.  We assume that you have had at least one statistics course covering regression analysis and 
that you have a regression book that you can use as a reference (see the Regression With SAS page and 
our Statistics Books for Loan page for recommended regression analysis books). This book is designed 
to apply your knowledge of regression, combine it with instruction on SAS, to perform, understand and 
interpret regression analyses.   

This first chapter will cover topics in simple and multiple regression, as well as the supporting tasks that 
are important in preparing to analyze your data, e.g., data checking, getting familiar with your data file, 
and examining the distribution of your variables.  We will illustrate the basics of simple and multiple 
regression and demonstrate the importance of inspecting, checking and verifying your data before 
accepting the results of your analysis. In general, we hope to show that the results of your regression 
analysis can be misleading without further probing of your data, which could reveal relationships that a 
casual analysis could overlook.   

In this chapter, and in subsequent chapters, we will be using a data file that was created by randomly 
sampling 400 elementary schools from the California Department of Education's API 2000 
dataset.  This data file contains a measure of school academic performance as well as other attributes of 
the elementary schools, such as, class size, enrollment, poverty, etc.  

You can access this data file over the web by clicking on elemapi.sas7bdat, or by visiting the 
Regression with SAS page where you can download all of the data files used in all of the chapters of 
this book.  The examples will assume you have stored your files in a folder called c:\sasreg, but 
actually you can store the files in any folder you choose, but if you run these examples be sure to 
change c:\sasreg\ to the name of the folder you have selected.  

1.1 A First Regression Analysis 

http://www.ats.ucla.edu/stat/sas/webbooks/reg/default.htm
http://www.ats.ucla.edu/stat/sas/webbooks/reg/default.htm
http://www.ats.ucla.edu/stat/books/
http://www.ats.ucla.edu/stat/sas/webbooks/reg/elemapi.sas7bdat
http://www.ats.ucla.edu/stat/sas/webbooks/reg/default.htm
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Let's dive right in and perform a regression analysis using the variables api00, acs_k3, meals and full. 
These measure the academic performance of the school (api00), the average class size in kindergarten 
through 3rd grade (acs_k3), the percentage of students receiving free meals (meals) - which is an 
indicator of poverty, and the percentage of teachers who have full teaching credentials (full). We expect 
that better academic performance would be associated with lower class size, fewer students receiving 
free meals, and a higher percentage of teachers having full teaching credentials.   Below, we use proc 
reg for running this regression model followed by the SAS output.  

proc reg data="c:\sasreg\elemapi"; 
  model api00 = acs_k3 meals full; 
run; 
 
The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > 
F 
 
Model                     3        2634884         878295     213.41    
<.0001 
Error                   309        1271713     4115.57673 
Corrected Total         312        3906597 
 
 
Root MSE             64.15276    R-Square     0.6745 
Dependent Mean      596.40575    Adj R-Sq     0.6713 
Coeff Var            10.75656 
 
 
                                    Parameter Estimates 
 
                                            Parameter       Standard 
Variable     Label                  DF       Estimate          Error    t 
Value    Pr > |t| 
 
Intercept    Intercept               1      906.73916       28.26505      
32.08      <.0001 
acs_k3       avg class size k-3      1       -2.68151        1.39399      -
1.92      0.0553 
meals        pct free meals          1       -3.70242        0.15403     -
24.04      <.0001 
full         pct full credential     1        0.10861        0.09072       
1.20      0.2321 

Let's focus on the three predictors, whether they are statistically significant and, if so, the direction of 
the relationship. The average class size (acs_k3, b=-2.68), is not significant (p=0.0553), but only just so, 
and the coefficient is negative which would indicate that larger class sizes is related to lower academic 
performance -- which is what we would expect.   Next, the effect of meals (b=-3.70, p<.0001) is 
significant and its coefficient is negative indicating that the greater the proportion students receiving 
free meals, the lower the academic performance.  Please note, that we are not saying that free meals are 
causing lower academic performance.  The meals variable is highly related to income level and 
functions more as a proxy for poverty. Thus, higher levels of poverty are associated with lower 
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academic performance. This result also makes sense.  Finally, the percentage of teachers with full 
credentials (full, b=0.11, p=.2321) seems to be unrelated to academic performance. This would seem to 
indicate that that the percentage of teachers with full credentials is not an important factor in predicting 
academic performance -- this result was somewhat unexpected.  

Should we take these results and write them up for publication?  From these results, we would conclude 
that lower class sizes are related to higher performance, that fewer students receiving free meals is 
associated with higher performance, and that the percentage of teachers with full credentials was not 
related to academic performance in the schools.  Before we write this up for publication, we should do a 
number of checks to make sure we can firmly stand behind these results.  We start by getting more 
familiar with the data file, doing preliminary data checking, looking for errors in the data.   

1.2 Examining data  

First, let's use proc contents to learn more about this data file.  We can verify how many observations it 
has and see the names of the variables it contains.   

proc contents data="c:\sasreg\elemapi" ; 
run; 
The CONTENTS Procedure 
 
Data Set Name: c:\sasreg\elemapi                       Observations:         
400 
Member Type:   DATA                                    Variables:            
21 
Engine:        V8                                      Indexes:              
0 
Created:       4:58 Saturday, January 9, 1960          Observation Length:   
83 
Last Modified: 4:58 Saturday, January 9, 1960          Deleted Observations: 
0 
Protection:                                            Compressed:           
NO 
Data Set Type:                                         Sorted:               
NO 
Label: 
 
 
     -----Engine/Host Dependent Information----- 
 
Data Set Page Size:         8192 
Number of Data Set Pages:   5 
First Data Page:            1 
Max Obs per Page:           98 
Obs in First Data Page:     56 
Number of Data Set Repairs: 0 
File Name:                  c:\sasreg\elemapi.sas7bdat 
Release Created:            7.0000M0 
Host Created:               WIN_NT 
 
 
            -----Alphabetic List of Variables and Attributes----- 
 
 #    Variable    Type    Len    Pos    Label 
----------------------------------------------------------------------------- 
11    acs_46      Num       3     39    avg class size 4-6 
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10    acs_k3      Num       3     36    avg class size k-3 
 3    api00       Num       4     12    api 2000 
 4    api99       Num       4     16    api 1999 
17    avg_ed      Num       8     57    avg parent ed 
15    col_grad    Num       3     51    parent college grad 
 2    dnum        Num       4      8    district number 
 7    ell         Num       3     27    english language learners 
19    emer        Num       3     73    pct emer credential 
20    enroll      Num       4     76    number of students 
18    full        Num       8     65    pct full credential 
16    grad_sch    Num       3     54    parent grad school 
 5    growth      Num       4     20    growth 1999 to 2000 
13    hsg         Num       3     45    parent hsg 
21    mealcat     Num       3     80    Percentage free meals in 3 categories 
 6    meals       Num       3     24    pct free meals 
 9    mobility    Num       3     33    pct 1st year in school 
12    not_hsg     Num       3     42    parent not hsg 
 1    snum        Num       8      0    school number 
14    some_col    Num       3     48    parent some college 
 8    yr_rnd      Num       3     30    year round school  

We will not go into all of the details of this output.  Note that there are 400 observations and 21 
variables.  We have variables about academic performance in 2000 and 1999 and the change in 
performance, api00, api99 and growth respectively. We also have various characteristics of the schools, 
e.g., class size, parents education, percent of teachers with full and emergency credentials, and number 
of students.  Note that when we did our original regression analysis it said that there were 313 
observations, but the proc contents output indicates that we have 400 observations in the data file. 

If you want to learn more about the data file, you could use proc print to show some of the 
observations.  For example, below we proc print to show the first five observations.  

proc print data="c:\sasreg\elemapi"(obs=5) ; 
run; 
                              m             s c g 
                               o        n    o o r                   m 
                    g       y  b  a  a  o    m l a    a           e  e 
            a   a   r  m    r  i  c  c  t    e _ d    v           n  a 
     s   d  p   p   o  e    _  l  s  s  _    _ g _    g     f  e  r  l 
 O   n   n  i   i   w  a  e r  i  _  _  h  h c r s    _     u  m  o  c 
 b   u   u  0   9   t  l  l n  t  k  4  s  s o a c    e     l  e  l  a 
 s   m   m  0   9   h  s  l d  y  3  6  g  g l d h    d     l  r  l  t 
 
  1 906 41 693 600 93 67  9 0 11 16 22  0  0 0 0 0  .      76 24 247 2 
  2 889 41 570 501 69 92 21 0 33 15 32  0  0 0 0 0  .      79 19 463 3 
  3 887 41 546 472 74 97 29 0 36 17 25  0  0 0 0 0  .      68 29 395 3 
  4 876 41 571 487 84 90 27 0 27 20 30 36 45 9 9 0 1.91000 87 11 418 3 
  5 888 41 478 425 53 89 30 0 44 18 31 50 50 0 0 0 1.50000 87 13 520 3 

This takes up lots of space on the page, but does not give us a lot of information.  Listing our data can 
be very helpful, but it is more helpful if you list just the variables you are interested in.  Let's list the 
first 10 observations for the variables that we looked at in our first regression analysis.  

proc print data="c:\sasreg\elemapi"(obs=10) ; 
  var api00 acs_k3 meals full; 
run; 
Obs    api00    acs_k3    meals    full 
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  1     693       16        67       76 
  2     570       15        92       79 
  3     546       17        97       68 
  4     571       20        90       87 
  5     478       18        89       87 
  6     858       20         .      100 
  7     918       19         .      100 
  8     831       20         .       96 
  9     860       20         .      100 
 10     737       21        29       96    

We see that among the first 10 observations, we have four missing values for meals.  It is likely that the 
missing data for meals had something to do with the fact that the number of observations in our first 
regression analysis was 313 and not 400.  

Another useful tool for learning about your variables is proc means. Below we use proc means to learn 
more about the variables api00, acs_k3, meals, and full.    

proc means data="c:\sasreg\elemapi"; 
  var api00 acs_k3 meals full; 
run; 
The MEANS Procedure 
 
Variable  Label                  N          Mean       Std Dev       Minimum 
---------------------------------------------------------------------------- 
api00     api 2000             400   647.6225000   142.2489610   369.0000000 
acs_k3    avg class size k-3   398    18.5477387     5.0049328   -21.0000000 
meals     pct free meals       315    71.9936508    24.3855697     6.0000000 
full      pct full credential  400    66.0568000    40.2979258     0.4200000 
---------------------------------------------------------------------------- 
 
Variable  Label                     Maximum 
------------------------------------------- 
api00     api 2000              940.0000000 
acs_k3    avg class size k-3     25.0000000 
meals     pct free meals        100.0000000 
full      pct full credential   100.0000000 
------------------------------------------- 

We see that the api00 scores don't have any missing values (because the N is 400) and the scores range 
from 369-940.  This makes sense since the api scores can range from 200 to 1000.  We see that the 
average class size (acs_k3) had 398 valid values ranging from -21 to 25 and 2 are missing. It seems odd 
for a class size to be -21. The percent receiving free meals (meals) ranges from 6 to 100, but there are 
only 315 valid values (85 are missing). This seems like a large number of missing values.  The percent 
with full credentials (full) ranges from .42 to 100 with no missing.   

We can also use proc freq to learn more about any categorical variables, such as yr_rnd, as shown 
below. 

proc freq data="c:\sasreg\elemapi"; 
  tables yr_rnd; 
run; 
                     year round school 
 
                                   Cumulative    Cumulative 
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yr_rnd    Frequency     Percent     Frequency      Percent 
----------------------------------------------------------- 
     0         308       77.00           308        77.00 
     1          92       23.00           400       100.00 

The variable yr_rnd is coded 0=No (not year round) and 1=Yes (year round).  Of the 400 schools, 308 
are non-year round and 92 are year round, and none are missing. 

The above commands have uncovered a number of peculiarities worthy of further examination. For 
example, let us look further into the average class size by getting more detailed summary statistics for 
acs_k3 using proc univariate.    

proc univariate data="c:\sasreg\elemapi"; 
  var acs_k3; 
run; 
The UNIVARIATE Procedure 
Variable:  acs_k3  (avg class size k-3) 
 
                            Moments 
N                         398    Sum Weights                398 
Mean               18.5477387    Sum Observations          7382 
Std Deviation      5.00493282    Variance            25.0493526 
Skewness           -7.1055928    Kurtosis            53.0136683 
Uncorrected SS         146864    Corrected SS        9944.59296 
Coeff Variation    26.9840594    Std Error Mean      0.25087461 
 
              Basic Statistical Measures 
 
    Location                    Variability 
Mean     18.54774     Std Deviation            5.00493 
Median   19.00000     Variance                25.04935 
Mode     19.00000     Range                   46.00000 
                      Interquartile Range      2.00000 
 
           Tests for Location: Mu0=0 
 
Test           -Statistic-    -----p Value------ 
Student's t    t  73.93231    Pr > |t|    <.0001 
Sign           M       193    Pr >= |M|   <.0001 
Signed Rank    S     37839    Pr >= |S|   <.0001 

Quantiles (Definition 5) 
 
Quantile      Estimate 
100% Max            25 
99%                 23 
95%                 21 
90%                 21 
75% Q3              20 
50% Median          19 
25% Q1              18 
10%                 17 
5%                  16 
1%                 -20 
0% Min             -21 
 
        Extreme Observations 
 
----Lowest----        ----Highest--- 
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Value      Obs        Value      Obs 
  -21       43           22      365 
  -21       42           23       36 
  -21       41           23       79 
  -20       40           23      361 
  -20       38           25      274 
 
               Missing Values 
 
                       -----Percent Of----- 
Missing                             Missing 
  Value       Count     All Obs         Obs 
      .           2        0.50      100.00 

Looking in the section labeled Extreme Observations, we see some of the class sizes are -21 and -20, so 
it seems as though some of the class sizes somehow became negative, as though a negative sign was 
incorrectly typed in front of them.   Let's do a proc freq for class size to see if this seems plausible.  

proc freq data="c:\sasreg\elemapi"; 
  tables acs_k3; 
run; 
                     avg class size k-3 
 
                                   Cumulative    Cumulative 
acs_k3    Frequency     Percent     Frequency      Percent 
----------------------------------------------------------- 
   -21           3        0.75             3         0.75 
   -20           2        0.50             5         1.26 
   -19           1        0.25             6         1.51 
    14           2        0.50             8         2.01 
    15           1        0.25             9         2.26 
    16          14        3.52            23         5.78 
    17          20        5.03            43        10.80 
    18          64       16.08           107        26.88 
    19         143       35.93           250        62.81 
    20          97       24.37           347        87.19 
    21          40       10.05           387        97.24 
    22           7        1.76           394        98.99 
    23           3        0.75           397        99.75 
    25           1        0.25           398       100.00 
 
Frequency Missing = 2 

Indeed, it seems that some of the class sizes somehow got negative signs put in front of them.  Let's 
look at the school and district number for these observations to see if they come from the same 
district.   Indeed, they all come from district 140.    

proc print data="c:\sasreg\elemapi"; 
  where (acs_k3 < 0); 
  var snum dnum acs_k3; 
run; 
Obs    snum    dnum    acs_k3 
 38     600     140      -20 
 39     596     140      -19 
 40     611     140      -20 
 41     595     140      -21 
 42     592     140      -21 
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 43     602     140      -21 
 85     116     294        . 
306    4534     630        . 

Notice that when we looked at the observations where (acs_k3 < 0) this also included observations 
where acs_k3 is missing (represented as a period).  To be more precise, the above command should 
exclude such observations like this.  

proc print data="c:\sasreg\elemapi"; 
  where (acs_k3 < 0) and (acs_k3 ^= .); 
  var snum dnum acs_k3; 
run; 
Obs    snum    dnum    acs_k3 
 38     600     140      -20 
 39     596     140      -19 
 40     611     140      -20 
 41     595     140      -21 
 42     592     140      -21 
 43     602     140      -21 

Now,  let's look at all of the observations for district 140. 

proc print data="c:\sasreg\elemapi"; 
  where (dnum == 140); 
  var snum dnum acs_k3; 
run; 
Obs    snum    dnum    acs_k3 
 38     600     140      -20 
 39     596     140      -19 
 40     611     140      -20 
 41     595     140      -21 
 42     592     140      -21 
 43     602     140      -21 

All of the observations from district 140 seem to have this problem.  When you find such a problem, 
you want to go back to the original source of the data to verify the values. We have to reveal that we 
fabricated this error for illustration purposes, and that the actual data had no such problem. Let's pretend 
that we checked with district 140 and there was a problem with the data there, a hyphen was 
accidentally put in front of the class sizes making them negative.  We will make a note to fix this!  Let's 
continue checking our data.  

Let's take a look at some graphical methods for inspecting data.  For each variable, it is useful to inspect 
them using a histogram, boxplot, and stem-and-leaf plot.  These graphs can show you information about 
the shape of your variables better than simple numeric statistics can. We already know about the 
problem with acs_k3, but let's see how these graphical methods would have revealed the problem with 
this variable. 

First, we show a histogram for acs_k3. This shows us the observations where the average class size is 
negative.  

proc univariate data="c:\sasreg\elemapi"; 
  var acs_k3 ; 
  histogram / cfill=gray; 
run;   
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Likewise, a boxplot and stem-and-leaf plot would have called these observations to our attention as 
well.   In SAS you can use the plot option with proc univariate to request a boxplot and stem and leaf 
plot. Below we show just the combined boxplot and stem and leaf plot from this output. You can see the 
outlying negative observations way at the bottom of the boxplot.  

proc univariate data="c:\sasreg\elemapi" plot; 
  var acs_k3; 
run; 

                      Histogram                       #  Boxplot 
     25+*                                              1     0 
       .**                                            10     | 
       .****************************                 137  +-----+ 
       .******************************************   207  *--+--* 
       .*******                                       34     | 
       .*                                              3     0 
       . 
       . 
       . 
       . 
       . 
       . 
       . 
       . 
       . 
       . 
       . 
       . 
       . 
       . 
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       . 
       . 
       .*                                              3     * 
    -21+*                                              3     * 
        ----+----+----+----+----+----+----+----+-- 
        * may represent up to 5 counts 

We recommend plotting all of these graphs for the variables you will be analyzing. We will omit, due to 
space considerations, showing these graphs for all of the variables. However, in examining the variables, 
the stem-and-leaf plot for full seemed rather unusual.  Up to now, we have not seen anything 
problematic with this variable, but look at the stem and leaf plot for full below. It shows 104 
observations where the percent with a full credential that is much lower than all other 
observations.  This is over 25% of the schools and seems very unusual.  

proc univariate data="c:\sasreg\elemapi" plot; 
  var full; 
run; 
                   Histogram                   #  Boxplot 
  102.5+***************************            81     | 
       .******************                     54  +-----+ 
   92.5+****************                       46  |     | 
       .************                           36  *-----* 
   82.5+**********                             30  |     | 
       .******                                 17  |     | 
   72.5+***                                     8  |     | 
       .**                                      6  |  +  | 
   62.5+**                                      4  |     | 
       .**                                      5  |     | 
   52.5+*                                       1  |     | 
       .**                                      4  |     | 
   42.5+*                                       3  |     | 
       .*                                       1  |     | 
   32.5+                                           |     | 
       .                                           |     | 
   22.5+                                           |     | 
       .                                           |     | 
   12.5+                                           |     | 
       .                                           |     | 
    2.5+***********************************   104  +-----+ 
        ----+----+----+----+----+----+----+ 
        * may represent up to 3 counts 

Let's look at the frequency distribution of full to see if we can understand this better.  The values go 
from 0.42 to 1.0, then jump to 37 and go up from there.   It appears as though some of the percentages 
are actually entered as proportions, e.g., 0.42 was entered instead of 42 or 0.96 which really should have 
been 96.  

proc freq data="c:\sasreg\elemapi" ; 
  tables full; 
run; 
 
                       pct full credential 
 
                                         Cumulative    Cumulative 
        full    Frequency     Percent     Frequency      Percent 
----------------------------------------------------------------- 
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0.4199999869           1        0.25             1         0.25 
0.4499999881           1        0.25             2         0.50 
0.4600000083           1        0.25             3         0.75 
0.4699999988           1        0.25             4         1.00 
0.4799999893           1        0.25             5         1.25 
         0.5           3        0.75             8         2.00 
0.5099999905           1        0.25             9         2.25 
0.5199999809           1        0.25            10         2.50 
0.5299999714           1        0.25            11         2.75 
0.5400000215           1        0.25            12         3.00 
0.5600000024           2        0.50            14         3.50 
0.5699999928           2        0.50            16         4.00 
0.5799999833           1        0.25            17         4.25 
0.5899999738           3        0.75            20         5.00 
0.6000000238           1        0.25            21         5.25 
0.6100000143           4        1.00            25         6.25 
0.6200000048           2        0.50            27         6.75 
0.6299999952           1        0.25            28         7.00 
0.6399999857           3        0.75            31         7.75 
0.6499999762           3        0.75            34         8.50 
0.6600000262           2        0.50            36         9.00 
0.6700000167           6        1.50            42        10.50 
0.6800000072           2        0.50            44        11.00 
0.6899999976           3        0.75            47        11.75 
0.6999999881           1        0.25            48        12.00 
0.7099999785           1        0.25            49        12.25 
0.7200000286           2        0.50            51        12.75 
0.7300000191           6        1.50            57        14.25 
        0.75           4        1.00            61        15.25 
0.7599999905           2        0.50            63        15.75 
0.7699999809           2        0.50            65        16.25 
0.7900000215           3        0.75            68        17.00 
0.8000000119           5        1.25            73        18.25 
0.8100000024           8        2.00            81        20.25 
0.8199999928           2        0.50            83        20.75 
0.8299999833           2        0.50            85        21.25 
0.8399999738           2        0.50            87        21.75 
0.8500000238           3        0.75            90        22.50 
0.8600000143           2        0.50            92        23.00 
0.8999999762           3        0.75            95        23.75 
0.9200000167           1        0.25            96        24.00 
0.9300000072           1        0.25            97        24.25 
0.9399999976           2        0.50            99        24.75 
0.9499999881           2        0.50           101        25.25 
0.9599999785           1        0.25           102        25.50 
           1           2        0.50           104        26.00 
          37           1        0.25           105        26.25 
          41           1        0.25           106        26.50 
          44           2        0.50           108        27.00 
          45           2        0.50           110        27.50 
          46           1        0.25           111        27.75 
          48           1        0.25           112        28.00 
          53           1        0.25           113        28.25 
          57           1        0.25           114        28.50 
          58           3        0.75           117        29.25 
          59           1        0.25           118        29.50 
          61           1        0.25           119        29.75 
          63           2        0.50           121        30.25 
          64           1        0.25           122        30.50 
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          65           1        0.25           123        30.75 
          68           2        0.50           125        31.25 
          69           3        0.75           128        32.00 
          70           1        0.25           129        32.25 
          71           3        0.75           132        33.00 
          72           1        0.25           133        33.25 
          73           2        0.50           135        33.75 
          74           1        0.25           136        34.00 
          75           4        1.00           140        35.00 
          76           4        1.00           144        36.00 
          77           2        0.50           146        36.50 
          78           4        1.00           150        37.50 
          79           3        0.75           153        38.25 
          80          10        2.50           163        40.75 
          81           4        1.00           167        41.75 
          82           3        0.75           170        42.50 
          83           9        2.25           179        44.75 
          84           4        1.00           183        45.75 
          85           8        2.00           191        47.75 
          86           5        1.25           196        49.00 
          87          12        3.00           208        52.00 
          88           6        1.50           214        53.50 
          89           5        1.25           219        54.75 
          90           9        2.25           228        57.00 
          91           8        2.00           236        59.00 
          92           7        1.75           243        60.75 
          93          12        3.00           255        63.75 
          94          10        2.50           265        66.25 
          95          17        4.25           282        70.50 
          96          17        4.25           299        74.75 
          97          11        2.75           310        77.50 
          98           9        2.25           319        79.75 
         100          81       20.25           400       100.00 

Let's see which district(s) these data came from.   

proc freq data="c:\sasreg\elemapi" ; 
  where (full <= 1); 
  tables dnum; 
run; 
                     district number 
 
                                 Cumulative    Cumulative 
dnum    Frequency     Percent     Frequency      Percent 
--------------------------------------------------------- 
 401         104      100.00           104       100.00 

We note that all 104 observations in which full was less than or equal to one came from district 
401.  Let's see if this accounts for all of the observations that come from district 401.  

proc freq data="c:\sasreg\elemapi" ; 
  where (dnum = 401); 
  tables dnum; 
run; 
                     district number 
 
                                 Cumulative    Cumulative 
dnum    Frequency     Percent     Frequency      Percent 
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--------------------------------------------------------- 
 401         104      100.00           104       100.00 

All of the observations from this district seem to be recorded as proportions instead of 
percentages.  Again, let us state that this is a pretend problem that we inserted into the data for 
illustration purposes.  If this were a real life problem, we would check with the source of the data and 
verify the problem.  We will make a note to fix this problem in the data as well. 

Another useful graphical technique for screening your data is a scatterplot matrix. While this is 
probably more relevant as a diagnostic tool searching for non-linearities and outliers in your data, it can 
also be a useful data screening tool, possibly revealing information in the joint distributions of your 
variables that would not be apparent from examining univariate distributions.  Let's look at the 
scatterplot matrix for the variables in our regression model.  This reveals the problems we have already 
identified, i.e., the negative class sizes and the percent full credential being entered as proportions.   

proc insight data="c:\sasreg\elemapi"; 
  scatter api00 acs_k3 meals full *  api00 acs_k3 meals full; 
run; 
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We have identified three problems in our data.  There are numerous missing values for meals, there 
were negatives accidentally inserted before some of the class sizes (acs_k3) and over a quarter of the 
values for full were proportions instead of percentages.  The corrected version of the data is called 
elemapi2.  Let's use that data file and repeat our analysis and see if the results are the same as our 
original analysis. First, let's repeat our original regression analysis below.  

proc reg data="c:\sasreg\elemapi" 
  model api00 = acs_k3 meals full; 
run; 
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Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     3        2634884         878295     213.41    <.0001 
Error                   309        1271713     4115.57673 
Corrected Total         312        3906597 
 
Root MSE             64.15276    R-Square     0.6745 
Dependent Mean      596.40575    Adj R-Sq     0.6713 
Coeff Var            10.75656 
 
                                    Parameter Estimates 
 
                                            Parameter       Standard 
Variable     Label                  DF       Estimate          Error    t Value    
Pr > |t| 
 
Intercept    Intercept               1      906.73916       28.26505      32.08      
<.0001 
acs_k3       avg class size k-3      1       -2.68151        1.39399      -1.92      
0.0553 
meals        pct free meals          1       -3.70242        0.15403     -24.04      
<.0001 
full         pct full credential     1        0.10861        0.09072       1.20      
0.2321 

Now, let's use the corrected data file and repeat the regression analysis.  We see quite a difference in the 
results!  In the original analysis (above), acs_k3 was nearly significant, but in the corrected analysis 
(below) the results show this variable to be not significant, perhaps due to the cases where class size 
was given a negative value.  Likewise, the percentage of teachers with full credentials was not 
significant in the original analysis, but is significant in the corrected analysis, perhaps due to the cases 
where the value was given as the proportion with full credentials instead of the percent.   Also, note that 
the corrected analysis is based on 398 observations instead of 313 observations, due to getting the 
complete data for the meals variable which had lots of missing values.  

proc reg data="c:\sasreg\elemapi2"; 
  model api00 = acs_k3 meals full ; 
run; 
 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > 
F 
Model                     3        6604966        2201655     615.55    
<.0001 
Error                   394        1409241     3576.75370 
Corrected Total         397        8014207 
 
Root MSE             59.80597    R-Square     0.8242 
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Dependent Mean      648.46985    Adj R-Sq     0.8228 
Coeff Var             9.22263 
 
                              Parameter Estimates 
 
                                      Parameter     Standard 
Variable   Label                DF     Estimate        Error  t Value  Pr > 
|t| 
Intercept  Intercept             1    771.65811     48.86071    15.79    
<.0001 
acs_k3     avg class size k-3    1     -0.71706      2.23882    -0.32    
0.7489 
meals      pct free meals        1     -3.68626      0.11178   -32.98    
<.0001 
full       pct full credential   1      1.32714      0.23887     5.56    
<.0001 

From this point forward, we will use the corrected, elemapi2, data file.    

So far we have covered some topics in data checking/verification, but we have not really discussed 
regression analysis itself.  Let's now talk more about performing regression analysis in SAS. 
 
1.3 Simple Linear Regression  

Let's begin by showing some examples of simple linear regression using SAS. In this type of regression, 
we have only one predictor variable. This variable may be continuous, meaning that it may assume all 
values within a range, for example, age or height, or it may be dichotomous, meaning that the variable 
may assume only one of two values, for example, 0 or 1. The use of categorical variables with more 
than two levels will be covered in Chapter 3. There is only one response or dependent variable, and it is 
continuous.  

In SAS, the dependent variable is listed immediately after the model statement followed by an equal 
sign and then one or more predictor variables. Let's examine the relationship between the size of school 
and academic performance to see if the size of the school is related to academic performance.  For this 
example, api00 is the dependent variable and enroll is the predictor.  

proc reg data="c:\sasreg\elemapi2"; 
  model api00 = enroll; 
run; 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > 
F 
Model                     1         817326         817326      44.83    
<.0001 
Error                   398        7256346          18232 
Corrected Total         399        8073672 
 
Root MSE            135.02601    R-Square     0.1012 
Dependent Mean      647.62250    Adj R-Sq     0.0990 
Coeff Var            20.84949 
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                             Parameter Estimates 
 
                                     Parameter     Standard 
Variable   Label               DF     Estimate        Error  t Value  Pr > 
|t| 
Intercept  Intercept            1    744.25141     15.93308    46.71    
<.0001 
enroll     number of students   1     -0.19987      0.02985    -6.70    
<.0001 

Let's review this output a bit more carefully. First, we see that the F-test is statistically significant, 
which means that the model is statistically significant. The R-squared is .1012 means that 
approximately 10% of the variance of api00 is accounted for by the model, in this case, enroll. The t-
test for enroll equals -6.70 , and is statistically significant, meaning that the regression coefficient for 
enroll is significantly different from zero. Note that (-6.70)2 = 44.89, which is the same as the F-statistic 
(with some rounding error). The coefficient for enroll is -.19987, or approximately -0.2, meaning that 
for a one unit increase in enroll, we would expect a 0.2-unit decrease in api00. In other words, a school 
with 1100 students would be expected to have an api score 20 units lower than a school with 1000 
students.  The constant is 744.2514, and this is the predicted value when enroll equals zero.  In most 
cases, the constant is not very interesting.  We have prepared an annotated output which shows the 
output from this regression along with an explanation of each of the items in it. 

In addition to getting the regression table, it can be useful to see a scatterplot of the predicted and 
outcome variables with the regression line plotted.  SAS makes this very easy for you by using the plot 
statement as part of proc reg.  For example, below we show how to make a scatterplot of the outcome 
variable, api00 and the predictor, enroll. Note that the graph also includes the predicted values in the 
form of the regression line.  

proc reg data="c:\sasreg\elemapi2"; 
  model api00 = enroll ; 
  plot api00 * enroll ; 
run;   

http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter1/annotated1.htm
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As you see, this one command produces a scatterplot and regression line, and it also includes the 
regression model with the correlation of the two variables in the title.  We could include a 95% 
prediction interval using the pred option on the plot statement as illustrated below. 

proc reg data="c:\sasreg\elemapi2"  ; 
  model api00 = enroll ; 
  plot api00 * enroll / pred; 
run;   
quit; 
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Another kind of graph that you might want to make is a residual versus fitted plot.  As shown below, we 
can use the plot statement to make this graph.  The keywords residual. and predicted. in this context 
refer to the residual value and predicted value from the regression analysis and can be abbreviated as r. 
and p. .  

proc reg data="c:\sasreg\elemapi2"; 
  model api00 = enroll ; 
  plot residual. * predicted. ; 
run; 
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The table below shows a number of other keywords that can be used with the plot statement and the 
statistics they display. 

Keyword Statistic 
COOKD. Cook's D influence statistics 
COVRATIO. standard influence of observation on covariance of betas 
DFFITS. standard influence of observation on predicted value 
H. leverage 
LCL. 

lower bound of % confidence interval for individual prediction 
LCLM. 

lower bound of % confidence interval for the mean of the 
dependent variable 

PREDICTED. 
| PRED. | P. 

predicted values 

PRESS. residuals from refitting the model with current observation deleted 
RESIDUAL. | R. residuals 
RSTUDENT. studentized residuals with the current observation deleted 
STDI. standard error of the individual predicted value 
STDP. standard error of the mean predicted value 
STDR. standard error of the residual 
STUDENT. residuals divided by their standard errors 
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UCL. 
upper bound of % confidence interval for individual prediction 

UCLM. 
upper bound of % confidence interval for the mean of the 
dependent variables 

1.4 Multiple Regression  

Now, let's look at an example of multiple regression, in which we have one outcome (dependent) 
variable and multiple predictors. For this multiple regression example, we will regress the dependent 
variable, api00, on all of the predictor variables in the data set.  

proc reg data="c:\sasreg\elemapi2"  ; 
  model api00 = ell meals yr_rnd mobility acs_k3 acs_46 full emer enroll ; 
run;   
 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > 
F 
Model                     9        6740702         748967     232.41    
<.0001 
Error                   385        1240708     3222.61761 
Corrected Total         394        7981410 
 
 
Root MSE             56.76810    R-Square     0.8446 
Dependent Mean      648.65063    Adj R-Sq     0.8409 
Coeff Var             8.75172 
 
                                 Parameter Estimates 
 
                                            Parameter     Standard 
Variable   Label                      DF     Estimate        Error  t Value  
Pr > |t| 
Intercept  Intercept                   1    758.94179     62.28601    12.18    
<.0001 
ell        english language learners   1     -0.86007      0.21063    -4.08    
<.0001 
meals      pct free meals              1     -2.94822      0.17035   -17.31    
<.0001 
yr_rnd     year round school           1    -19.88875      9.25844    -2.15    
0.0323 
mobility   pct 1st year in school      1     -1.30135      0.43621    -2.98    
0.0030 
acs_k3     avg class size k-3          1      1.31870      2.25268     0.59    
0.5586 
acs_46     avg class size 4-6          1      2.03246      0.79832     2.55    
0.0113 
full       pct full credential         1      0.60972      0.47582     1.28    
0.2008 
emer       pct emer credential         1     -0.70662      0.60541    -1.17    
0.2439 
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enroll     number of students          1     -0.01216      0.01679    -0.72    
0.4693 

Let's examine the output from this regression analysis.  As with the simple regression, we look to the p-
value of the F-test to see if the overall model is significant. With a p-value of zero to four decimal 
places, the model is statistically significant. The R-squared is 0.8446, meaning that approximately 84% 
of the variability of api00 is accounted for by the variables in the model. In this case, the adjusted R-
squared indicates that about 84% of the variability of api00 is accounted for by the model, even after 
taking into account the number of predictor variables in the model. The coefficients for each of the 
variables indicates the amount of change one could expect in api00 given a one-unit change in the value 
of that variable, given that all other variables in the model are held constant. For example, consider the 
variable ell.   We would expect a decrease of 0.86 in the api00 score for every one unit increase in ell, 
assuming that all other variables in the model are held constant.  The interpretation of much of the 
output from the multiple regression is the same as it was for the simple regression.  We have prepared 
an annotated output that more thoroughly explains the output of this multiple regression analysis.  

You may be wondering what a 0.86 change in ell really means, and how you might compare the 
strength of that coefficient to the coefficient for another variable, say meals. To address this problem, 
we can use the stb option on the model statement to request that in addition to the standard output that 
SAS also display a table of the standardized values, sometimes called beta coefficients.  Below we show 
just the portion of the output that includes these standardized values.  The beta coefficients are used by 
some researchers to compare the relative strength of the various predictors within the model. Because 
the beta coefficients are all measured in standard deviations, instead of the units of the variables, they 
can be compared to one another. In other words, the beta coefficients are the coefficients that you would 
obtain if the outcome and predictor variables were all transformed to standard scores, also called z-
scores, before running the regression.  

proc reg data="c:\sasreg\elemapi2"  ; 
  model api00 = ell meals yr_rnd mobility acs_k3 acs_46 full emer enroll / 
stb; 
run;   
                 Parameter Estimates 
 
                                          Standardized 
Variable   Label                      DF      Estimate 
 
Intercept  Intercept                   1             0 
ell        english language learners   1      -0.14958 
meals      pct free meals              1      -0.66070 
yr_rnd     year round school           1      -0.05914 
mobility   pct 1st year in school      1      -0.06864 
acs_k3     avg class size k-3          1       0.01273 
acs_46     avg class size 4-6          1       0.05498 
full       pct full credential         1       0.06380 
emer       pct emer credential         1      -0.05801 
enroll     number of students          1      -0.01936 

Because these standardized coefficients are all in the same standardized units you can compare these 
coefficients to assess the relative strength of each of the predictors.  In this example, meals has the 
largest Beta coefficient, -0.66, and acs_k3 has the smallest Beta, 0.013.  Thus, a one standard deviation 
increase in meals leads to a 0.66 standard deviation decrease in predicted api00, with the other 

http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter1/annotated2.htm
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variables held constant. And, a one standard deviation increase in acs_k3, in turn, leads to a 0.013 
standard deviation increase api00 with the other variables in the model held constant. 

In interpreting this output, remember that the difference between the regular coefficients (from the prior 
output) and the standardized coefficients above is the units of measurement.  For example, to describe 
the raw coefficient for ell you would say  "A one-unit decrease in ell would yield a .86-unit increase in 
the predicted api00." However, for the standardized coefficient (Beta) you would say, "A one standard 
deviation decrease in ell would yield a .15 standard deviation increase in the predicted api00." 

So far, we have concerned ourselves with testing a single variable at a time, for example looking at the 
coefficient for ell and determining if that is significant. We can also test sets of variables, using the test 
command, to see if the set of variables are significant.  First, let's start by testing a single variable, ell, 
using the test statement.  Note that the part before the test command, test1:, is merely a label to identify 
the output of the test command.  This label could be any short label to identify the output.  

proc reg data="c:\sasreg\elemapi2"  ; 
  model api00 = ell meals yr_rnd mobility acs_k3 acs_46 full emer enroll ; 
  test1: test ell =0; 
run;   

     Test TEST1 Results for Dependent Variable api00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
 
Numerator           1          53732      16.67    <.0001 
Denominator       385     3222.61761 

If you compare this output with the output from the last regression you can see that the result of the F-
test, 16.67, is the same as the square of the result of the t-test in the regression (-4.083^2 = 16.67). Note 
that you could get the same results if you typed the following since SAS defaults to comparing the 
term(s) listed to 0.  

proc reg data="c:\sasreg\elemapi2"  ; 
  model api00 = ell meals yr_rnd mobility acs_k3 acs_46 full emer enroll / 
stb; 
  test2: test ell; 
run;   
 
     Test TEST2 Results for Dependent Variable api00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
 
Numerator           1          53732      16.67    <.0001 
Denominator       385     3222.61761 

Perhaps a more interesting test would be to see if the contribution of class size is significant.  Since the 
information regarding class size is contained in two variables, acs_k3 and acs_46, so we include both of 
these separated by a comma on the test command.  Below we show just the output from the test 
command.   

proc reg data="c:\sasreg\elemapi2"  ; 
  model api00 = ell meals yr_rnd mobility acs_k3 acs_46 full emer enroll ; 
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  test_class_size: test acs_k3, acs_46; 
run;   
Test TEST_CLASS_SIZE Results for Dependent Variable api00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
 
Numerator           2          12742       3.95    0.0200 
Denominator       385     3222.61761 

The significant F-test, 3.95, means that the collective contribution of these two variables is 
significant.  One way to think of this, is that there is a significant difference between a model with 
acs_k3 and acs_46 as compared to a model without them, i.e., there is a significant difference between 
the "full" model and the "reduced" models. 

Finally, as part of doing a multiple regression analysis you might be interested in seeing the correlations 
among the variables in the regression model.  You can do this with proc corr as shown below.  

proc corr data="c:\sasreg\elemapi2"  ; 
  var api00 ell meals yr_rnd mobility acs_k3 acs_46 full emer enroll ; 
run; 
                            Pearson Correlation Coefficients 
                               Prob > |r| under H0: Rho=0 
                                  Number of Observations 
 
                                 api00          ell        meals       yr_rnd     
mobility 
 
api00                          1.00000     -0.76763     -0.90070     -0.47544     
-0.20641 
api 2000                                     <.0001       <.0001       <.0001       
<.0001 
                                   400          400          400          400          
399 
 
ell                           -0.76763      1.00000      0.77238      0.49793     
-0.02046 
english language learners       <.0001                    <.0001       <.0001       
0.6837 
                                   400          400          400          400          
399 
 
meals                         -0.90070      0.77238      1.00000      0.41845      
0.21665 
pct free meals                  <.0001       <.0001                    <.0001       
<.0001 
                                   400          400          400          400          
399 
 
yr_rnd                        -0.47544      0.49793      0.41845      1.00000      
0.03479 
year round school               <.0001       <.0001       <.0001                    
0.4883 
                                   400          400          400          400          
399 
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mobility                      -0.20641     -0.02046      0.21665      0.03479      
1.00000 
pct 1st year in school          <.0001       0.6837       <.0001       0.4883 
                                   399          399          399          399          
399 
 
acs_k3                         0.17100     -0.05565     -0.18797      0.02270      
0.04014 
avg class size k-3              0.0006       0.2680       0.0002       0.6517       
0.4245 
                                   398          398          398          398          
398 
 
acs_46                         0.23291     -0.17330     -0.21309     -0.04207      
0.12769 
avg class size 4-6              <.0001       0.0005       <.0001       0.4032       
0.0110 
                                   397          397          397          397          
396 
 
full                           0.57441     -0.48476     -0.52756     -0.39771      
0.02521 
pct full credential             <.0001       <.0001       <.0001       <.0001       
0.6156 
                                   400          400          400          400          
399 
 
emer                          -0.58273      0.47218      0.53304      0.43472      
0.05961 
pct emer credential             <.0001       <.0001       <.0001       <.0001       
0.2348 
                                   400         400          400          400          
399 
 
enroll                        -0.31817      0.40302      0.24103      0.59182      
0.10502 
number of students              <.0001       <.0001       <.0001       <.0001       
0.0360 
                                   400          400          400          400          
399 
 
                            Pearson Correlation Coefficients 
                               Prob > |r| under H0: Rho=0 
                                  Number of Observations 
 
                                acs_k3       acs_46         full         emer       
enroll 
 
api00                          0.17100      0.23291      0.57441     -0.58273     
-0.31817 
api 2000                        0.0006       <.0001       <.0001       <.0001       
<.0001 
                                   398          397          400          400          
400 
 
ell                           -0.05565     -0.17330     -0.48476      0.47218      
0.40302 
english language learners       0.2680       0.0005       <.0001       <.0001       
<.0001 
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                                   398          397          400          400          
400 
 
meals                         -0.18797     -0.21309     -0.52756      0.53304      
0.24103 
pct free meals                  0.0002       <.0001       <.0001       <.0001       
<.0001 
                                   398          397          400          400          
400 
 
yr_rnd                         0.02270     -0.04207     -0.39771      0.43472      
0.59182 
year round school               0.6517       0.4032       <.0001       <.0001       
<.0001 
                                   398          397          400          400          
400 
 
mobility                       0.04014      0.12769      0.02521      0.05961      
0.10502 
pct 1st year in school          0.4245       0.0110       0.6156       0.2348       
0.0360 
                                   398          396          399          399          
399 
 
acs_k3                         1.00000      0.27078      0.16057     -0.11033      
0.10890 
avg class size k-3                           <.0001       0.0013       0.0277       
0.0298 
                                   398          395          398          398          
398 
 
acs_46                         0.27078      1.00000      0.11773     -0.12446      
0.02829 
avg class size 4-6              <.0001                    0.0190       0.0131       
0.5741 
                                   395          397          397          397          
397 
 
full                           0.16057      0.11773      1.00000     -0.90568     
-0.33769 
pct full credential             0.0013       0.0190                    <.0001       
<.0001 
                                   398          397          400          400          
400 
 
emer                          -0.11033     -0.12446     -0.90568      1.00000      
0.34309 
pct emer credential             0.0277       0.0131       <.0001                    
<.0001 
                                   398          397          400          400          
400 
 
enroll                         0.10890      0.02829     -0.33769      0.34309      
1.00000 
number of students              0.0298       0.5741       <.0001       <.0001 
                                   398          397          400          400          
400 
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We can see that the strongest correlation with api00 is meals with a correlation in excess of -0.9.  The 
variables ell and emer are also strongly correlated with api00. All three of these correlations are 
negative, meaning that as the value of one variable goes down, the value of the other variable tends to 
go up. Knowing that these variables are strongly associated with api00, we might predict that they 
would be statistically significant predictor variables in the regression model. Note that the number of 
cases used for each correlation is determined on a "pairwise" basis, for example there are 398 valid 
pairs of data for enroll and acs_k3, so that correlation of .1089 is based on 398 observations. 

1.5 Transforming Variables  

Earlier we focused on screening your data for potential errors.  In the next chapter, we will focus on 
regression diagnostics to verify whether your data meet the assumptions of linear regression.  Here, we 
will focus on the issue of normality.  Some researchers believe that linear regression requires that the 
outcome (dependent) and predictor variables be normally distributed. We need to clarify this issue. In 
actuality, it is the residuals that need to be normally distributed.  In fact, the residuals need to be normal 
only for the t-tests to be valid. The estimation of the regression coefficients do not require normally 
distributed residuals. As we are interested in having valid t-tests, we will investigate issues concerning 
normality.  

A common cause of non-normally distributed residuals is non-normally distributed outcome and/or 
predictor variables.  So, let us explore the distribution of our variables and how we might transform 
them to a more normal shape.  Let's start by making a histogram of the variable enroll, which we 
looked at earlier in the simple regression.  

proc univariate data="c:\sasreg\elemapi2"; 
  var enroll ; 
  histogram / cfill=gray; 
run; 
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We can use the normal option to superimpose a normal curve on this graph and the midpoints option 
to indicate that we want bins with midpoints from 100 to 1500 going in increments of 100.  

proc univariate data="c:\sasreg\elemapi2"; 
  var enroll ; 
  histogram / cfill=gray normal midpoints=100 to 1500 by 100; 
run; 

 

Because histograms are sensitive to the number of bins or columns that are used in the display. An 
alternative to histograms is the kernel density plot, which approximates the probability density of the 
variable. Kernel density plots have the advantage of being smooth and of being independent of the 
choice of origin, unlike histograms. You can add a kernal density plot to the above plot with he kernel 
option as illustrated below.  

proc univariate data="c:\sasreg\elemapi2"; 
  var enroll ; 
  histogram / cfill=gray normal midpoints=100 to 1500 by 100 kernel; 
run; 
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Not surprisingly, the kdensity plot also indicates that the variable enroll does not look normal.    

There are two other types of graphs that are often used to examine the distribution of variables; 
quantile-quantile plots and normal probability plots.  

A quantile-quantile plot graphs the quantiles of a variable against the quantiles of a normal (Gaussian) 
distribution. Such plots are  sensitive to non-normality near the tails, and indeed we see considerable 
deviations from normal, the diagonal line, in the tails. This plot is typical of variables that are strongly 
skewed to the right.  

proc univariate data="c:\sasreg\elemapi2"; 
  var enroll ; 
  qqplot / normal; 
run;   
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The normal probability plot is also useful for examining the distribution of variables and is sensitive to 
deviations from normality nearer to the center of the distribution. We will use SAS proc capability to 
get the normal probability plot. Again, we see indications non-normality in enroll.  

proc capability data="c:\sasreg\elemapi2" noprint; 
  ppplot enroll ; 
run; 
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Given the skewness to the right in enroll, let us try a log transformation to see if that makes it more 
normal.  Below we create a variable lenroll that is the natural log of enroll and then we repeat some of 
the above commands to see if lenroll is more normally distributed.  

data elemapi3; 
  set "c:\sasreg\elemapi2"; 
  lenroll = log(enroll); 
run; 

Now let's try showing a histogram for lenroll with a normal overlay and a kernel density estimate. 

proc univariate data=elemapi3 noprint; 
  var lenroll ; 
  histogram / cfill=grayd0  normal kernel (color = red); 
run; 

 

We can see that lenroll looks quite normal.  We could then create a quantile-quantile plot and a normal 
probability plot to further assess whether lenroll seems normal, as well as seeing how lenroll impacts 
the residuals, which is really the important consideration. 

1.6 Summary  

In this lecture we have discussed the basics of how to perform simple and multiple regressions, the 
basics of interpreting output, as well as some related commands. We examined some tools and 
techniques for screening for bad data and the consequences such data can have on your results.  Finally, 
we touched on the assumptions of linear regression and illustrated how you can check the normality of 
your variables and how you can transform your variables to achieve normality.  The next chapter will 
pick up where this chapter has left off, going into a more thorough discussion of the assumptions of 
linear regression and how you can use SAS to assess these assumptions for your data.   In particular, the 
next lecture will address the following issues.  

• Checking for points that exert undue influence on the coefficients  
• Checking for constant error variance (homoscedasticity)  
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• Checking for linear relationships  
• Checking model specification  
• Checking for multicollinearity  
• Checking normality of residuals  

 

Regression with SAS 
Chapter 2 - Regression Diagnostics 

Chapter Outline 
    2.0 Regression Diagnostics 
    2.1 Unusual and Influential data 
    2.2 Tests on Normality of Residuals 
    2.3 Tests on Nonconstant Error of Variance 
    2.4 Tests on Multicollinearity 
    2.5 Tests on Nonlinearity 
    2.6 Model Specification 
    2.7 Issues of Independence 
    2.8 Summary 
    2.9 For more information  

2.0 Regression Diagnostics  

In our last chapter, we learned how to do ordinary linear regression with SAS, concluding with methods 
for examining the distribution of variables to check for non-normally distributed variables as a first look 
at checking assumptions in regression.  Without verifying that your data have met the regression 
assumptions, your results may be misleading.  This chapter will explore how you can use SAS to test 
whether your data meet the assumptions of linear regression.  In particular, we will consider the 
following assumptions.  

• Linearity - the relationships between the predictors and the outcome variable should be linear  
• Normality - the errors should be normally distributed - technically normality is necessary only 

for the t-tests to be valid, estimation of the coefficients only requires that the errors be 
identically and independently distributed  

• Homogeneity of variance (homoscedasticity) - the error variance should be constant  
• Independence - the errors associated with one observation are not correlated with the errors of 

any other observation  
• Errors in variables - predictor variables are measured without error (we will cover this in 

Chapter 4)  
• Model specification - the model should be properly specified (including all relevant variables, 

and excluding irrelevant variables)  

Additionally, there are issues that can arise during the analysis that, while strictly speaking, are not 
assumptions of regression, are none the less, of great concern to regression analysts.  

• Influence - individual observations that exert undue influence on the coefficients  

http://www.ats.ucla.edu/stat/sas/
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• Collinearity - predictors that are highly collinear, i.e. linearly related, can cause problems in 
estimating the regression coefficients.  

Many graphical methods and numerical tests have been developed over the years for regression 
diagnostics.  In this chapter, we will explore these methods and show how to verify regression 
assumptions and detect potential problems using SAS. 

2.1 Unusual and Influential data  

A single observation that is substantially different from all other observations can make a large 
difference in the results of your regression analysis.  If a single observation (or small group of 
observations) substantially changes your results, you would want to know about this and investigate 
further.  There are three ways that an observation can be unusual. 

Outliers: In linear regression, an outlier is an observation with large residual. In other words, it is an 
observation whose dependent-variable value is unusual given its values on the predictor variables. An 
outlier may indicate a sample peculiarity or may indicate a data entry error or other problem.  

Leverage: An observation with an extreme value on a predictor variable is called a point with high 
leverage. Leverage is a measure of how far an independent variable deviates from its mean. These 
leverage points can have an effect on the estimate of regression coefficients.  

Influence: An observation is said to be influential if removing the observation substantially changes the 
estimate of coefficients. Influence can be thought of as the product of leverage and outlierness.  

How can we identify these three types of observations? Let's look at an example dataset called crime. 
This dataset appears in Statistical Methods for Social Sciences, Third Edition by Alan Agresti and 
Barbara Finlay (Prentice Hall, 1997). The variables are state id (sid), state name (state), violent crimes 
per 100,000 people (crime), murders per 1,000,000 (murder),  the percent of the population living in 
metropolitan areas (pctmetro), the percent of the population that is white (pctwhite), percent of 
population with a high school education or above (pcths), percent of population living under poverty 
line (poverty), and percent of population that are single parents (single).  Below we use proc contents 
and proc means to learn more about this data file.  

proc contents data="c:\sasreg\crime"; 
run; 
The CONTENTS Procedure 
 
Data Set Name: c:\sasreg\crime                         Observations:         51 
Member Type:   DATA                                     Variables:            9 
Engine:        V8                                       Indexes:              0 
Created:       4:58 Saturday, January 9, 1960           Observation Length:   63 
Last Modified: 4:58 Saturday, January 9, 1960           Deleted Observations: 0 
Protection:                                             Compressed:           NO 
Data Set Type:                                          Sorted:               NO 
Label: 
 
< some output omitted to save space> 
 
  -----Alphabetic List of Variables and Attributes----- 
 
#    Variable    Type    Len    Pos    Label 
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--------------------------------------------------------- 
3    crime       Num       4      8    violent crime rate 
4    murder      Num       8     12    murder rate 
7    pcths       Num       8     36    pct hs graduates 
5    pctmetro    Num       8     20    pct metropolitan 
6    pctwhite    Num       8     28    pct white 
8    poverty     Num       8     44    pct poverty 
1    sid         Num       8      0 
9    single      Num       8     52    pct single parent 
2    state       Char      3     60 
proc means data="c:\sasreg\crime"; 
  var crime murder pctmetro pctwhite pcths poverty single; 
run; 
The MEANS Procedure 
 
Variable   Label                 N           Mean        Std Dev        Minimum 
------------------------------------------------------------------------------- 
crime      violent crime rate   51    612.8431373    441.1003229     82.0000000 
murder     murder rate          51      8.7274510     10.7175758      1.6000000 
pctmetro   pct metropolitan     51     67.3901959     21.9571331     24.0000000 
pctwhite   pct white            51     84.1156860     13.2583917     31.7999992 
pcths      pct hs graduates     51     76.2235293      5.5920866     64.3000031 
poverty    pct poverty          51     14.2588235      4.5842416      8.0000000 
single     pct single parent    51     11.3254902      2.1214942      8.3999996 
------------------------------------------------------------------------------- 
 
Variable   Label                     Maximum 
-------------------------------------------- 
crime      violent crime rate        2922.00 
murder     murder rate            78.5000000 
pctmetro   pct metropolitan      100.0000000 
pctwhite   pct white              98.5000000 
pcths      pct hs graduates       86.5999985 
poverty    pct poverty            26.3999996 
single     pct single parent      22.1000004 
-------------------------------------------- 

Let's say that we want to predict crime by pctmetro, poverty, and single. That is to say, we want to 
build a linear regression model between the response variable crime and the independent variables 
pctmetro, poverty and single. We will first look at the scatter plots of crime against each of the 
predictor variables before the regression analysis so we will have some ideas about potential problems. 
We can create a scatterplot matrix of these variables as shown below.  

proc insight data="c:\sasreg\crime"; 
  scatter crime pctmetro poverty single* 
          crime pctmetro poverty single; 
run; 
quit; 
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The graphs of crime with other variables show some potential problems.  In every plot, we see a data 
point that is far away from the rest of the data points. Let's make individual graphs of crime with 
pctmetro and poverty and single so we can get a better view of these scatterplots.  We will add the 
pointlabel = ("#state") option in the symbol statement to plot the state name instead of a point.  

goptions reset=all; 
axis1 label=(r=0 a=90); 
symbol1 pointlabel = ("#state") font=simplex value=none; 
proc gplot data="c:\sasreg\crime"; 
  plot crime*pctmetro=1 / vaxis=axis1; 
run; 
quit; 
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proc gplot data="c:\sasreg\crime"; 
  plot crime*poverty=1 / vaxis=axis1; 
run; 
quit; 
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proc gplot data="c:\sasreg\crime"; 
  plot crime*single=1 / vaxis=axis1; 
run; 
quit; 

   



 166

   

All the scatter plots suggest that the observation for state = dc is a point that requires extra attention 
since it stands out away from all of the other points. We will keep it in mind when we do our regression 
analysis.  

Now let's try the regression command predicting crime from pctmetro, poverty and single.  We will 
go step-by-step to identify all the potentially unusual or influential points afterwards. We will output 
several statistics that we will need for the next few analyses to a dataset called crime1res, and we will 
explain each statistic in turn.  These statistics include the studentized residual (called r), leverage 
(called lev), Cook's D (called cd) and DFFITS (called dffit).  We are requesting all of these statistics 
now so that they can be placed in a single dataset that we will use for the next several 
examples.  Otherwise, we could have to rerun the proc reg each time we wanted a new statistic and 
save that statistic to another output data file.  

proc reg data="c:\sasreg\crime"; 
  model crime=pctmetro poverty single; 
  output out=crime1res(keep=sid state crime pctmetro poverty single  
                       r lev cd dffit) 
                       rstudent=r h=lev cookd=cd dffits=dffit; 
run; 
quit; 

The REG Procedure 
Model: MODEL1 
Dependent Variable: crime violent crime rate 
 
                             Analysis of Variance 
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                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     3        8170480        2723493      82.16    <.0001 
Error                    47        1557995          33149 
Corrected Total          50        9728475 
 
 
Root MSE            182.06817    R-Square     0.8399 
Dependent Mean      612.84314    Adj R-Sq     0.8296 
Coeff Var            29.70877 
 
                             Parameter Estimates 
 
                                     Parameter     Standard 
Variable   Label               DF     Estimate        Error  t Value  Pr > |t| 
 
Intercept  Intercept            1  -1666.43589    147.85195   -11.27    <.0001 
pctmetro   pct metropolitan     1      7.82893      1.25470     6.24    <.0001 
poverty    pct poverty          1     17.68024      6.94093     2.55    0.0142 
single     pct single parent    1    132.40805     15.50322     8.54    <.0001 

Let's examine the studentized residuals as a first means for identifying outliers. We requested the 
studentized residuals in the above regression in the output statement and named them r. We can choose 
any name we like as long as it is a legal SAS variable name. Studentized residuals are a type of 
standardized residual that can be used to identify outliers. Let's examine the residuals with a stem and 
leaf plot. We see three residuals that stick out, -3.57, 2.62 and 3.77.   

proc univariate data=crime1res plots plotsize=30; 
  var r; 
run; 
The UNIVARIATE Procedure 
Variable:  r  (Studentized Residual without Current Obs) 
 
                            Moments 
 
N                          51    Sum Weights                 51 
Mean                0.0184024    Sum Observations    0.93852247 
Std Deviation       1.1331258    Variance            1.28397408 
Skewness            0.2243412    Kurtosis            3.05611851 
Uncorrected SS      64.215975    Corrected SS         64.198704 
Coeff Variation    6157.48877    Std Error Mean      0.15866935 
 
              Basic Statistical Measures 
 
    Location                    Variability 
 
Mean     0.018402     Std Deviation            1.13313 
Median   0.052616     Variance                 1.28397 
Mode      .           Range                    7.33664 
                      Interquartile Range      1.19867 
 
           Tests for Location: Mu0=0 
 
Test           -Statistic-    -----p Value------ 
 
Student's t    t   0.11598    Pr > |t|    0.9081 
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Sign           M       0.5    Pr >= |M|   1.0000 
Signed Rank    S        -1    Pr >= |S|   0.9926 
 
Quantiles (Definition 5) 
 
Quantile        Estimate 
 
100% Max       3.7658467 
99%            3.7658467 
95%            1.5896441 
90%            1.0767182 
75% Q3         0.6374511 
50% Median     0.0526162 
25% Q1        -0.5612179 
10%           -1.1293398 
5%            -1.6855980 
1%            -3.5707892 
0% Min        -3.5707892 
 
           Extreme Observations 
 
------Lowest-----        -----Highest----- 
 
   Value      Obs           Value      Obs 
 
-3.57079       25         1.15170       14 
-1.83858       18         1.29348       13 
-1.68560       39         1.58964       12 
-1.30392       47         2.61952        9 
-1.14833       35         3.76585       51 
 
   Stem Leaf                     #  Boxplot 
      3 8                        1     0 
      3 
      2 6                        1     0 
      2 
      1 6                        1     | 
      1 000123                   6     | 
      0 5566788                  7  +-----+ 
      0 1111333344              10  *--+--* 
     -0 4433210                  7  |     | 
     -0 9976655555              10  +-----+ 
     -1 31100                    5     | 
     -1 87                       2     | 
     -2 
     -2 
     -3 
     -3 6                        1     0 
        ----+----+----+----+ 
 
                       Normal Probability Plot 
    3.75+                                                * 
        | 
        |                                            *  ++++ 
    2.25+                                           ++++ 
        |                                       ++*+ 
        |                                  +**** * 
    0.75+                              +**** 
        |                         ******* 
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        |                    ****** 
   -0.75+               *****+ 
        |          * ****+ 
        |      * +*++ 
   -2.25+   +++++ 
        |+++ 
        | 
   -3.75+  * 
         +----+----+----+----+----+----+----+----+----+----+ 
             -2        -1         0        +1        +2 

The stem and leaf display helps us see some potential outliers, but we cannot see which state (which 
observations) are potential outliers.  Let's sort the data on the residuals and show the 10 largest and 10 
smallest residuals along with the state id and state name.    

proc sort data=crime1res; 
  by r; 
run; 
 
proc print data=crime1res(obs=10); 
run; 

Obs    sid    state        r 
 
  1     25     ms      -3.57079 
  2     18     la      -1.83858 
  3     39     ri      -1.68560 
  4     47     wa      -1.30392 
  5     35     oh      -1.14833 
  6     48     wi      -1.12934 
  7      6     co      -1.04495 
  8     22     mi      -1.02273 
  9      4     az      -0.86992 
 10     44     ut      -0.85205 

proc print data=crime1res(firstobs=42 obs=51); 
 var sid state r; 
run; 

Obs    sid    state       r 
 
 42     24     mo      0.82117 
 43     20     md      1.01299 
 44     29     ne      1.02887 
 45     40     sc      1.03034 
 46     16     ks      1.07672 
 47     14     il      1.15170 
 48     13     id      1.29348 
 49     12     ia      1.58964 
 50      9     fl      2.61952 
 51     51     dc      3.76585 

We should pay attention to studentized residuals that exceed +2 or -2, and get even more concerned 
about residuals that exceed +2.5 or -2.5 and even yet more concerned about residuals that exceed +3 or -
3.  These results show that DC and MS are the most worrisome observations, followed by FL. 

Let's show all of the variables in our regression where the studentized residual exceeds +2 or -2, i.e., 
where the absolute value of the residual exceeds 2.  We see the data for the three potential outliers we 
identified, namely Florida, Mississippi and Washington D.C. Looking carefully at these three 
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observations, we couldn't find any data entry errors, though we may want to do another regression 
analysis with the extreme point such as DC deleted. We will return to this issue later.    

proc print data=crime1res; 
  var r crime pctmetro poverty single; 
  where abs(r)>2; 
run; 

Obs        r       crime    pctmetro    poverty     single 
 
  1    -3.57079      434      30.700    24.7000    14.7000 
 50     2.61952     1206      93.000    17.8000    10.6000 
 51     3.76585     2922     100.000    26.4000    22.1000 

Now let's look at the leverage's to identify observations that will have potential great influence on 
regression coefficient estimates.    

proc univariate data=crime1res plots plotsize=30; 
  var lev; 
run; 

The UNIVARIATE Procedure 
Variable:  lev  (Leverage) 
 
                            Moments 
 
N                          51    Sum Weights                 51 
Mean               0.07843137    Sum Observations             4 
Std Deviation       0.0802847    Variance            0.00644563 
Skewness           4.16424136    Kurtosis             21.514892 
Uncorrected SS     0.63600716    Corrected SS        0.32228167 
Coeff Variation    102.362995    Std Error Mean      0.01124211 
 
              Basic Statistical Measures 
 
    Location                    Variability 
 
Mean     0.078431     Std Deviation            0.08028 
Median   0.061847     Variance                 0.00645 
Mode      .           Range                    0.51632 
                      Interquartile Range      0.04766 
 
           Tests for Location: Mu0=0 
 
Test           -Statistic-    -----p Value------ 
 
Student's t    t  6.976572    Pr > |t|    <.0001 
Sign           M      25.5    Pr >= |M|   <.0001 
Signed Rank    S       663    Pr >= |S|   <.0001 
 
Quantiles (Definition 5) 
 
Quantile        Estimate 
 
100% Max       0.5363830 
99%            0.5363830 
95%            0.1910120 
90%            0.1362576 
75% Q3         0.0851089 
50% Median     0.0618474 



 171

25% Q1         0.0374442 
10%            0.0292452 
5%             0.0242659 
1%             0.0200613 
0% Min         0.0200613 
 
             Extreme Observations 
 
-------Lowest------        ------Highest----- 
 
     Value      Obs            Value      Obs 
 
 0.0200613       38         0.165277        2 
 0.0241210        6         0.180201       15 
 0.0242659       22         0.191012        1 
 0.0276638       17         0.260676       32 
 0.0287552        5         0.536383       51 
 
   Stem Leaf                     #  Boxplot 
     52 6                        1     * 
     50 
     48 
     46 
     44 
     42 
     40 
     38 
     36 
     34 
     32 
     30 
     28 
     26 1                        1     * 
     24 
     22 
     20 
     18 01                       2     0 
     16 5                        1     0 
     14 
     12 6                        1     | 
     10 02                       2     | 
      8 2355515                  7  +-----+ 
      6 0123344722366           13  *--+--* 
      4 35567907                 8  |     | 
      2 044899112245789         15  +-----+ 
        ----+----+----+----+ 
    Multiply Stem.Leaf by 10**-2 
 
                       Normal Probability Plot 
    0.53+                                                * 
        | 
        | 
        | 
        | 
    0.43+ 
        | 
        | 
        | 
        | 
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    0.33+ 
        | 
        | 
        |                                            *   +++ 
        |                                              ++ 
    0.23+                                           +++ 
        |                                         ++ 
        |                                      ++** 
        |                                    ++* 
        |                                 +++ 
    0.13+                               ++    * 
        |                            +++     * 
        |                          ++   ***** 
        |                       +******* 
        |                    ***** 
    0.03+  *   *  ** ********+ 
         +----+----+----+----+----+----+----+----+----+----+ 
             -2        -1         0        +1        +2  

proc sort data=crime1res; 
  by lev; 
run; 
 
proc print data=crime1res (firstobs=42 obs=51); 
  var lev state; 
run; 

Obs      lev      state 
 
 42    0.09114     ky 
 43    0.09478     nj 
 44    0.09983     mt 
 45    0.10220     fl 
 46    0.13626     vt 
 47    0.16528     la 
 48    0.18020     wv 
 49    0.19101     ms 
 50    0.26068     ak 
 51    0.53638     dc 

Generally, a point with leverage greater than (2k+2)/n should be carefully examined, were k is the 
number of predictors and n is the number of observations. In our example this works out to (2*3+2)/51 
= .15686275, so we can do the following.  

proc print data=crime1res; 
  var crime pctmetro poverty single state; 
  where lev > .156; 
run; 

Obs    crime    pctmetro    poverty     single    state 
 
 47     1062      75.000    26.4000    14.9000     la 
 48      208      41.800    22.2000     9.4000     wv 
 49      434      30.700    24.7000    14.7000     ms 
 50      761      41.800     9.1000    14.3000     ak 
 51     2922     100.000    26.4000    22.1000     dc 

As we have seen, DC is an observation that both has a large residual and large leverage.  Such points 
are potentially the most influential.  We can make a plot that shows the leverage by the residual squared 
and look for observations that are jointly high on both of these measures.  We can do this using a 



 173

leverage versus residual-squared plot. Using residual squared instead of residual itself, the graph is 
restricted to the first quadrant and the relative positions of data points are preserved. This is a quick way 
of checking potential influential observations and outliers at the same time. Both types of points are of 
great concern for us.    

proc sql; 
 create table crimeres5 as 
 select *, r**2/sum(r) as rsquared 
 from crime1res; 
quit; 
 
goptions reset=all; 
axis1 label=(r=0 a=90); 
symbol1 pointlabel = ("#state") font=simplex value=none; 
proc gplot data=crimeres5; 
  plot lev*rsquared / vaxis=axis1; 
run; 
quit; 

 

The point for DC catches our attention having both the highest residual squared and highest leverage, 
suggesting it could be very influential. The point for MS has almost as large a residual squared, but does 
not have the same leverage.  We'll look at those observations more carefully by listing them below.  

proc print data="c:\sasreg\crime"; 
  where state="dc" or state="ms"; 
  var state crime pctmetro poverty single; 
run; 

Obs    state    crime    pctmetro    poverty     single 
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 25     ms        434      30.700    24.7000    14.7000 
 51     dc       2922     100.000    26.4000    22.1000 

Now let's move on to overall measures of influence. Specifically, let's look at Cook's D and 
DFITS.  These measures both combine information on the residual and leverage. Cook's D and DFITS 
are very similar except that they scale differently, but they give us similar answers.  

The lowest value that Cook's D can assume is zero, and the higher the Cook's D is, the more influential 
the point is. The conventional cut-off point is 4/n. We can list any observation above the cut-off point 
by doing the following. We do see that the Cook's D for DC is by far the largest.   

proc print data=crime1res; 
  where cd > (4/51); 
  var crime pctmetro poverty single state cd; 
run; 

Obs    crime    pctmetro    poverty     single    state       cd 
 
 45     1206      93.000    17.8000    10.6000     fl      0.17363 
 47     1062      75.000    26.4000    14.9000     la      0.15926 
 49      434      30.700    24.7000    14.7000     ms      0.60211 
 51     2922     100.000    26.4000    22.1000     dc      3.20343 

Now let's take a look at DFITS. The conventional cut-off point for DFITS is 2*sqrt(k/n). DFITS can be 
either positive or negative, with numbers close to zero corresponding to the points with small or zero 
influence. As we see, DFITS also indicates that DC is, by far, the most influential observation.  

proc print data=crime1res; 
  where abs(dffit)> (2*sqrt(3/51)); 
  var crime pctmetro poverty single state dffit; 
run; 

Obs    crime    pctmetro    poverty     single    state      dffit 
 
 45     1206      93.000    17.8000    10.6000     fl       0.88382 
 47     1062      75.000    26.4000    14.9000     la      -0.81812 
 49      434      30.700    24.7000    14.7000     ms      -1.73510 
 51     2922     100.000    26.4000    22.1000     dc       4.05061 

The above measures are general measures of influence.  You can also consider more specific measures 
of influence that assess how each coefficient is changed by deleting the observation. This measure is 
called DFBETA and is created for each of the predictors. Apparently this is more computationally 
intensive than summary statistics such as Cook's D because the more predictors a model has, the more 
computation it may involve. We can restrict our attention to only those predictors that we are most 
concerned with and  to see how well behaved those predictors are. In SAS, we need to use the ods 
output OutStatistics statement to produce the DFBETAs for each of the predictors. The names for the 
new variables created are chosen by SAS automatically and begin with DFB_.   

proc reg data="c:\sasreg\crime"; 
  model crime=pctmetro poverty single / influence; 
  ods output OutputStatistics=crimedfbetas; 
  id state; 
run; 
quit; 
< output omitted > 
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This created three variables, DFB_pctmetro, DFB_poverty and DFB_single.  Let's look at the first 5 
values.   

proc print data=crimedfbetas (obs=5); 
  var state DFB_pctmetro DFB_poverty DFB_single; 
run; 
                  DFB_          DFB_        DFB_ 
Obs    state    pctmetro     poverty      single 
 
  1     ak       -0.1062     -0.1313      0.1452 
  2     al        0.0124      0.0553     -0.0275 
  3     ar       -0.0687      0.1753     -0.1053 
  4     az       -0.0948     -0.0309      0.0012 
  5     ca        0.0126      0.0088     -0.0036 

The value for DFB_single for Alaska is 0.14, which means that by being included in the analysis (as 
compared to being excluded), Alaska increases the the coefficient for single by 0.14 standard errors, i.e., 
0.14 times the standard error for BSingle or by (0.14 * 15.5).  Because the inclusion of an observation 
could either contribute to an increase or decrease in a regression coefficient, DFBETAs can be either 
positive or negative.  A DFBETA value in excess of  2/sqrt(n) merits further investigation. In this 
example, we would be concerned about absolute values in excess of 2/sqrt(51) or 0.28. 
 
We can plot all three DFBETA values against the state id in one graph shown below. We add a line at 
0.28 and -0.28 to help us see potentially troublesome observations.  We see the largest value is about 
3.0 for DFsingle.  

data crimedfbetas1; 
 set crimedfbetas; 
 rename HatDiagonal=lev; 
run; 
 
proc sort data=crimedfbetas1; 
 by lev; 
 
proc sort data=crime1res; 
 by lev; 
run; 
 
data crimedfbetas2; 
 merge crime1res crimedfbetas1; 
 by lev; 
run; 
 
goptions reset=all; 
symbol1 v=circle c=red; 
symbol2 v=plus c=green; 
symbol3 v=star c=blue; 
axis1 order=(1 51); 
axis2 order=(-1 to 3.5 by .5); 
proc gplot data=crimedfbetas2; 
  plot DFB_pctmetro*sid=1 DFB_poverty*sid=2 DFB_single*sid=3  
  / overlay haxis=axis1 vaxis=axis2 vref=-.28 .28; 
run; 
quit; 
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We can repeat this graph with the pointlabel = ("#state") option on the symbol1 statement to label the 
points. With the graph above we can identify which DFBeta is a problem, and with the graph below we 
can associate that observation with the state that it originates from.   

goptions reset=all; 
axis1 label=(r=0 a=90); 
symbol1 pointlabel = ("#state") font=simplex value=none; 
proc gplot data=crimedfbetas2; 
  plot DFB_pctmetro*sid=1 DFB_poverty*sid=2 DFB_single*sid=3  
  / overlay vaxis=axis1 vref=-.28 .28; 
run; 
quit;  
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Now let's list those observations with DFB_single larger than the cut-off value.  Again, we see that DC 
is the most problematic observation.  

proc print data=crimedfbetas2; 
  where abs(DFB_single) > 2/sqrt(51); 
  var DFB_single state crime pctmetro poverty single; 
run; 

           DFB_ 
Obs      single    state    crime    pctmetro    poverty     single 
 
 45     -0.5606     fl       1206      93.000    17.8000    10.6000 
 49     -0.5680     ms        434      30.700    24.7000    14.7000 
 51      3.1391     dc       2922     100.000    26.4000    22.1000 

The following table summarizes the general rules of thumb we use for these measures to identify 
observations worthy of further investigation (where k is the number of predictors and n is the number of 
observations).  

Measure Value 
leverage >(2k+2)/n 
abs(rstu) > 2 
Cook's D > 4/n 
abs(DFITS) > 2*sqrt(k/n)
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abs(DFBETA) > 2/sqrt(n) 

Washington D.C. has appeared as an outlier as well as an influential point in every analysis.  Because 
Washington D.C. is really not a state, we can use this to justify omitting it from the analysis, saying that 
we really wish to just analyze states. First, let's repeat our analysis including DC.  

proc reg data="c:\sasreg\crime"; 
  model crime=pctmetro poverty single; 
run; 
quit; 

The REG Procedure 
Model: MODEL1 
Dependent Variable: crime violent crime rate 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     3        8170480        2723493      82.16    <.0001 
Error                    47        1557995          33149 
Corrected Total          50        9728475 
 
 
Root MSE            182.06817    R-Square     0.8399 
Dependent Mean      612.84314    Adj R-Sq     0.8296 
Coeff Var            29.70877 
 
 
                             Parameter Estimates 
 
                                     Parameter     Standard 
Variable   Label               DF     Estimate        Error  t Value  Pr > |t| 
 
Intercept  Intercept            1  -1666.43589    147.85195   -11.27    <.0001 
pctmetro   pct metropolitan     1      7.82893      1.25470     6.24    <.0001 
poverty    pct poverty          1     17.68024      6.94093     2.55    0.0142 
single     pct single parent    1    132.40805     15.50322     8.54    <.0001 

Now, let's run the analysis omitting DC by including a where statement  (here ne stands for "not equal 
to" but you could also use ~= to mean the same thing). As we expect, deleting DC made a large change 
in the coefficient for single.  The coefficient for single dropped from 132.4 to 89.4.  After having 
deleted DC, we would repeat the process we have illustrated in this section to search for any other 
outlying and influential observations. 

proc reg data="c:\sasreg\crime"; 
  model crime=pctmetro poverty single; 
  where state ne "dc"; 
run; 
quit; 
The REG Procedure 
Model: MODEL1 
Dependent Variable: crime violent crime rate 
 
                             Analysis of Variance 
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                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     3        3098767        1032922      39.90    <.0001 
Error                    46        1190858          25888 
Corrected Total          49        4289625 
 
 
Root MSE            160.89817    R-Square     0.7224 
Dependent Mean      566.66000    Adj R-Sq     0.7043 
Coeff Var            28.39413 
 
                             Parameter Estimates 
 
                                     Parameter     Standard 
Variable   Label               DF     Estimate        Error  t Value  Pr > |t| 
 
Intercept  Intercept            1  -1197.53807    180.48740    -6.64    <.0001 
pctmetro   pct metropolitan     1      7.71233      1.10924     6.95    <.0001 
poverty    pct poverty          1     18.28265      6.13596     2.98    0.0046 
single     pct single parent    1     89.40078     17.83621     5.01    <.0001 

Summary    

In this section, we explored a number of methods of identifying outliers and influential points. In a 
typical analysis, you would probably use only some of these methods. Generally speaking, there are two 
types of methods for assessing outliers: statistics such as residuals, leverage, Cook's D and DFITS, that 
assess the overall impact of an observation on the regression results, and statistics such as DFBETA that 
assess the specific impact of an observation on the regression coefficients.   

In our example, we found that DC was a point of major concern. We performed a regression with it and 
without it and the regression equations were very different. We can justify removing it from our 
analysis by reasoning that our model  is to predict crime rate for states, not for metropolitan areas.  

2.2 Tests for Normality of Residuals  

One of the assumptions of linear regression analysis is that the residuals are normally distributed. This 
assumption assures that the p-values for the t-tests will be valid. As before, we will generate the 
residuals (called r) and predicted values (called fv) and put them in a dataset (called elem1res).  We 
will also keep the variables api00, meals, ell and emer in that dataset.  

Let's use the elemapi2 data file we saw in Chapter 1 for these analyses.  Let's predict academic 
performance (api00) from percent receiving free meals (meals), percent of English language learners 
(ell), and percent of teachers with emergency credentials (emer).  

proc reg data="c:\sasreg\elemapi2"; 
 model api00=meals ell emer; 
 output out=elem1res (keep= api00 meals ell emer r fv) residual=r 
predicted=fv; 
run; 
quit; 

                             Analysis of Variance 
 
                                    Sum of           Mean 
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Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     3        6749783        2249928     673.00    <.0001 
Error                   396        1323889     3343.15467 
Corrected Total         399        8073672 
 
 
Root MSE             57.82002    R-Square     0.8360 
Dependent Mean      647.62250    Adj R-Sq     0.8348 
Coeff Var             8.92804 
 
 
                              Parameter Estimates 
 
                                               Parameter      Standard 
Variable    Label                       DF      Estimate         Error   t Value 
 
Intercept   Intercept                    1     886.70326       6.25976    141.65 
meals       pct free meals               1      -3.15919       0.14974    -21.10 
ell         english language learners    1      -0.90987       0.18464     -4.93 
emer        pct emer credential          1      -1.57350       0.29311     -5.37 
 
                 Parameter Estimates 
 
Variable    Label                       DF   Pr > |t| 
 
Intercept   Intercept                    1     <.0001 
meals       pct free meals               1     <.0001 
ell         english language learners    1     <.0001 
emer        pct emer credential          1     <.0001 

  

Below we use proc kde to produce a kernel density plot. kde stands for kernel density estimate. It can 
be thought as a histogram with narrow bins and a moving average.   

proc kde data=elem1res out=den; 
  var r; 
run; 
 
proc sort data=den; 
  by r; 
run; 
 
goptions reset=all; 
symbol1 c=blue i=join v=none height=1; 
proc gplot data=den; 
  plot density*r=1; 
run; 
quit; 
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Proc univariate will produce a normal quantile graph. qqplot plots the quantiles of a variable against the 
quantiles of a normal distribution. qqplotis most sensitive to non-normality near two tails. and probplot 
As you see below, the qqplot command shows a slight deviation from normal at the upper tail, as can 
be seen in the kde above. We can accept that the residuals are close to a normal distribution.  

goptions reset=all; 
proc univariate data=elem1res normal; 
 var r; 
 qqplot r / normal(mu=est sigma=est); 
run; 

The UNIVARIATE Procedure 
Variable:  r  (Residual) 
 
                            Moments 
 
N                         400    Sum Weights                400 
Mean                        0    Sum Observations             0 
Std Deviation       57.602241    Variance            3318.01817 
Skewness           0.17092898    Kurtosis            0.13532745 
Uncorrected SS     1323889.25    Corrected SS        1323889.25 
Coeff Variation             .    Std Error Mean      2.88011205 
 
 
              Basic Statistical Measures 
 
    Location                    Variability 
 
Mean      0.00000     Std Deviation           57.60224 
Median   -3.65729     Variance                    3318 
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Mode       .          Range                  363.95555 
                      Interquartile Range     76.47440 
 
 
           Tests for Location: Mu0=0 
 
Test           -Statistic-    -----p Value------ 
 
Student's t    t         0    Pr > |t|    1.0000 
Sign           M       -10    Pr >= |M|   0.3421 
Signed Rank    S      -631    Pr >= |S|   0.7855 
 
 
                   Tests for Normality 
 
Test                  --Statistic---    -----p Value------ 
 
Shapiro-Wilk          W     0.996406    Pr < W      0.5101 
Kolmogorov-Smirnov    D     0.032676    Pr > D     >0.1500 
Cramer-von Mises      W-Sq  0.049036    Pr > W-Sq  >0.2500 
Anderson-Darling      A-Sq  0.340712    Pr > A-Sq  >0.2500 
 
 
Quantiles (Definition 5) 
 
Quantile        Estimate 
 
100% Max       178.48224 
99%            153.32833 
95%             95.19177 
90%             72.60901 
75% Q3          36.50031 
50% Median      -3.65729 
25% Q1         -39.97409 
10%            -72.36437 
5%             -89.25117 
1%            -129.60545 
0% Min        -185.47331 
 
 
           Extreme Observations 
 
------Lowest-----        -----Highest----- 
 
   Value      Obs           Value      Obs 
 
-185.473      226         151.684      228 
-146.908      346         154.972      327 
-145.515      234         161.737      188 
-133.233      227         167.168      271 
-125.978      259         178.482       93 
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Severe outliers consist of those points that are either 3 inter-quartile-ranges below the first quartile or 3 
inter-quartile-ranges above the third quartile. The presence of any severe outliers should be sufficient 
evidence to reject normality at a 5% significance level. Mild outliers are common in samples of any size. 
In our case, we don't have any severe outliers and the distribution seems fairly symmetric. The residuals 
have an approximately normal distribution. (See the output of the proc univariate above.)  

In the Shapiro-Wilk W test for normality, the p-value  is based on the assumption that the distribution is 
normal. In our example, the p-value is very large (0.51), indicating that we cannot reject that r is 
normally distributed. (See the output of the proc univariate above.)  

2.3 Tests for Heteroscedasticity  

One of the main assumptions for the ordinary least squares regression is the homogeneity of variance of 
the residuals. If the model is well-fitted, there should be no pattern to the residuals plotted against the 
fitted values. If the variance of the residuals is non-constant, then the residual variance is said to be 
"heteroscedastic." There are graphical and non-graphical methods for detecting heteroscedasticity. A 
commonly used graphical method is to plot the residuals versus fitted (predicted) values.  Below we use 
a plot statement in the proc reg. The r. and p. tell SAS to calculate the residuals (r.) and predicted 
values (p.) for use in the plot. We see that the pattern of the data points is getting a little narrower 
towards the right end, which is an indication of mild heteroscedasticity.  

proc reg data='c:\sasreg\elemapi2'; 
 model api00 = meals ell emer; 
 plot r.*p.; 
run; 
quit; 
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Now let's look at a test for heteroscedasticity, the White test.  The White test tests the null hypothesis 
that the variance of the residuals is homogenous. Therefore, if the p-value is very small, we would have 
to reject the hypothesis and accept the alternative hypothesis that the variance is not homogenous. We 
use the / spec option on the model statement to obtain the White test.  

proc reg data='c:\sasreg\elemapi2'; 
 model api00 = meals ell emer / spec; 
run; 
quit; 

<some output omitted to save space> 
 
     Test of First and Second 
       Moment Specification 
 
    DF    Chi-Square    Pr > ChiSq 
 
     9         22.16        0.0084  

Please see http://saspdf.ats.ucla.edu/sasdoc/sashtml/stat/chap55/sect40.htm for more information on the 
White test. While the White test is significant, the distribution of the residuals in the residual versus 
fitted plot did not seem overly heteroscedastic.  

Consider another example where we use enroll as a predictor. Recall that we found enroll to be skewed 
to the right in Chapter 1.  As you can see, this example shows much more serious heteroscedasticity.  

http://saspdf.ats.ucla.edu/sasdoc/sashtml/stat/chap55/sect40.htm
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proc reg data='c:\sasreg\elemapi2'; 
 model api00 = enroll; 
 plot r.*p.; 
run; 
quit; 

The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     1         817326         817326      44.83    <.0001 
Error                   398        7256346          18232 
Corrected Total         399        8073672 
 
 
Root MSE            135.02601    R-Square     0.1012 
Dependent Mean      647.62250    Adj R-Sq     0.0990 
Coeff Var            20.84949 
 
                             Parameter Estimates 
 
                                     Parameter     Standard 
Variable   Label               DF     Estimate        Error  t Value  Pr > |t| 
 
Intercept  Intercept            1    744.25141     15.93308    46.71    <.0001 
enroll     number of students   1     -0.19987      0.02985    -6.70    <.0001 
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As we saw in Chapter 1, the variable enroll was skewed considerably to the right, and we found that by 
taking a log transformation, the transformed variable was more normally distributed. Below we 
transform enroll, run the regression and show the residual versus fitted plot. The distribution of the 
residuals is much improved.  Certainly, this is not a perfect distribution of residuals, but it is much 
better than the distribution with the untransformed variable.  

data elemapi3; 
 set 'c:\sasreg\elemapi2'; 
 lenroll = log(enroll); 
run; 
 
proc reg data=elemapi3; 
 model api00 = lenroll; 
 plot r.*p.; 
run; 
quit; 

The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     1         609460         609460      32.50    <.0001 
Error                   398        7464212          18754 
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Corrected Total         399        8073672 
 
 
Root MSE            136.94634    R-Square     0.0755 
Dependent Mean      647.62250    Adj R-Sq     0.0732 
Coeff Var            21.14601 
 
                            Parameter Estimates 
 
                               Parameter      Standard 
Variable    Label       DF      Estimate         Error   t Value   Pr > |t| 
 
Intercept   Intercept    1    1170.42896      91.96567     12.73     <.0001 
lenroll                  1     -85.99991      15.08605     -5.70     <.0001 

 

Finally, let's revisit the model we used at the start of this section, predicting api00 from meals, ell and 
emer.  Using this model, the distribution of the residuals looked very nice and even across the fitted 
values.  What if we add enroll to this model?  Will this automatically ruin the distribution of the 
residuals?  Let's add it and see.  

proc reg data='c:\sasreg\elemapi2'; 
 model api00 = meals ell emer enroll; 
 plot r.*p.; 
run; 
quit; 

The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
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                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     4        6765344        1691336     510.63    <.0001 
Error                   395        1308328     3312.22265 
Corrected Total         399        8073672 
 
 
Root MSE             57.55191    R-Square     0.8380 
Dependent Mean      647.62250    Adj R-Sq     0.8363 
Coeff Var             8.88665 
 
 
                              Parameter Estimates 
 
                                               Parameter      Standard 
Variable    Label                       DF      Estimate         Error   t Value 
 
Intercept   Intercept                    1     899.14659       8.47225    106.13 
meals       pct free meals               1      -3.22166       0.15180    -21.22 
ell         english language learners    1      -0.76770       0.19514     -3.93 
emer        pct emer credential          1      -1.41824       0.30042     -4.72 
enroll      number of students           1      -0.03126       0.01442     -2.17 
 
                 Parameter Estimates 
 
Variable    Label                       DF   Pr > |t| 
 
Intercept   Intercept                    1     <.0001 
meals       pct free meals               1     <.0001 
ell         english language learners    1     <.0001 
emer        pct emer credential          1     <.0001 
enroll      number of students           1     0.0308 
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As you can see, the distribution of the residuals looks fine, even after we added the variable enroll. 
When we had just the variable enroll in the model, we did a log transformation to improve the 
distribution of the residuals, but when enroll was part of a model with other variables, the residuals 
looked good enough so that no transformation was needed.  This illustrates how the distribution of the 
residuals, not the distribution of the predictor, was the guiding factor in determining whether a 
transformation was needed. 

2.4 Tests for Collinearity  

When there is a perfect linear relationship among the predictors, the estimates for a regression model 
cannot be uniquely computed. The term collinearity describes two variables are near perfect linear 
combinations of one another. When more than two variables are involved, it is often called 
multicollinearity, although the two terms are often used interchangeably.  

The primary concern is that as the degree of multicollinearity increases, the regression model estimates 
of the coefficients become unstable and the standard errors for the coefficients can get wildly inflated. 
In this section, we will explore some SAS options used with the model statement that help to detect 
multicollinearity.  

We can use the vif option to check for multicollinearity. vif stands for variance inflation factor. As a 
rule of thumb, a variable whose VIF values is greater than 10 may merit further investigation. Tolerance, 
defined as 1/VIF, is used by many researchers to check on the degree of collinearity. A tolerance value 
lower than 0.1 is comparable to a VIF of 10. It means that the variable could be considered as a linear 
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combination of other independent variables. The tol option on the model statement gives us these values. 
Let's first look at the regression we did from the last section, the regression model predicting api00 
from meals, ell and emer, and use the vif and tol options with the model statement.   

proc reg data='c:\sasreg\elemapi2'; 
 model api00 = meals ell emer / vif tol; 
run; 
quit; 

The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     3        6749783        2249928     673.00    <.0001 
Error                   396        1323889     3343.15467 
Corrected Total         399        8073672 
 
 
Root MSE             57.82002    R-Square     0.8360 
Dependent Mean      647.62250    Adj R-Sq     0.8348 
Coeff Var             8.92804 
 
 
                             Parameter Estimates 
 
                                            Parameter      Standard 
Variable   Label                      DF     Estimate         Error   t Value 
 
Intercept  Intercept                   1    886.70326       6.25976    141.65 
meals      pct free meals              1     -3.15919       0.14974    -21.10 
ell        english language learners   1     -0.90987       0.18464     -4.93 
emer       pct emer credential         1     -1.57350       0.29311     -5.37 
 
                            Parameter Estimates 
 
                                                                    Variance 
Variable   Label                      DF  Pr > |t|    Tolerance    Inflation 
 
Intercept  Intercept                   1    <.0001            .            0 
meals      pct free meals              1    <.0001      0.36696      2.72506 
ell        english language learners   1    <.0001      0.39833      2.51051 
emer       pct emer credential         1    <.0001      0.70681      1.4148 

The VIFs look fine here. Here is an example where the VIFs are more worrisome.  

proc reg data='c:\sasreg\elemapi2'; 
 model api00 = acs_k3 avg_ed grad_sch col_grad some_col / vif tol; 
run; 
quit; 

The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
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                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     5        5056269        1011254     143.79    <.0001 
Error                   373        2623191     7032.68421 
Corrected Total         378        7679460 
 
 
Root MSE             83.86110    R-Square     0.6584 
Dependent Mean      647.63588    Adj R-Sq     0.6538 
Coeff Var            12.94880 
 
 
                              Parameter Estimates 
 
                                      Parameter     Standard 
Variable   Label                DF     Estimate        Error  t Value  Pr > |t| 
 
Intercept  Intercept             1    -82.60913     81.84638    -1.01    0.3135 
acs_k3     avg class size k-3    1     11.45725      3.27541     3.50    0.0005 
avg_ed     avg parent ed         1    227.26382     37.21960     6.11    <.0001 
grad_sch   parent grad school    1     -2.09090      1.35229    -1.55    0.1229 
col_grad   parent college grad   1     -2.96783      1.01781    -2.92    0.0038 
some_col   parent some college   1     -0.76045      0.81097    -0.94    0.3490 
 
                     Parameter Estimates 
 
                                                      Variance 
Variable   Label                DF    Tolerance      Inflation 
 
Intercept  Intercept             1            .              0 
acs_k3     avg class size k-3    1      0.97187        1.02895 
avg_ed     avg parent ed         1      0.02295       43.57033 
grad_sch   parent grad school    1      0.06727       14.86459 
col_grad   parent college grad   1      0.06766       14.77884 
some_col   parent some college   1      0.24599        4.06515 

In this example, the VIF and tolerance (1/VIF) values for avg_ed grad_sch and col_grad are 
worrisome.  All of these variables measure education of the parents and the very high VIF values 
indicate that these variables are possibly redundant.  For example, after you know grad_sch and 
col_grad, you probably can predict avg_ed very well.  In this example, multicollinearity arises because 
we have put in too many variables that measure the same thing: parent education.   

Let's omit one of the parent education variables, avg_ed.  Note that the VIF values in the analysis below 
appear much better.  Also, note how the standard errors are reduced for the parent education variables, 
grad_sch and col_grad.  This is because the high degree of collinearity caused the standard errors to be 
inflated.   With the multicollinearity eliminated, the coefficient for grad_sch, which had been non-
significant, is now significant.  

proc reg data='c:\sasreg\elemapi2'; 
 model api00 =acs_k3 grad_sch col_grad some_col / vif tol; 
run; 
quit; 

The REG Procedure 
Model: MODEL1 
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Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     4        4180144        1045036     107.12    <.0001 
Error                   393        3834063     9755.88497 
Corrected Total         397        8014207 
 
 
Root MSE             98.77188    R-Square     0.5216 
Dependent Mean      648.46985    Adj R-Sq     0.5167 
Coeff Var            15.23153 
 
 
                              Parameter Estimates 
 
                                      Parameter     Standard 
Variable   Label                DF     Estimate        Error  t Value  Pr > |t| 
 
Intercept  Intercept             1    283.74462     70.32475     4.03    <.0001 
acs_k3     avg class size k-3    1     11.71260      3.66487     3.20    0.0015 
grad_sch   parent grad school    1      5.63476      0.45820    12.30    <.0001 
col_grad   parent college grad   1      2.47992      0.33955     7.30    <.0001 
some_col   parent some college   1      2.15827      0.44388     4.86    <.0001 
 
                     Parameter Estimates 
 
                                                      Variance 
Variable   Label                DF    Tolerance      Inflation 
 
Intercept  Intercept             1            .              0 
acs_k3     avg class size k-3    1      0.97667        1.02389 
grad_sch   parent grad school    1      0.79213        1.26242 
col_grad   parent college grad   1      0.78273        1.27759 
some_col   parent some college   1      0.96670        1.03445 

Let's introduce another option regarding collinearity. The collinoint option displays several different 
measures of collinearity. For example, we can test for collinearity among the variables we used in the 
two examples above.  Note that if you use the collin option, the intercept will be included in the 
calculation of the collinearity statistics, which is not usually what you want. The collinoint option 
excludes the intercept from those calculations, but it is still included in the calculation of the regression.  

proc reg data='c:\sasreg\elemapi2'; 
 model api00 = acs_k3 avg_ed grad_sch col_grad some_col / vif tol collinoint; 
run; 
quit; 

The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
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Model                     5        5056269        1011254     143.79    <.0001 
Error                   373        2623191     7032.68421 
Corrected Total         378        7679460 
 
Root MSE             83.86110    R-Square     0.6584 
Dependent Mean      647.63588    Adj R-Sq     0.6538 
Coeff Var            12.94880 
 
                              Parameter Estimates 
 
                                      Parameter     Standard 
Variable   Label                DF     Estimate        Error  t Value  Pr > |t| 
 
Intercept  Intercept             1    -82.60913     81.84638    -1.01    0.3135 
acs_k3     avg class size k-3    1     11.45725      3.27541     3.50    0.0005 
avg_ed     avg parent ed         1    227.26382     37.21960     6.11    <.0001 
grad_sch   parent grad school    1     -2.09090      1.35229    -1.55    0.1229 
col_grad   parent college grad   1     -2.96783      1.01781    -2.92    0.0038 
some_col   parent some college   1     -0.76045      0.81097    -0.94    0.3490 
 
                     Parameter Estimates 
 
                                                      Variance 
Variable   Label                DF    Tolerance      Inflation 
 
Intercept  Intercept             1            .              0 
acs_k3     avg class size k-3    1      0.97187        1.02895 
avg_ed     avg parent ed         1      0.02295       43.57033 
grad_sch   parent grad school    1      0.06727       14.86459 
col_grad   parent college grad   1      0.06766       14.77884 
some_col   parent some college   1      0.24599        4.06515 
 
  Collinearity Diagnostics(intercept 
              adjusted) 
 
                            Condition 
  Number    Eigenvalue          Index 
 
       1       2.41355        1.00000 
       2       1.09168        1.48690 
       3       0.92607        1.61438 
       4       0.55522        2.08495 
       5       0.01350       13.37294 
 
                 Collinearity Diagnostics(intercept adjusted) 
 
           ----------------------Proportion of Variation---------------------- 
  Number        acs_k3        avg_ed      grad_sch      col_grad      some_col 
 
       1       0.00271       0.00389       0.00770       0.00783       0.00292 
       2       0.43827   6.909873E-8    0.00072293       0.00283       0.10146 
       3       0.47595    0.00012071       0.00517    0.00032642       0.12377 
       4       0.08308    0.00001556       0.05501       0.05911       0.00583 
       5   1.900448E-7       0.99597       0.93140       0.92990       0.76603 

We now remove avg_ed and see the collinearity diagnostics improve considerably.  

proc reg data='c:\sasreg\elemapi2'; 
 model api00 = acs_k3 grad_sch col_grad some_col / vif tol collinoint; 
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run; 
quit; 

The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     4        4180144        1045036     107.12    <.0001 
Error                   393        3834063     9755.88497 
Corrected Total         397        8014207 
 
 
Root MSE             98.77188    R-Square     0.5216 
Dependent Mean      648.46985    Adj R-Sq     0.5167 
Coeff Var            15.23153 
 
 
                              Parameter Estimates 
 
                                      Parameter     Standard 
Variable   Label                DF     Estimate        Error  t Value  Pr > |t| 
 
Intercept  Intercept             1    283.74462     70.32475     4.03    <.0001 
acs_k3     avg class size k-3    1     11.71260      3.66487     3.20    0.0015 
grad_sch   parent grad school    1      5.63476      0.45820    12.30    <.0001 
col_grad   parent college grad   1      2.47992      0.33955     7.30    <.0001 
some_col   parent some college   1      2.15827      0.44388     4.86    <.0001 
 
                     Parameter Estimates 
 
                                                      Variance 
Variable   Label                DF    Tolerance      Inflation 
 
Intercept  Intercept             1            .              0 
acs_k3     avg class size k-3    1      0.97667        1.02389 
grad_sch   parent grad school    1      0.79213        1.26242 
col_grad   parent college grad   1      0.78273        1.27759 
some_col   parent some college   1      0.96670        1.03445 
 
 
  Collinearity Diagnostics(intercept 
               adjusted) 
 
                             Condition 
  Number     Eigenvalue          Index 
 
       1        1.50947        1.00000 
       2        1.04069        1.20435 
       3        0.92028        1.28071 
       4        0.52957        1.68830 
 
            Collinearity Diagnostics(intercept adjusted) 
 
            -----------------Proportion of Variation---------------- 
  Number         acs_k3       grad_sch       col_grad       some_col 
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       1        0.01697        0.22473        0.22822        0.06751 
       2        0.62079        0.02055        0.05660        0.21947 
       3        0.28967        0.08150        0.00153        0.66238 
       4        0.07258        0.67322        0.71365        0.05064 

The condition number is a commonly used index of the global instability of the regression coefficients -
- a large condition number, 10 or more, is an indication of instability.  

 2.5 Tests on Nonlinearity  

When we do linear regression, we assume that the relationship between the response variable and the 
predictors is linear. This is the assumption of linearity. If this assumption is violated, the linear 
regression will try to fit a straight line to data that does not follow a straight line. Checking the linear 
assumption in the case of simple regression is straightforward, since we only have one predictor. All we 
have to do is a scatter plot between the response variable and the predictor to see if nonlinearity is 
present, such as a curved band or a big wave-shaped curve. For example, let us use a data file called 
nations.sav that has data about a number of nations around the world.  Below we look at the proc 
contents for this file to see the variables in the file (Note that the position option tells SAS to list the 
variables in the order that they are in the data file.)  

proc contents data='c:\sasreg\nations' position; 
run; 
The CONTENTS Procedure 
 
Data Set Name: c:\sasreg\nations                       Observations:         109 
Member Type:   DATA                                    Variables:            15 
Engine:        V8                                      Indexes:              0 
Created:       4:59 Saturday, January 9, 1960          Observation Length:   65 
Last Modified: 4:59 Saturday, January 9, 1960          Deleted Observations: 0 
Protection:                                            Compressed:           NO 
Data Set Type:                                         Sorted:               NO 
Label: 
            -----Engine/Host Dependent Information----- 
 
Data Set Page Size:         8192 
Number of Data Set Pages:   2 
First Data Page:            1 
Max Obs per Page:           125 
Obs in First Data Page:     80 
Number of Data Set Repairs: 0 
File Name:                  c:\sasreg\nations.sas7bdat 
Release Created:            7.0000M0 
Host Created:               WIN_NT 
 
         -----Alphabetic List of Variables and Attributes----- 
 
 #    Variable    Type    Len    Pos    Label 
----------------------------------------------------------------------- 
 3    birth       Num       3      8    Crude birth rate/1000 people 
 5    chldmort    Num       3     14    Child (1-4 yr) mortality 1985 
 1    country     Char      8     57    Country 
 4    death       Num       3     11    Crude death rate/1000 people 
 9    energy      Num       4     28    Per cap energy consumed, kg oil 
 8    food        Num       4     24    Per capita daily calories 1985 
10    gnpcap      Num       4     32    Per capita GNP 1985 



 196

11    gnpgro      Num       8     36    Annual GNP growth % 65-85 
 6    infmort     Num       4     17    Infant (<1 yr) mortality 1985 
 7    life        Num       3     21    Life expectancy at birth 1985 
 2    pop         Num       8      0    1985 population in millions 
13    school1     Num       4     47    Primary enrollment % age-group 
14    school2     Num       3     51    Secondary enroll % age-group 
15    school3     Num       3     54    Higher ed. enroll % age-group 
12    urban       Num       3     44    % population urban 1985 
 
                -----Variables Ordered by Position----- 
 
 #    Variable    Type    Len    Pos    Label 
----------------------------------------------------------------------- 
 1    country     Char      8     57    Country 
 2    pop         Num       8      0    1985 population in millions 
 3    birth       Num       3      8    Crude birth rate/1000 people 
 4    death       Num       3     11    Crude death rate/1000 people 
 5    chldmort    Num       3     14    Child (1-4 yr) mortality 1985 
 6    infmort     Num       4     17    Infant (<1 yr) mortality 1985 
 7    life        Num       3     21    Life expectancy at birth 1985 
 8    food        Num       4     24    Per capita daily calories 1985 
 9    energy      Num       4     28    Per cap energy consumed, kg oil 
10    gnpcap      Num       4     32    Per capita GNP 1985 
11    gnpgro      Num       8     36    Annual GNP growth % 65-85 
12    urban       Num       3     44    % population urban 1985 
13    school1     Num       4     47    Primary enrollment % age-group 
14    school2     Num       3     51    Secondary enroll % age-group 
15    school3     Num       3     54    Higher ed. enroll % age-group  

Let's look at the relationship between GNP per capita (gnpcap) and births (birth).  Below if we look at 
the scatterplot between gnpcap and birth, we can see that the relationship between these two variables 
is quite non-linear. We added a regression line to the chart, and you can see how poorly the line fits this 
data. Also, if we look at the residuals by predicted plot, we see that the residuals are not nearly 
homoscedastic, due to the non-linearity in the relationship between gnpcap and birth.  

proc reg data='c:\sasreg\nations'; 
 model birth = gnpcap; 
 plot rstudent.*p. / noline; 
 plot birth*gnpcap; 
run; 
quit; 
The REG Procedure 
Model: MODEL1 
Dependent Variable: birth Crude birth rate/1000 people 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     1     7873.99472     7873.99472      69.05    <.0001 
Error                   107          12202      114.03880 
Corrected Total         108          20076 
 
 
Root MSE             10.67890    R-Square     0.3922 
Dependent Mean       32.78899    Adj R-Sq     0.3865 
Coeff Var            32.56854 
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                             Parameter Estimates 
 
                                               Parameter     Standard 
Variable   Label                         DF     Estimate        Error  t Value 
 
Intercept  Intercept                      1     38.92418      1.26150    30.86 
gnpcap     Per capita GNP 1985            1     -0.00192   0.00023124    -8.31 
 
                 Parameter Estimates 
 
Variable   Label                         DF  Pr > |t| 
 
Intercept  Intercept                      1    <.0001 
gnpcap     Per capita GNP 1985            1    <.0001 
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Now we are going to modify the above scatterplot by adding a lowess (also called "loess") smoothing 
line.  By default, SAS will make four graphs, one for smoothing of 0.1, 0.2, 0.3 and 0.4.  We show only 
the graph with the 0.4 smooth.  

proc loess data='c:\sasreg\nations'; 
 model birth = gnpcap / smooth=0.1 0.2 0.3 0.4; 
 ods output OutputStatistics=Results; 
run; 
 
proc sort data=results; 
 by SmoothingParameter gnpcap; 
run; 
 
goptions reset=all; 
symbol1 v=dot i=none c=black; 
symbol2 v=none i=join c=blue; 
symbol3 v=none i=r c=red; 
proc gplot data=results; 
 by SmoothingParameter; 
 plot DepVar*gnpcap=1 pred*gnpcap=2 DepVar*gnpcap=3 / overlay; 
run;  
quit; 
The LOESS Procedure 
 
      Independent Variable Scaling 
 
          Scaling applied: None 
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                               Per capita 
Statistic                        GNP 1985 
 
Minimum Value                   110.00000 
Maximum Value                       19270 

< some output omitted >  

The LOESS Procedure 
Smoothing Parameter: 0.4 
Dependent Variable: api00 
 
                 Fit Summary 
 
Fit Method                      Interpolation 
Number of Observations                    400 
Number of Fitting Points                   17 
kd Tree Bucket Size                        32 
Degree of Local Polynomials                 1 
Smoothing Parameter                   0.40000 
Points in Local Neighborhood              160 
Residual Sum of Squares               6986406 

 

The lowess line fits much better than the OLS linear regression. In trying to see how to remedy these, 
we notice that the gnpcap scores are quite skewed with most values being near 0, and a handful of 
values of 10,000 and higher.  This suggests to us that some transformation of the variable may be useful. 
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One of the commonly used transformations is a log transformation. Let's try it below.  As you see, the 
scatterplot between lgnpcap and birth looks much better with the regression line going through the 
heart of the data.  Also, the plot of the residuals by predicted values look much more reasonable.  

data nations1; 
 set 'c:\sasreg\nations'; 
 lgnpcap = log(gnpcap); 
run; 
 
proc reg data=nations1; 
 model birth = lgnpcap; 
 plot rstudent.*p. noline; 
 plot birth*lgnpcap; 
run; 
quit; 
The REG Procedure 
Model: MODEL1 
Dependent Variable: birth Crude birth rate/1000 people 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     1          11469          11469     142.58    <.0001 
Error                   107     8606.89865       80.43831 
Corrected Total         108          20076 
 
 
Root MSE              8.96874    R-Square     0.5713 
Dependent Mean       32.78899    Adj R-Sq     0.5673 
Coeff Var            27.35290 
 
 
                             Parameter Estimates 
 
                                               Parameter     Standard 
Variable   Label                         DF     Estimate        Error  t Value 
 
Intercept  Intercept                      1     84.27726      4.39668    19.17 
lgnpcap                                   1     -7.23847      0.60619   -11.94 
 
                 Parameter Estimates 
 
Variable   Label                         DF  Pr > |t| 
 
Intercept  Intercept                      1    <.0001 
lgnpcap                                   1    <.000 
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This section has shown how you can use scatterplots to diagnose problems of non-linearity, both by 
looking at the scatterplots of the predictor and outcome variable, as well as by examining the residuals 
by predicted values.  These examples have focused on simple regression; however, similar techniques 
would be useful in multiple regression.  However, when using multiple regression, it would be more 
useful to examine partial regression plots instead of the simple scatterplots between the predictor 
variables and the outcome variable.  

2.6 Model Specification  

A model specification error can occur when one or more relevant variables are omitted from the model 
or one or more irrelevant variables are included in the model. If relevant variables are omitted from the 
model, the common variance they share with included variables may be wrongly attributed to those 
variables, and the error term is inflated. On the other hand, if irrelevant variables are included in the 
model, the common variance they share with included variables may be wrongly attributed to them. 
Model specification errors can substantially affect the estimate of regression coefficients. 

Consider the model below. This regression suggests that as class size increases the academic 
performance increases. Before we publish results saying that increased class size is associated with 
higher academic performance, let's check the model specification.  

proc reg data='c:\sasreg\elemapi2'; 
 model api00 = acs_k3; 
 output out=res1 (keep= api00 acs_k3 fv) predicted=fv; 
run; 
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quit; 
The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     1         234354         234354      11.93    0.0006 
Error                   396        7779853          19646 
Corrected Total         397        8014207 
 
 
Root MSE            140.16453    R-Square     0.0292 
Dependent Mean      648.46985    Adj R-Sq     0.0268 
Coeff Var            21.61466 
 
 
                             Parameter Estimates 
 
                                     Parameter     Standard 
Variable   Label               DF     Estimate        Error  t Value  Pr > |t| 
 
Intercept  Intercept            1    308.33716     98.73085     3.12    0.0019 
acs_k3     avg class size k-3   1     17.75148      5.13969     3.45    0.0006 

There are a couple of methods to detect specification errors. A link test performs a model specification 
test for single-equation models. It is based on the idea that if a regression is properly specified, one 
should not be able to find any additional independent variables that are significant except by chance. To 
conduct this test, you need to obtain the fitted values from your regression and the squares of those 
values.  The model is then refit using these two variables as predictors. The fitted value should be 
significant because it is the predicted value. One the other hand, the fitted values squared shouldn't be 
significant, because if our model is specified correctly, the squared predictions should not have much of 
explanatory power. That is, we wouldn't  expect the fitted value squared to be a significant predictor if 
our model is specified correctly. So we will be looking at the p-value for the fitted value squared.  

data res1sq; 
 set res1; 
 fv2 = fv**2; 
run; 
 
proc reg data=res1sq; 
 model api00 = fv fv2; 
run; 
quit; 

< some output omitted to save space > 
 
                              Parameter Estimates 
 
                                              Parameter      Standard 
Variable    Label                      DF      Estimate         Error   t Value 
 
Intercept   Intercept                   1    3884.50651    2617.69642      1.48 
fv          Predicted Value of api00    1     -11.05014       8.10464     -1.36 
fv2                                     1       0.00933       0.00627      1.49 
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                Parameter Estimates 
 
Variable    Label                      DF   Pr > |t| 
 
Intercept   Intercept                   1     0.1386 
fv          Predicted Value of api00    1     0.1735 
fv2                                     1     0.1376 

Let's try adding one more variable, meals, to the above model and then run the link test again.  

proc reg data='c:\sasreg\elemapi2'; 
 model api00 = acs_k3 full meals; 
 output out=res2 (keep= api00 acs_k3 full fv) predicted=fv; 
run; 
quit; 

< output omitted to save space > 
 
data res2sq; 
 set res2; 
 fv2 = fv**2; 
run; 
 
proc reg data=res2sq; 
 model api00 = fv fv2; 
run; 
quit; 
 
< some output omitted to save space > 
 
                              Parameter Estimates 
 
                                              Parameter      Standard 
Variable    Label                      DF      Estimate         Error   t Value 
 
Intercept   Intercept                   1    -136.51045      95.05904     -1.44 
fv          Predicted Value of api00    1       1.42433       0.29254      4.87 
fv2                                     1   -0.00031721    0.00021800     -1.46 
 
                Parameter Estimates 
 
Variable    Label                      DF   Pr > |t| 
 
Intercept   Intercept                   1     0.1518 
fv          Predicted Value of api00    1     <.0001 
fv2                                     1     0.1464 

The link test is once again non-significant. Note that after including meals and full, the coefficient for 
class size is no longer significant. While acs_k3 does have a positive relationship with api00 when no 
other variables are in the model, when we include, and hence control for, other important variables, 
acs_k3 is no longer significantly related to api00 and its relationship to api00 is no longer positive.   

2.7 Issues of Independence  

The statement of this assumption is that the errors associated with one observation are not correlated 
with the errors of any other observation cover several different situations. Consider the case of 



 205

collecting data from students in eight different elementary schools. It is likely that the students within 
each school will tend to be more like one another that students from different schools, that is, their 
errors are not independent. We will deal with this type of situation in Chapter 4.  

Another way in which the assumption of independence can be broken is when data are collected on the 
same variables over time. Let's say that we collect truancy data every semester for 12 years. In this 
situation it is likely that the errors for observation between adjacent semesters will be more highly 
correlated than for observations more separated in time. This is known as autocorrelation. When you 
have data that can be considered to be time-series, you should use the dw option that performs a 
Durbin-Watson test for correlated residuals.  

We don't have any time-series data, so we will use the elemapi2 dataset and pretend that snum 
indicates the time at which the data were collected. We will sort the data on snum to order the data 
according to our fake time variable and then we can run the regression analysis with the dw option to 
request the Durbin-Watson test. The Durbin-Watson statistic has a range from 0 to 4 with a midpoint of 
2. The observed value in our example is less than 2, which is not surprising since our data are not truly 
time-series.   

proc reg data='c:\sasreg\elemapi2'; 
 model api00 = enroll / dw; 
 output out=res3 (keep = snum r) residual=r; 
run; 
quit; 
The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     1         817326         817326      44.83    <.0001 
Error                   398        7256346          18232 
Corrected Total         399        8073672 
 
 
Root MSE            135.02601    R-Square     0.1012 
Dependent Mean      647.62250    Adj R-Sq     0.0990 
Coeff Var            20.84949 
 
 
                             Parameter Estimates 
 
                                     Parameter     Standard 
Variable   Label               DF     Estimate        Error  t Value  Pr > |t| 
 
Intercept  Intercept            1    744.25141     15.93308    46.71    <.0001 
enroll     number of students   1     -0.19987      0.02985    -6.70    <.0001 
Durbin-Watson D                1.342 
Number of Observations           400 
1st Order Autocorrelation      0.327 

goptions reset=all; 
proc gplot data=res3; 
 plot r*snum; 
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run; 
quit; 

 

2.8 Summary  

In this chapter, we have used a number of tools in SAS for determining whether our data meets the 
regression assumptions. Below, we list the major commands we demonstrated organized according to 
the assumption the command was shown to test.  

• Detecting Unusual and Influential Data  
o scatterplots of the dependent variables versus the independent variable  
o looking at the largest values of the studentized residuals, leverage, Cook's D, DFFITS 

and DFBETAs  
• Tests for Normality of Residuals Tests for Heteroscedasity  

o kernel density plot  
o quantile-quantile plots  
o standardized normal probability plots  
o Shapiro-Wilk W test  

• Tests for Multicollinearity  
o scatterplot of residuals versus predicted (fitted) values  
o White test  

• Tests for Non-Linearity  
o scatterplot of independent variable versus dependent variable  

• Tests for Model Specification  
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o time series  
o Durbin-Watson test  

 

Regression with SAS 
Chapter 3 - Regression with Categorical Predictors 

Chapter Outline 
    3.0 Regression with categorical predictors 
    3.1 Regression with a 0/1 variable 
    3.2 Regression with a 1/2 variable 
    3.3 Regression with a 1/2/3 variable 
    3.4 Regression with multiple categorical predictors  
    3.5 Categorical predictor with interactions 
    3.6 Continuous and categorical variables 
    3.7 Interactions of continuous by 0/1 categorical variables 
    3.8 Continuous and categorical variables, interaction with 1/2/3 variable 
    3.9 Summary 
    3.10 For more information  

3.0 Introduction  

In the previous two chapters, we have focused on regression analyses using continuous variables. 
However, it is possible to include categorical predictors in a regression analysis, but it requires some 
extra work in performing the analysis and extra work in properly interpreting the results.  This chapter 
will illustrate how you can use SAS for including categorical predictors in your analysis and describe 
how to interpret the results of such analyses.   

This chapter will use the elemapi2 data that you have seen in the prior chapters. We assume that you 
have put the data files in "c:\sasreg\" directory.  We will focus on four variables api00, some_col, 
yr_rnd and mealcat, which takes meals and breaks it up into three categories. Let's have a quick look 
at these variables.   

proc datasets nolist; 
  contents data="c:\sasreg\elemapi2" out=elemdesc noprint; 
run; 
proc print data=elemdesc noobs; 
  var name label nobs; 
  where name in ('api00', 'some_col', 'yr_rnd', 'mealcat'); 
run; 

NAME        LABEL                                    NOBS 
 
api00       api 2000                                  400 
mealcat     Percentage free meals in 3 categories     400 
some_col    parent some college                       400 
yr_rnd      year round school                         400 

So we have seen the variable label and number of valid observations for each variable. Now let's take a 
look at the basic statistics of each variable. We will use proc univariate and make use of the Output 

http://www.ats.ucla.edu/stat/sas/webbooks/reg/default.htm
http://www.ats.ucla.edu/stat/sas/webbooks/reg/elemapi2.sas7bdat
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Delivery System (ODS) introduced in SAS 8 to get a shorter output. ODS gives us a better control over 
the output a SAS procedure. 

proc univariate data="c:\sasreg\elemapi2"; 
  ods output BasicMeasures=varinfo; 
run; 
proc sort data=varinfo; 
  by varName; 
proc print data=varinfo noobs; 
  by varName; 
  where varName in ('api00', 'some_col', 'yr_rnd', 'mealcat'); 
run; 

VarName=api00 
 
  Loc 
Measure    LocValue    VarMeasure               VarValue 
 
Mean        647.623    Std Deviation           142.24896 
Median      643.000    Variance                    20235 
Mode        657.000    Range                   571.00000 
               _       Interquartile Range     239.00000 
 
 
VarName=mealcat 
 
  Loc 
Measure    LocValue    VarMeasure               VarValue 
 
Mean          2.015    Std Deviation             0.81942 
Median        2.000    Variance                  0.67145 
Mode          3.000    Range                     2.00000 
               _       Interquartile Range       2.00000 
 
 
VarName=some_col 
 
  Loc 
Measure    LocValue    VarMeasure               VarValue 
 
Mean         19.713    Std Deviation            11.33694 
Median       19.000    Variance                128.52616 
Mode          0.000    Range                    67.00000 
               _       Interquartile Range      16.00000 
 
 
VarName=yr_rnd 
 
  Loc 
Measure    LocValue    VarMeasure               VarValue 
 
Mean          0.230    Std Deviation             0.42136 
Median        0.000    Variance                  0.17754 
Mode          0.000    Range                     1.00000 
               _       Interquartile Range             0 

We can use proc means to obtain more or less the same type of statistics as above shown below. But we 
have to know the names for the statistics and we have less control over the layout of the output.  
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options nolabel; 
proc means data="c:\sasreg\elemapi2" mean median  range std var qrange; 
  var api00 some_col yr_rnd mealcat; 
run; 
                                                                       Quartile 
Variable          Mean     Median      Range       Std Dev    Variance  Range 
------------------------------------------------------------------------------- 
api00      647.6225000   643.0000   571.0000   142.2489610    20234.77   239 
some_col    19.7125000    19.0000    67.0000    11.3369378 128.5261591    16 
yr_rnd       0.2300000          0     1.0000     0.4213595   0.1775439     0 
mealcat      2.0150000     2.0000     2.0000     0.8194227   0.6714536     2 
-------------------------------------------------------------------------------- 

The variable api00 is a measure of the performance of the students. The variable some_col is a 
continuous variable that measures the percentage of the parents in the school who have attended college. 
The variable yr_rnd is a categorical variable that is coded 0 if the school is not year round, and 1 if year 
round. The variable meals is the percentage of students who are receiving state sponsored free meals 
and can be used as an indicator of poverty. This was broken into 3 categories (to make equally sized 
groups) creating the variable mealcat. The following macro function created for this dataset gives us 
codebook type information on a variable that we specify. It gives the information of the number of 
unique values that a variable take, which we couldn't get from either proc univariate or proc means. 
This macro makes use of proc sql and has very concise output. 

%macro codebook(var); 
  proc sql; 
    title "Codebook for &var"; 
    select count(&var) label="Total of Obs", 
    count(distinct &var) label="Unique Values",  
    max(&var) label="Max",  
    min(&var) label="Min", 
    nmiss(&var) label="Coded Missing", 
    mean(&var) label="Mean", 
    std(&var) label ="Std. Dev."  
    from "c:\sasreg\elemapi2"; 
  quit; 
  title " ";  
%mend; 
 
options label formdlim=' '; 
%codebook(api00) 
%codebook(yr_rnd) 
%codebook(some_col) 
%codebook(mealcat) 
options formdlim=''; 
Codebook for api00 
 
   Total    Unique                         Coded                Std. 
  of Obs    Values       Max       Min   Missing      Mean      Dev. 
-------------------------------------------------------------------- 
     400       271       940       369         0  647.6225   142.249 
 
Codebook for yr_rnd 
 
   Total    Unique                         Coded                Std. 
  of Obs    Values       Max       Min   Missing      Mean      Dev. 
-------------------------------------------------------------------- 
     400         2         1         0         0      0.23   0.42136 
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Codebook for some_col 
 
   Total    Unique                         Coded                Std. 
  of Obs    Values       Max       Min   Missing      Mean      Dev. 
-------------------------------------------------------------------- 
     400        49        67         0         0   19.7125  11.33694 
 
Codebook for mealcat 
 
   Total    Unique                         Coded                Std. 
  of Obs    Values       Max       Min   Missing      Mean      Dev. 
-------------------------------------------------------------------- 
     400         3         3         1         0     2.015  0.819423 

3.1 Regression with a 0/1 variable  

The simplest example of a categorical predictor in a regression analysis is a 0/1 variable, also called a 
dummy variable or sometimes an indicator variable. Let's use the variable yr_rnd as an example of a 
dummy variable. We can include a dummy variable as a predictor in a regression analysis as shown 
below.  

proc reg data="c:\sasreg\elemapi2"; 
  model api00 = yr_rnd; 
run; 
quit; 

                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     1        1825001        1825001     116.24    <.0001 
Error                   398        6248671          15700 
Corrected Total         399        8073672 
 
 
Root MSE            125.30036    R-Square     0.2260 
Dependent Mean      647.62250    Adj R-Sq     0.2241 
Coeff Var            19.34775 
 
 
                             Parameter Estimates 
 
                                    Parameter     Standard 
Variable   Label              DF     Estimate        Error  t Value  Pr > |t| 
 
Intercept  Intercept           1    684.53896      7.13965    95.88    <.0001 
yr_rnd     year round school   1   -160.50635     14.88720   -10.78    <.0001 

This may seem odd at first, but this is a legitimate analysis. But what does this mean? Let's go back to 
basics and write out the regression equation that this model implies.  

api00 = Intercept + Byr_rnd * yr_rnd  

where Intercept is the intercept (or constant) and we use Byr_rnd to represent the coefficient for 
variable yr_rnd.  Filling in the values from the regression equation, we get  
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api00 = 684.539 + -160.5064 * yr_rnd  

If a school is not a year-round school (i.e., yr_rnd is 0) the regression equation would simplify to  

api00 = constant    + 0 * Byr_rnd  
api00 = 684.539     + 0 * -160.5064   
api00 = 684.539 

If a school is a year-round school, the regression equation would simplify to   

api00 = constant + 1 * Byr_rnd  
api00 = 684.539  + 1 * -160.5064  
api00 = 524.0326 

We can graph the observed values and the predicted values using the scatter command as shown below. 
Although yr_rnd only has two values, we can still draw a regression line showing the relationship 
between yr_rnd and api00.  Based on the results above, we see that the predicted value for non-year 
round schools is 684.539 and the predicted value for the year round schools is 524.032, and the slope of 
the line is negative, which makes sense since the coefficient for yr_rnd was negative (-160.5064).     

 
proc reg data="c:\sasreg\elemapi2"; 
  model api00 = yr_rnd; 
run; 
plot api00*yr_rnd; 
run; 
quit; 
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Let's compare these predicted values to the mean api00 scores for the year-round and non-year-round 
students. Let's create a format for variable yr_rnd and mealcat so we can label these categorical 
variables. Notice that we use the format statement in proc means below to show value labels for 
variable yr_rnd.  

options label; 
proc format library = library ; 
   value yr_rnd /* year round school */ 
      0='No'  
      1='Yes'; 
   value mealcat /* Percentage free meals in 3 categories */ 
      1='0-46% free meals'  
      2='47-80% free meals'  
      3='81-100% free meals'; 
 
   format    yr_rnd yr_rnd.; 
   format   mealcat mealcat.; 
quit; 
 
proc means data="c:\sasreg\elemapi2" N mean std;  
   class yr_rnd ; 
   format yr_rnd yr_rnd.; 
   var api00; 
run; 

The MEANS Procedure 
 
         Analysis Variable : api00 api 2000 
 
year 
round       N 
school    Obs      N            Mean         Std Dev 
---------------------------------------------------- 
No        308    308     684.5389610     132.1125339 
 
Yes        92     92     524.0326087      98.9160429 
---------------------------------------------------- 

As you see, the regression equation predicts that for a school, the value of api00 will be the mean value 
of the group determined by the school type.  

Let's relate these predicted values back to the regression equation. For the non-year-round schools, their 
mean is the same as the intercept (684.539). The coefficient for yr_rnd is the amount we need to add to 
get the mean for the year-round schools, i.e., we need to add -160.5064 to get 524.0326, the mean for 
the non year-round schools. In other words, Byr_rnd is the mean api00 score for the year-round 
schools minus the mean api00 score for the non year-round schools, i.e., mean(year-round) - mean(non 
year-round).  

It may be surprising to note that this regression analysis with a single dummy variable is the same as 
doing a t-test comparing the mean api00 for the year-round schools with the non year-round schools 
(see below). You can see that the t value below is the same as the t value for yr_rnd in the regression 
above. This is because Byr_rnd compares the non year-rounds and non year-rounds (since the 
coefficient is mean(year round)-mean(non year-round)).  

proc ttest data="c:\sasreg\elemapi2" ci=none; 
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  class yr_rnd; 
  var api00; 
run; 

                                 Statistics 
 
                               Lower CL          Upper CL 
Variable  yr_rnd            N      Mean    Mean      Mean  Std Dev  Std Err 
 
api00                0    308    669.73  684.54    699.35   132.11   7.5278 
api00                1     92    503.55  524.03    544.52   98.916   10.313 
api00     Diff (1-2)             131.24  160.51    189.77    125.3   14.887 
 
 
                               T-Tests 
 
Variable    Method           Variances      DF    t Value    Pr > |t| 
 
api00       Pooled           Equal         398      10.78      <.0001 
api00       Satterthwaite    Unequal       197      12.57      <.0001 
 
 
                    Equality of Variances 
 
Variable    Method      Num DF    Den DF    F Value    Pr > F 
 
api00       Folded F       307        91       1.78    0.0013 

Since a t-test is the same as doing an anova, we can get the same results using the proc glm for anova 
as well.  

proc glm data="c:\sasreg\elemapi2"; 
  class yr_rnd; 
  model api00=yr_rnd ; 
run; 
quit; 

The GLM Procedure 
 
Dependent Variable: api00   api 2000 
 
                                      Sum of 
Source                     DF        Squares    Mean Square   F Value   Pr > F 
 
Model                       1    1825000.563    1825000.563    116.24   <.0001 
 
Error                     398    6248671.435      15700.179 
 
Corrected Total           399    8073671.998 
 
 
R-Square     Coeff Var      Root MSE    api00 Mean 
 
0.226043      19.34775      125.3004      647.6225 
 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
 
yr_rnd                      1    1825000.563    1825000.563    116.24   <.0001 
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If we square the t-value from the t-test, we get the same value as the F-value from the proc glm: 
10.78^2=116.21 (with a little rounding error.)  

3.2 Regression with a 1/2 variable  

A categorical predictor variable does not have to be coded 0/1 to be used in a regression model. It is 
easier to understand and interpret the results from a model with dummy variables, but the results from a 
variable coded 1/2 yield essentially the same results.  

Lets make a copy of the variable yr_rnd called yr_rnd2 that is coded 1/2, 1=non year-round and 
2=year-round.  

data elem_dummy; 
  set "c:\sasreg\elemapi2"; 
  yr_rnd2=yr_rnd+1; 
run; 

Let's perform a regression predicting api00 from yr_rnd2.  

proc reg data=elem_dummy; 
  model api00 = yr_rnd2; 
run; 
quit; 

                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     1        1825001        1825001     116.24    <.0001 
Error                   398        6248671          15700 
Corrected Total         399        8073672 
 
 
Root MSE            125.30036    R-Square     0.2260 
Dependent Mean      647.62250    Adj R-Sq     0.2241 
Coeff Var            19.34775 
 
 
                            Parameter Estimates 
 
                               Parameter      Standard 
Variable    Label       DF      Estimate         Error   t Value   Pr > |t| 
 
Intercept   Intercept    1     845.04531      19.35336     43.66     <.0001 
yr_rnd2                  1    -160.50635      14.88720    -10.78     <.0001 

Note that the coefficient for yr_rnd is the same as yr_rnd2. So, you can see that if you code yr_rnd as 
0/1 or as 1/2, the regression coefficient works out to be the same. However the intercept (Intercept) is a 
bit less intuitive. When we used yr_rnd, the intercept was the mean for the non year-rounds. When 
using yr_rnd2, the intercept is the mean for the non year-rounds minus Byr_rnd2, i.e., 684.539 - (-
160.506) = 845.045 



 215

Note that you can use 0/1 or 1/2 coding and the results for the coefficient come out the same, but the 
interpretation of constant in the regression equation is different. It is often easier to interpret the 
estimates for 0/1 coding.  

In summary, these results indicate that the api00 scores are significantly different for the schools 
depending on the type of school, year round school versus non-year round school. Non year-round 
schools have significantly higher API scores than year-round schools. Based on the regression results, 
non year-round schools have scores that are 160.5 points higher than year-round schools.  

3.3 Regression with a 1/2/3 variable  

3.3.1 Manually creating dummy variables  

Say, that we would like to examine the relationship between the amount of poverty and api scores. We 
don't have a measure of poverty, but we can use mealcat as a proxy for a measure of poverty. From the 
previous section, we have seen that variable mealcat has three unique values. These are the levels of 
percent of students on free meals. We can associate a value label to variable mealcat to make it more 
meaningful for us when we run SAS procedures with mealcat, for example, proc freq.   

proc freq data="c:\sasreg\elemapi2"; 
  tables mealcat; 
  format mealcat mealcat.; 
run; 

                 Percentage free meals in 3 categories 
 
                                               Cumulative    Cumulative 
           mealcat    Frequency     Percent     Frequency      Percent 
----------------------------------------------------------------------- 
0-46% free meals           131       32.75           131        32.75 
47-80% free meals          132       33.00           263        65.75 
81-100% free meals         137       34.25           400       100.00 

You might be tempted to try including mealcat in a regression like this.  

proc reg data="c:\sasreg\elemapi2"; 
  model api00 = mealcat; 
run; 
quit; 

                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     1        6072528        6072528    1207.74    <.0001 
Error                   398        2001144     5028.00120 
Corrected Total         399        8073672 
 
 
Root MSE             70.90840    R-Square     0.7521 
Dependent Mean      647.62250    Adj R-Sq     0.7515 
Coeff Var            10.94903 
 
 
                              Parameter Estimates 
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                                                 Parameter     Standard 
Variable   Label                           DF     Estimate        Error  t Value 
 
Intercept  Intercept                        1    950.98740      9.42180   100.93 
mealcat    Percentage free meals in 3       1   -150.55330      4.33215   -34.75 
           categories 
 
                  Parameter Estimates 
 
Variable   Label                           DF  Pr > |t| 
 
Intercept  Intercept                        1    <.0001 
mealcat    Percentage free meals in 3       1    <.0001 

This is looking at the linear effect of mealcat with api00, but mealcat is not an interval variable. 
Instead, you will want to code the variable so that all the information concerning the three levels is 
accounted for. In general, we need to go through a data step to create dummy variables. For example, in 
order to create dummy variables for mealcat, we can do the following data step.   

data temp_elemapi; 
  set "c:\sasreg\elemapi2"; 
    mealcat1=0; 
    mealcat2=0; 
    mealcat3=0; 
    if mealcat = 1 then mealcat1=1; 
    if mealcat = 2 then mealcat2=1; 
    if mealcat = 3 then mealcat3=1; 
run; 

Let's run proc freq to check that our dummy coding is done correctly.  

proc freq data=temp_elemapi; 
  tables mealcat*mealcat1*mealcat2*mealcat3 /list; 
run; 

mealcat    mealcat1    mealcat2    mealcat3 
------------------------------------------- 
      1           1           0           0 
      2           0           1           0 
      3           0           0           1 
 
                         Cumulative    Cumulative 
Frequency     Percent     Frequency      Percent 
------------------------------------------------- 
     131       32.75           131        32.75 
     132       33.00           263        65.75 
     137       34.25           400       100.00 

We now have created mealcat1 that is 1 if mealcat is 1, and 0 otherwise. Likewise, mealcat2 is 1 if 
mealcat is 2, and 0 otherwise and likewise mealcat3 was created. We can now use two of these dummy 
variables (mealcat2 and mealcat3) in the regression analysis.  

proc reg data=temp_elemapi; 
  model api00 = mealcat2 mealcat3; 
run; 

                             Analysis of Variance 
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                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     2        6094198        3047099     611.12    <.0001 
Error                   397        1979474     4986.08143 
Corrected Total         399        8073672 
 
 
Root MSE             70.61219    R-Square     0.7548 
Dependent Mean      647.62250    Adj R-Sq     0.7536 
Coeff Var            10.90329 
 
 
                            Parameter Estimates 
 
                               Parameter      Standard 
Variable    Label       DF      Estimate         Error   t Value   Pr > |t| 
 
Intercept   Intercept    1     805.71756       6.16942    130.60     <.0001 
mealcat2                 1    -166.32362       8.70833    -19.10     <.0001 
mealcat3                 1    -301.33800       8.62881    -34.92     <.0001 

We can test the overall differences among the three groups by using the test command following proc 
reg. Notice that proc reg is an interactive procedure, so we have to issue quit command to finish it. The 
test result shows that the overall differences among the three groups are significant.  

test mealcat2=mealcat3=0; 
run; 
quit; 

       Test 1 Results for Dependent Variable api00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
 
Numerator           2        3047099     611.12    <.0001 
Denominator       397     4986.08143 

The interpretation of the coefficients is much like that for the binary variables. Group 1 is the omitted 
group, so Intercept is the mean for group 1. The coefficient for mealcat2 is the mean for group 2 
minus the mean of the omitted group (group 1). And the coefficient for mealcat3 is the mean of group 3 
minus the mean of group 1. You can verify this by comparing the coefficients with the means of the 
groups.  

proc means data=temp_elemapi mean std; 
  class mealcat; 
  var api00; 
run; 

         Analysis Variable : api00 api 2000 
 
  Percentage 
  free meals 
        in 3      N 
  categories    Obs            Mean         Std Dev 
--------------------------------------------------- 
           1    131     805.7175573      65.6686642 
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           2    132     639.3939394      82.1351295 
 
           3    137     504.3795620      62.7270149 
--------------------------------------------------- 

Based on these results, we can say that the three groups differ in their api00 scores, and that in 
particular group 2 is significantly different from group1 (because mealcat2 was significant) and group 3 
is significantly different from group 1 (because mealcat3 was significant).  

3.3.2 More on dummy coding  

In last section, we showed how to create dummy variables for mealcat by manually creating three 
dummy variables mealcat1, mealcat2 and mealcat3 since mealcat only has three levels. Apparently 
the way we created these variables is not very efficient for a categorical variables with many levels. 
Let's try to make use of the array structure to make our coding more efficient. 

data array_elemapi; 
  set "c:\sasreg\elemapi2"; 
  array mealdum(3) mealdum1-mealdum3; 
  do i = 1 to 3; 
    mealdum(i)=(mealcat=i); 
  end; 
drop i; 
run; 

We declare an array mealdum of size 3 with each individual named to be mealdum1 to mealdum3, 
since mealcat has three levels. Then we do a do loop to repeat the same action three times. (mealcat=i) 
is a logical statement and is evaluated to be either true (1) or false (0). We can run proc freq to check if 
our coding is done correctly as we did in last section.  

proc freq data=array_elemapi; 
  tables mealcat*mealdum1*mealdum2*mealdum3 /list; 
run; 

mealcat    mealdum1    mealdum2    mealdum3 
------------------------------------------- 
      1           1           0           0 
      2           0           1           0 
      3           0           0           1 
 
                         Cumulative    Cumulative 
Frequency     Percent     Frequency      Percent 
------------------------------------------------- 
     131       32.75           131        32.75 
     132       33.00           263        65.75 
     137       34.25           400       100.00 

3.3.3 Using the proc glm  

We can also do this analysis via ANOVA. The benefit of doing anova for our analysis is that it gives us 
the test of the overall effect of mealcat without needing to subsequently use the test statement as we did 
with the proc reg. In SAS we can use the proc glm for anova. proc glm will generate dummy 
variables for a categorical variable on-the-fly so we don't have to code our categorical variable 
mealcat  manually as we did in last section through a data step.   
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In our program below, we use class statement to specify that variable mealcat is a categorical variable 
we use the option order=freq for proc glm to order the levels of our class variable according to 
descending frequency count so that levels with the most observations come first in the order. Thus 
dummy variables for mealcat = 2 and mealcat = 3 will be used in the model as they have higher 
frequency counts. The solution option used in the model statement gives us the parameter estimates and 
the ss3 option specifies that Type III sum of squares is used for hypothesis test. We can see the anova 
test of the effect of mealcat is the same as the test command from the regress command.  

proc glm data="c:\sasreg\elemapi2" order=freq ; 
  class mealcat; 
  model api00=mealcat /solution ss3; 
run; 
quit; 

Dependent Variable: api00   api 2000 
 
                                      Sum of 
Source                     DF        Squares    Mean Square   F Value   Pr > F 
Model                       2    6094197.670    3047098.835    611.12   <.0001 
Error                     397    1979474.328       4986.081 
Corrected Total           399    8073671.998 
 
 
R-Square     Coeff Var      Root MSE    api00 Mean 
0.754824      10.90329      70.61219      647.6225 
 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
mealcat                     2    6094197.670    3047098.835    611.12   <.0001 
 
 
                                      Standard 
Parameter           Estimate             Error    t Value    Pr > |t| 
 
Intercept        805.7175573 B      6.16941572     130.60      <.0001 
mealcat   3     -301.3379952 B      8.62881482     -34.92      <.0001 
mealcat   2     -166.3236179 B      8.70833132     -19.10      <.0001 
mealcat   1        0.0000000 B       .                .         . 
 
NOTE: The X'X matrix has been found to be singular, and a generalized inverse 
      was used to solve the normal equations.  Terms whose estimates are 
      followed by the letter 'B' are not uniquely estimable. 

3.3.4 Other coding schemes  

It is generally very convenient to use dummy coding but it is not the only kind of coding that can be 
used. As you have seen, when you use dummy coding one of the groups becomes the reference group 
and all of the other groups are compared to that group. This may not be the most interesting set of 
comparisons.  

Say you want to compare group 1 with 2, and group 2 with group 3. You need to generate a coding 
scheme that forms these 2 comparisons. In SAS, we can first generate the corresponding coding scheme 
in a data step shown below and use them in the proc reg step.  

We create two dummy variables, one for group 1 and the other for group 3.   
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data effect_elemapi; 
   set "c:\sasreg\elemapi2"; 
    
   if mealcat=1 then do; 
              mealcat1=2/3; 
              mealcat3=1/3; 
       end; 
   if mealcat=2 then do; 
              mealcat1=-1/3; 
              mealcat3=1/3; 
              end; 
   if mealcat=3 then do; 
              mealcat1=-1/3; 
              mealcat3=-2/3; 
              end; 
run; 

Let's check our coding with proc freq. 

proc freq data=effect_elemapi; 
  tables mealcat*mealcat1*mealcat3 / nocum nopercent list; 
run; 

mealcat        mealcat1        mealcat3    Frequency 
---------------------------------------------------- 
      1    0.6666666667    0.3333333333         131 
      2    -0.333333333    0.3333333333         132 
      3    -0.333333333    -0.666666667         137 
We can now do the regression analysis again using our new coding scheme.   

proc reg data=effect_elemapi ; 
  model api00=mealcat1 mealcat3; 
run; 
quit; 

                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     2        6094198        3047099     611.12    <.0001 
Error                   397        1979474     4986.08143 
Corrected Total         399        8073672 
 
 
Root MSE             70.61219    R-Square     0.7548 
Dependent Mean      647.62250    Adj R-Sq     0.7536 
Coeff Var            10.90329 
 
 
                            Parameter Estimates 
 
                               Parameter      Standard 
Variable    Label       DF      Estimate         Error   t Value   Pr > |t| 
 
Intercept   Intercept    1     649.83035       3.53129    184.02     <.0001 
mealcat1                 1     166.32362       8.70833     19.10     <.0001 
mealcat3                 1     135.01438       8.61209     15.68     <.0001 

If you compare the parameter estimates with the group means of mealcat you can verify that B1 (i.e. 0-
46% free meals) is the mean of group 1 minus group 2, and B2 (i.e., 47-80% free meals) is the mean of 
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group 2 minus group 3.  Both of these comparisons are significant, indicating that group 1 significantly 
differs from group 2, and group 2 significantly differs from group 3.  

proc means data=effect_elemapi mean std; 
class mealcat; 
var api00; 

         Analysis Variable : api00 api 2000 
 
  Percentage 
  free meals 
        in 3      N 
  categories    Obs            Mean         Std Dev 
--------------------------------------------------- 
           1    131     805.7175573      65.6686642 
 
           2    132     639.3939394      82.1351295 
 
           3    137     504.3795620      62.7270149 
--------------------------------------------------- 

And the value of the intercept term Intercept is the unweighted average of the means of the three 
groups, (805.71756 +639.39394 +504.37956)/3 = 649.83035.  

3.4 Regression with two categorical predictors  

3.4.1 Manually creating dummy variables  

Previously we looked at using yr_rnd to predict api00 and we have also looked at using mealcat to 
predict api00. Let's include the parameter estimates for each model below. 

proc reg data=array_elemapi ; 
model api00= yr_rnd; 
run; 
quit;proc reg data=array_elemapi ; 
model api00= mealcat1 mealcat2; 
run; 
quit; 

                             Parameter Estimates  
                             (for model with yr_rnd) 
 
                                    Parameter     Standard 
Variable   Label              DF     Estimate        Error  t Value  Pr > |t| 
 
Intercept  Intercept           1    684.53896      7.13965    95.88    <.0001 
yr_rnd     year round school   1   -160.50635     14.88720   -10.78    <.0001 
 
                            Parameter Estimates  
                            (for model with mealcat1 and mealcat2) 
 
                               Parameter      Standard 
Variable    Label       DF      Estimate         Error   t Value   Pr > |t| 
 
Intercept   Intercept    1     504.37956       6.03281     83.61     <.0001 
mealcat1                 1     301.33800       8.62881     34.92     <.0001 
mealcat2                 1     135.01438       8.61209     15.68     <.0001 
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In the first model with only yr_rnd as the only predictor, the intercept term is the mean api score for the 
non-year-round schools. The coefficient for yr_rnd is the difference between the year round and non-
year round group. In the second model, the coefficient for mealcat1 is the difference between 
mealcat=1 and mealcat=3, and the coefficient for mealcat2 is the difference between mealcat=2 and 
mealcat=3. The intercept is the mean for the mealcat=3.   

Of course, we can include both yr_rnd and mealcat together in the same model. Now the question is 
how to interpret the coefficients.  

data array_elemapi; 
  set "c:\sasreg\elemapi2"; 
  array mealdum(3) mealcat1-mealcat3; 
  do i = 1 to 3; 
  mealdum(i)=(mealcat=i); 
  end; 
drop i; 
run; 
proc reg data=array_elemapi ; 
  model api00= yr_rnd mealcat1 mealcat2; 
run; 
quit; 

                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     3        6194144        2064715     435.02    <.0001 
Error                   396        1879528     4746.28206 
Corrected Total         399        8073672 
 
 
Root MSE             68.89327    R-Square     0.7672 
Dependent Mean      647.62250    Adj R-Sq     0.7654 
Coeff Var            10.63787 
 
 
                             Parameter Estimates 
 
                                    Parameter     Standard 
Variable   Label              DF     Estimate        Error  t Value  Pr > |t| 
 
Intercept  Intercept           1    526.32996      7.58453    69.40    <.0001 
yr_rnd     year round school   1    -42.96006      9.36176    -4.59    <.0001 
mealcat1                       1    281.68318      9.44568    29.82    <.0001 
mealcat2                       1    117.94581      9.18891    12.84    <.0001 

We can test the overall effect of mealcat with the test command, which is significant.  

proc reg data=array_elemapi ; 
  model api00= yr_rnd mealcat1 mealcat2; 
  test mealcat1=mealcat2=0; 
run; 
quit; 

       Test 1 Results for Dependent Variable api00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
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Numerator           2        2184572     460.27    <.0001 
Denominator       396     4746.28206 

Let's dig below the surface and see how the coefficients relate to the predicted values. Let's view the 
cells formed by crossing yr_rnd and mealcat and number the cells from cell1 to cell6.  

           mealcat=1     mealcat=2      mealcat=3 
 yr_rnd=0  cell1         cell2          cell3 
 yr_rnd=1  cell4         cell5          cell6 

With respect to mealcat, the group mealcat=3 is the reference category, and with respect to yr_rnd the 
group yr_rnd=0 is the reference category. As a result, cell3 is the reference cell. The intercept is the 
predicted value for this cell.  

The coefficient for yr_rnd is the difference between cell3 and cell6. Since this model has only main 
effects, it is also the difference between cell2 and cell5, or from cell1 and cell4. In other words, 
Byr_rnd is the amount you add to the predicted value when you go from non-year round to year round 
schools.  

The coefficient for mealcat1 is the predicted difference between cell1 and cell3. Since this model only 
has main effects, it is also the predicted difference between cell4 and cell6. Likewise, Bmealcat2 is the 
predicted difference between cell2 and cell3, and also the predicted difference between cell5 and cell6.  

So, the predicted values, in terms of the coefficients, would be  

           mealcat=1         mealcat=2         mealcat=3 
          ----------------------------------------------- 
 yr_rnd=0  Intercept         Intercept         Intercept 
           +Bmealcat1       +Bmealcat2 
          ----------------------------------------------- 
 yr_rnd=1  Intercept         Intercept         Intercept     
           +Byr_rnd          +Byr_rnd          +Byr_rnd  
           +Bmealcat1       +Bmealcat2 

We should note that if you computed the predicted values for each cell, they would not exactly match 
the means in the six cells.  The predicted means would be close to the observed means in the cells, but 
not exactly the same.  This is because our model only has main effects and assumes that the difference 
between cell1 and cell4 is exactly the same as the difference between cells 2 and 5 which is the same as 
the difference between cells 3 and 5.  Since the observed values don't follow this pattern, there is some 
discrepancy between the predicted means and observed means. 

3.4.2 Using the proc glm  

We can run the same analysis using the proc glm without manually coding the dummy variables.   

proc glm data="c:\sasreg\elemapi2"; 
  class mealcat; 
  model api00=yr_rnd mealcat /ss3; 
run; 
quit; 

                                      Sum of 
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Source                     DF        Squares    Mean Square   F Value   Pr > F 
Model                       3    6194144.303    2064714.768    435.02   <.0001 
Error                     396    1879527.694       4746.282 
Corrected Total           399    8073671.998 
 
R-Square     Coeff Var      Root MSE    api00 Mean 
0.767203      10.63787      68.89327      647.6225 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
yr_rnd                      1      99946.633      99946.633     21.06   <.0001 
mealcat                     2    4369143.740    2184571.870    460.27   <.0001 

Note that we get the same information that we do from manually coding the dummy variables and and 
using proc reg followed by the test statement shown in last the previous section. The proc glm doing 
anova automatically provides the information provided by the test statement. If we like, we can also 
request the parameter estimates by adding the option solution after the model statement.   

proc glm data="c:\sasreg\elemapi2"; 
  class mealcat; 
  model api00=yr_rnd mealcat /solution ss3; 
run; 
quit; 

                                      Sum of 
Source                     DF        Squares    Mean Square   F Value   Pr > F 
Model                       3    6194144.303    2064714.768    435.02   <.0001 
Error                     396    1879527.694       4746.282 
Corrected Total           399    8073671.998 
 
 
R-Square     Coeff Var      Root MSE    api00 Mean 
0.767203      10.63787      68.89327      647.6225 
 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
yr_rnd                      1      99946.633      99946.633     21.06   <.0001 
mealcat                     2    4369143.740    2184571.870    460.27   <.0001 
 
 
                                      Standard 
Parameter           Estimate             Error    t Value    Pr > |t| 
Intercept        526.3299568 B      7.58453252      69.40      <.0001 
yr_rnd           -42.9600584        9.36176101      -4.59      <.0001 
mealcat   1      281.6831760 B      9.44567619      29.82      <.0001 
mealcat   2      117.9458074 B      9.18891138      12.84      <.0001 
mealcat   3        0.0000000 B       .                .         . 
 
NOTE: The X'X matrix has been found to be singular, and a generalized inverse 
      was used to solve the normal equations.  Terms whose estimates are 
      followed by the letter 'B' are not uniquely estimable. 

Recall we used option order=freq before in proc glm  to force proc glm to order the levels of a class 
variable according to the order of descending frequency count. This time we simply used the default 
order of proc glm. The default order for an unformatted numerical variable is simply the order of its 
values. Therefore in our case, the natual order is 1 2 and 3. The proc glm will then drop the highest 
level.     
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In summary, these results indicate the differences between year round and non-year round schools is 
significant, and the differences among the three mealcat groups are significant.  

3.5 Categorical predictor with interactions  

3.5.1 Manually creating dummy variables  

Let's perform the same analysis that we performed above, this time let's include the interaction of 
mealcat by yr_rnd. In this section we show how to do it by manually creating all the dummy variables. 
We use the array structure again. This time we have to declare two set of arrays, one for the dummy 
variables of mealcat and one for the interaction of yr_rnd and mealcat.  

data mealxynd_elemapi; 
  set "c:\sasreg\elemapi2"; 
  array mealdum(3) mealcat1-mealcat3; 
  array mealxynd(3) mealxynd1-mealxynd3; 
  do i = 1 to 3; 
    mealdum(i)=(mealcat=i); 
    mealxynd(i)=mealdum(i)*yr_rnd; 
  end;   
  drop i; 
run; 

We can check to see if our dummy variables have been created correctly. Notice the option nopercent 
and nocum suppress the output on percent and cumulative percent. The option list displays two-way to 
n-way tables in a list format rather than as crosstabulation tables. It seems that our coding has been done 
correctly.  

proc freq data=mealxynd_elemapi; 
  tables yr_rnd*mealcat*mealxynd1*mealxynd2*mealxynd3 
  /nopercent nocum list; 
run; 

yr_rnd    mealcat    mealxynd1    mealxynd2    mealxynd3    Frequency 
--------------------------------------------------------------------- 
     0          1            0            0            0         124 
     0          2            0            0            0         117 
     0          3            0            0            0          67 
     1          1            1            0            0           7 
     1          2            0            1            0          15 
     1          3            0            0            1          70 

Now let's add these dummy variables for interaction between yr_rnd and mealcat to our model. We 
can all add a test statement to test the overall interaction. The output shows that the interaction effect is 
not significant.  

proc reg data=mealxynd_elemapi; 
  model api00=yr_rnd mealcat1 mealcat2 mealxynd1 mealxynd2; 
  test mealxynd1=mealxynd2=0; 
run; 
quit; 

                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
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Model                     5        6204728        1240946     261.61    <.0001 
Error                   394        1868944     4743.51314 
Corrected Total         399        8073672 
 
Root MSE             68.87317    R-Square     0.7685 
Dependent Mean      647.62250    Adj R-Sq     0.7656 
Coeff Var            10.63477 
 
                             Parameter Estimates 
 
                                    Parameter     Standard 
Variable   Label              DF     Estimate        Error  t Value  Pr > |t| 
Intercept  Intercept           1    521.49254      8.41420    61.98    <.0001 
yr_rnd     year round school   1    -33.49254     11.77129    -2.85    0.0047 
mealcat1                       1    288.19295     10.44284    27.60    <.0001 
mealcat2                       1    123.78097     10.55185    11.73    <.0001 
mealxynd1                      1    -40.76438     29.23118    -1.39    0.1639 
mealxynd2                      1    -18.24763     22.25624    -0.82    0.4128 
 
 
The REG Procedure 
Model: MODEL1 
 
       Test 1 Results for Dependent Variable api00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
Numerator           2     5291.75936       1.12    0.3288 
Denominator       394     4743.51314 

It is important to note how the meaning of the coefficients change in the presence of these interaction 
terms. For example, in the prior model, with only main effects, we could interpret Byr_rnd as the 
difference between the year round and non year round schools. However, now that we have added the 
interaction term, the term Byr_rnd represents the difference between cell3 and cell6, or the difference 
between the year round and non-year round schools when mealcat=3 (because mealcat=3 was the 
omitted group). The presence of an interaction would imply that the difference between year round and 
non-year round schools depends on the level of mealcat. The interaction terms Bmealxynd1 and 
Bmealxynd2 represent the extent to which the difference between the year round/non year round 
schools changes when mealcat=1 and when mealcat=2 (as compared to the reference group, 
mealcat=3). For example the term Bmealxynd1 represents the difference between year round and non-
year round for mealcat=1 versus the difference for mealcat=3. In other words, Bmealxynd1 in this 
design is (cell1-cell4) - (cell3-cell6), or it represents how much the effect of yr_rnd differs between 
mealcat=1 and mealcat=3.  

Below we have shown the predicted values for the six cells in terms of the coefficients in the model.  If 
you compare this to the main effects model, you will see that the predicted values are the same except 
for the addition of mealxynd1 (in cell 4) and mealxynd2 (in cell 5).   

           mealcat=1           mealcat=2         mealcat=3 
           ------------------------------------------------- 
 yr_rnd=0  Intercept           Intercept         Intercept     
           +Bmealcat1         +Bmealcat2  
           ------------------------------------------------- 
 yr_rnd=1  Intercept           Intercept         Intercept     
           +Byr_rnd            +Byr_rnd          +Byr_rnd 
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           +Bmealcat1         +Bmealcat2            
           +Bmealxynd1     +Bmealxynd2  

It can be very tricky to interpret these interaction terms if you wish to form specific comparisons. For 
example, if you wanted to perform a test of the simple main effect of yr_rnd when mealcat=1, i.e., 
comparing compare cell1 with cell4, you would want to compare Intercept+ mealcat1 versus 
Intercept + mealcat1 + yr_rnd + mealxynd1 and since Intercept and Imealcat1 would drop out, we 
would test  

proc reg data=mealxynd_elemapi; 
  model api00=yr_rnd mealcat1 mealcat2 mealxynd1 mealxynd2; 
  test yr_rnd + mealxynd1=0; 
run; 
quit; 

       Test 1 Results for Dependent Variable api00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
 
Numerator           1          36536       7.70    0.0058 
Denominator       394     4743.51314 

This test is significant, indicating that the effect of yr_rnd is significant for the mealcat = 1 group.  

As we will see, such tests can be more easily done via anova using proc glm.  

3.5.2 Using anova  

Constructing these interactions can be easier when using the proc glm. We can also avoid manually 
coding our dummy variables. As you see below, the proc glm gives us the test of the overall main 
effects and interactions without the need to perform subsequent test commands.  

proc glm data="c:\sasreg\elemapi2"; 
  class mealcat; 
  model api00=yr_rnd mealcat yr_rnd*mealcat /ss3; 
  run; 
quit; 

                                      Sum of 
Source                     DF        Squares    Mean Square   F Value   Pr > F 
Model                       5    6204727.822    1240945.564    261.61   <.0001 
Error                     394    1868944.176       4743.513 
Corrected Total           399    8073671.998 
 
 
R-Square     Coeff Var      Root MSE    api00 Mean 
0.768514      10.63477      68.87317      647.6225 
 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
yr_rnd                      1      99617.371      99617.371     21.00   <.0001 
mealcat                     2    3903569.804    1951784.902    411.46   <.0001 
yr_rnd*mealcat              2      10583.519       5291.759      1.12   0.3288 
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We can also obtain parameter estimate by using the model option solution, which we will skip as we 
have seen before. It is easy to perform tests of simple main effects using the lsmeans statement shown 
below.  

proc glm data="c:\sasreg\elemapi2"; 
  class  yr_rnd mealcat; 
  model api00=yr_rnd mealcat yr_rnd*mealcat /ss3; 
  lsmeans yr_rnd*mealcat / slice=mealcat;  
run; 
quit; 

The GLM Procedure 
Least Squares Means 
 
          yr_rnd*mealcat Effect Sliced by mealcat for api00 
 
                           Sum of 
mealcat        DF         Squares     Mean Square    F Value    Pr > F 
 
1               1           36536           36536       7.70    0.0058 
2               1           35593           35593       7.50    0.0064 
3               1           38402           38402       8.10    0.0047 

The results from above show us the effect of yr_rnd at each of the three levels of mealcat. We can see 
that the comparison for mealcat = 1 matches those we computed above using the test statement, 
however, it was much easier and less error prone using the lsmeans statement.   

Although this section has focused on how to handle analyses involving interactions, these particular 
results show no indication of interaction. We could decide to omit interaction terms from future 
analyses having found the interactions to be non-significant. This would simplify future analyses, 
however including the interaction term can be useful to assure readers that the interaction term is non-
significant.  

3.6 Continuous and categorical variables    

3.6.1 Using proc reg 

Say that we wish to analyze both continuous and categorical variables in one analysis. For example, let's 
include yr_rnd and some_col in the same analysis. We can also plot the predicted values against 
some_col using plot statement. 

proc reg data="c:\sasreg\elemapi2"; 
  model api00 = yr_rnd some_col; 
  run; 
  quit; 

                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     2        2072202        1036101      68.54    <.0001 
Error                   397        6001470          15117 
Corrected Total         399        8073672 
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Root MSE            122.95143    R-Square     0.2567 
Dependent Mean      647.62250    Adj R-Sq     0.2529 
Coeff Var            18.98505 
 
 
                              Parameter Estimates 
 
                                      Parameter     Standard 
Variable   Label                DF     Estimate        Error  t Value  Pr > |t| 
 
Intercept  Intercept             1    637.85807     13.50332    47.24    <.0001 
yr_rnd     year round school     1   -149.15906     14.87519   -10.03    <.0001 
some_col   parent some college   1      2.23569      0.55287     4.04    <.0001 
 
 
proc reg data="c:\sasreg\elemapi2"; 
  model api00 = yr_rnd some_col; 
  output out=pred pred=p; 
run; 
quit; 
symbol1 c=blue v=circle h=.8; 
symbol2 c=red  c=circle h=.8; 
axis1 label=(r=0 a=90) minor=none; 
axis2 minor=none;  
proc gplot data=pred; 
  plot p*some_col=yr_rnd /vaxis=axis1 haxis=axis2; 
run; 
quit; 

 



 230

The coefficient for some_col indicates that for every unit increase in some_col the api00 score is 
predicted to increase by 2.23 units. This is the slope of the lines shown in the above graph. The graph 
has two lines, one for the year round schools and one for the non-year round schools. The coefficient for 
yr_rnd is -149.16, indicating that as yr_rnd increases by 1 unit, the api00 score is expected to decrease 
by about 149 units. As you can see in the graph, the top line is about 150 units higher than the lower 
line. You can see that the intercept is 637 and that is where the upper line crosses the Y axis when X is 
0. The lower line crosses the line about 150 units lower at about 487.  

3.6.2 Using proc glm  

We can run this analysis using the proc glm for anova. The proc glm  assumes that the independent 
variables are continuous. Thus, we need to use the class statement to specify which variables should be 
considered as categorical variables.   

proc glm data="c:\sasreg\elemapi2"; 
  class yr_rnd; 
  model api00=yr_rnd some_col /solution ss3; 
  run; 
quit; 

                                      Sum of 
Source                     DF        Squares    Mean Square   F Value   Pr > F 
Model                       2    2072201.839    1036100.919     68.54   <.0001 
Error                     397    6001470.159      15117.053 
Corrected Total           399    8073671.998 
 
R-Square     Coeff Var      Root MSE    api00 Mean 
0.256662      18.98505      122.9514      647.6225 
 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
yr_rnd                      1    1519992.669    1519992.669    100.55   <.0001 
some_col                    1     247201.276     247201.276     16.35   <.0001 
 
                                      Standard 
Parameter           Estimate             Error    t Value    Pr > |t| 
Intercept        488.6990076 B     15.51331180      31.50      <.0001 
yr_rnd    0      149.1590647 B     14.87518847      10.03      <.0001 
yr_rnd    1        0.0000000 B       .                .         . 
some_col           2.2356887        0.55286556       4.04      <.0001 
 
NOTE: The X'X matrix has been found to be singular, and a generalized inverse 
      was used to solve the normal equations.  Terms whose estimates are 
      followed by the letter 'B' are not uniquely estimable. 

If we square the t-values from the proc reg (above), we would find that they match those F-values of 
the proc glm. One thing you may notice that the parameter estimates above do not look quite the same 
as we did using proc reg. This is due to how proc glm processes a categorical (class) variable. We can 
get the same result if we code our class variable differently. This is shown below.  

data temp; 
  set "c:\sasreg\elemapi2"; 
  yrn=1-yr_rnd; 
run; 
 
proc glm data=temp; 
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  class yrn; 
  model api00=yrn some_col /solution ss3; 
  run; 
quit; 

                                      Sum of 
Source                     DF        Squares    Mean Square   F Value   Pr > F 
Model                       2    2072201.839    1036100.919     68.54   <.0001 
Error                     397    6001470.159      15117.053 
Corrected Total           399    8073671.998 
 
R-Square     Coeff Var      Root MSE    api00 Mean 
0.256662      18.98505      122.9514      647.6225 
 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
yrn                         1    1519992.669    1519992.669    100.55   <.0001 
some_col                    1     247201.276     247201.276     16.35   <.0001 
 
 
                                      Standard 
Parameter           Estimate             Error    t Value    Pr > |t| 
Intercept        637.8580723 B     13.50332419      47.24      <.0001 
yrn       0     -149.1590647 B     14.87518847     -10.03      <.0001 
yrn       1        0.0000000 B       .                .         . 
some_col           2.2356887        0.55286556       4.04      <.0001 
 
NOTE: The X'X matrix has been found to be singular, and a generalized inverse 
      was used to solve the normal equations.  Terms whose estimates are 
      followed by the letter 'B' are not uniquely estimable. 

3.7 Interactions of Continuous by 0/1 Categorical variables  

Above we showed an analysis that looked at the relationship between some_col and api00 and also 
included yr_rnd.  We saw that this produced a graph where we saw the relationship between some_col 
and api00 but there were two regression lines, one higher than the other but with equal slope.  Such a 
model assumed that the slope was the same for the two groups.  Perhaps the slope might be different for 
these groups.  Let's run the regressions separately for these two groups beginning with the non-year 
round schools.  

proc reg data="c:\sasreg\elemapi2"; 
  model api00 = some_col; 
  where yr_rnd=0; 
run; 
quit; 

                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     1          84701          84701       4.91    0.0274 
Error                   306        5273592          17234 
Corrected Total         307        5358293 
 
 
Root MSE            131.27818    R-Square     0.0158 
Dependent Mean      684.53896    Adj R-Sq     0.0126 
Coeff Var            19.17760 
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                              Parameter Estimates 
 
                                      Parameter     Standard 
Variable   Label                DF     Estimate        Error  t Value  Pr > |t| 
 
Intercept  Intercept             1    655.11030     15.23704    42.99    <.0001 
some_col   parent some college   1      1.40943      0.63576     2.22    0.0274 
 
 
symbol1 i=none c=black v=circle h=0.5; 
symbol2 i=join c=red v=dot h=0.5; 
proc reg data="c:\sasreg\elemapi2"; 
  model api00 = some_col; 
  where yr_rnd=0; 
  plot (api00 predicted.)*some_col /overlay; 
run; 
quit; 

 

Likewise, let's look at the year round schools and we will use the same symbol statements as above.  

 
symbol1 i=none c=black v=circle h=0.5; 
symbol2 i=join c=red v=dot h=0.5; 
proc reg data="c:\sasreg\elemapi2"; 
  model api00 = some_col; 
  where yr_rnd=1; 
  plot (api00 predicted.)*some_col /overlay; 
run; 
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quit; 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     1         373644         373644      65.08    <.0001 
Error                    90         516735     5741.49820 
Corrected Total          91         890379 
 
 
Root MSE             75.77267    R-Square     0.4196 
Dependent Mean      524.03261    Adj R-Sq     0.4132 
Coeff Var            14.45953 
 
 
                              Parameter Estimates 
 
                                      Parameter     Standard 
Variable   Label                DF     Estimate        Error  t Value  Pr > |t| 
 
Intercept  Intercept             1    407.03907     16.51462    24.65    <.0001 
some_col   parent some college   1      7.40262      0.91763     8.07    <.0001 
 
  

 

Note that the slope of the regression line looks much steeper for the year round schools than for the 
non-year round schools. This is confirmed by the regression equations that show the slope for the year 
round schools to be higher (7.4) than non-year round schools (1.3). We can compare these to see if 
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these are significantly different from each other by including the interaction of some_col by yr_rnd, an 
interaction of a continuous variable by a categorical variable.  

3.7.1 Computing interactions manually  

We will start by manually computing the interaction of some_col by yr_rnd. Let's start fresh and use 
the elemapi2 data file which should be sitting in your "c:\sasreg\" directory.   

Next, let's make a variable that is the interaction of some college (some_col) and year round schools 
(yr_rnd) called yrxsome.  

data yrxsome_elemapi; 
  set "c:\sasreg\elemapi2"; 
  yrxsome = yr_rnd*some_col; 
run; 

We can now run the regression that tests whether the coefficient for some_col is significantly different 
for year round schools and non-year round schools. Indeed, the yrxsome interaction effect is significant.  

proc reg data=yrxsome_elemapi; 
  model api00 = some_col yr_rnd yrxsome; 
run; 
quit; 

                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     3        2283345         761115      52.05    <.0001 
Error                   396        5790327          14622 
Corrected Total         399        8073672 
 
 
Root MSE            120.92161    R-Square     0.2828 
Dependent Mean      647.62250    Adj R-Sq     0.2774 
Coeff Var            18.67162 
 
 
                              Parameter Estimates 
 
                                      Parameter     Standard 
Variable   Label                DF     Estimate        Error  t Value  Pr > |t| 
 
Intercept  Intercept             1    655.11030     14.03499    46.68    <.0001 
some_col   parent some college   1      1.40943      0.58560     2.41    0.0165 
yr_rnd     year round school     1   -248.07124     29.85895    -8.31    <.0001 
yrxsome                          1      5.99319      1.57715     3.80    0.0002 

We can then save the predicted values to a data set and graph the predicted values for the two types of 
schools by some_col. You can see how the two lines have quite different slopes, consistent with the fact 
that the yrxsome interaction was significant.    

proc reg data=yrxsome_elemapi; 
  model api00 = some_col yr_rnd yrxsome; 
  output out=temp pred=p; 
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 run; 
quit; 
 
axis1 label=(r=0 a=90) minor=none; 
axis2 minor = none; 
proc gplot data=temp; 
  plot p*some_col=yr_rnd / haxis=axis2 vaxis=axis1; 
run; 
quit; 

 

 

We can also create a plot including the data points. There are two ways of doing this and we'll show 
both ways and their graphs here. One is to use the plot statement in proc reg. 

symbol1 c=black v=star h=0.8; 
symbol2 c=red v=circle i=join h=0.8; 
proc reg data=yrxsome_elemapi; 
  model api00 = some_col yr_rnd yrXsome; 
  plot (api00 predicted.)*some_col/overlay; 
 run; 
quit; 
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The other is to use proc gplot where we have more control over the look of the graph. In order to use 
proc gplot, we have to create a data set including the predicted value. This is done using the output 
statement in proc reg. In order to distinguish between the two groups of year-round schools and non-
year-round schools we will do another data step where two variables of predicted values are created for 
each of the group.   

proc reg data=yrxsome_elemapi; 
  model api00 = some_col yr_rnd yrxsome; 
  plot (api00 predicted.)*some_col/overlay; 
run; 
quit; 
 
data temp1; 
  set temp; 
  if yr_rnd=1 then p1=p; 
  if yr_rnd=0 then p0=p; 
run; 
 
axis1 label=(r=0 a=90) minor=none; 
axis2 minor = none; 
symbol1 c=black v=star h=0.8; 
symbol2 c=red v=circle i=join h=0.8; 
symbol3 c=blue v=diamond i=join h=0.8; 
proc gplot data=temp1; 
  plot (api00 p1 p0)*some_col / overlay haxis=axis2 vaxis=axis1; 
run; 
quit; 
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We can further enhance it so the data points are marked with different symbols. The graph above used 
the same kind of symbols for the data points for both types of schools. Let's make separate variables for 
the api00 scores for the two types of schools called api0 for the non-year round schools and api1 for 
the year round schools.  

data temp1; 
  set temp; 
  if yr_rnd=1 then do api1=api00; p1=p; end; 
  if yr_rnd=0 then do api0=api00; p0=p; end; 
run; 

We can then make the same graph as above except show the points differently for the two types of 
schools.  Below we use stars for the non-year round schools, and diamonds for the year round schools.  

goptions reset=all; 
axis1 label=(r=0 a=90) minor=none; 
axis2 minor = none; 
symbol1 c=black v=star h=0.8; 
symbol2 c=red v=diamond h=0.8; 
symbol3 c=black v=star  i=join h=0.8; 
symbol4 c=red v=diamond  i=join h=0.8; 
proc gplot data=temp1; 
  plot api0*some_col=1 api1*some_col=2 p0*some_col=3 p1*some_col= 4  
  / overlay haxis=axis2 vaxis=axis1; 
run; 
quit; 
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Let's quickly run the regressions again where we performed separate regressions for the two groups. We 
can first sort the data set by yr_rnd and make use of the by statement in the proc reg to perform 
separate regressions for the two groups. We also use the ODS (output delivery system) of SAS 8 to 
output the parameter estimate to a data set and print it out to compare the result. 

 
proc sort data=yrxsome_elemapi; 
  by yr_rnd; 
run; 
 
ods listing close; /*stop output to appear in the output window*/ 
ods output ParameterEstimates=reg_some_col  
    (keep = yr_rnd Variable estimate ); 
proc reg data=yrxsome_elemapi; 
  by yr_rnd; 
  model api00=some_col; 
run; 
quit; 
ods output close; 
ods listing; /*put output back to the output window*/ 
 
proc print data=reg_some_col noobs; 
run; 
yr_rnd    Variable        Estimate 
 
   0      Intercept      655.11030 
   0      some_col         1.40943 
   1      Intercept      407.03907 
   1      some_col         7.40262 
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Now, let's show the regression for both types of schools with the interaction term.  

proc reg data=yrxsome_elemapi; 
  model api00 = some_col yr_rnd yrxsome; 
  output out=temp pred=p; 
 run; 
quit; 

                             Parameter Estimates 
 
                                      Parameter     Standard 
Variable   Label                DF     Estimate        Error  t Value  Pr > |t| 
 
Intercept  Intercept             1    655.11030     14.03499    46.68    <.0001 
some_col   parent some college   1      1.40943      0.58560     2.41    0.0165 
yr_rnd     year round school     1   -248.07124     29.85895    -8.31    <.0001 
yrxsome                          1      5.99319      1.57715     3.80    0.0002 

Note that the coefficient for some_col in the combined analysis is the same as the coefficient for 
some_col for the non-year round schools? This is because non-year round schools are the reference 
group. Then, the coefficient for the yrxsome interaction in the combined analysis is the Bsome_col for 
the year round schools (7.4) minus Bsome_col for the non year round schools (1.41) yielding 5.99. This 
interaction is the difference in the slopes of some_col for the two types of schools, and this is why this 
is useful for testing whether the regression lines for the two types of schools are equal. If the two types 
of schools had the same regression coefficient for some_col, then the coefficient for the yrxsome 
interaction would be 0. In this case, the difference is significant, indicating that the regression lines are 
significantly different.  

So, if we look at the graph of the two regression lines we can see the difference in the slopes of the 
regression lines (see graph below).  Indeed, we can see that the non-year round schools (the solid line) 
have a smaller slope (1.4) than the slope for the year round schools (7.4).  The difference between these 
slopes is 5.99, which is the coefficient for yrxsome.  
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3.7.2 Computing interactions with proc glm  

We can also run a model just like the model we showed above using the proc glm. We can include the 
terms yr_rnd some_col and the interaction yr_rnr*some_col. Thus we can avoid a data step.    

proc glm data="c:\sasreg\elemapi2"; 
  model api00 = yr_rnd some_col yr_rnd*some_col /ss3; 
run; 
quit;  

                                      Sum of 
Source                     DF        Squares    Mean Square   F Value   Pr > F 
Model                       3    2283345.485     761115.162     52.05   <.0001 
Error                     396    5790326.513      14622.037 
Corrected Total           399    8073671.998 
 
R-Square     Coeff Var      Root MSE    api00 Mean 
0.282814      18.67162      120.9216      647.6225 
 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
yr_rnd                      1    1009279.986    1009279.986     69.02   <.0001 
some_col                    1      84700.858      84700.858      5.79   0.0165 
yr_rnd*some_col             1     211143.646     211143.646     14.44   0.0002 
 
 
                                        Standard 
Parameter               Estimate           Error    t Value    Pr > |t| 
Intercept            655.1103031     14.03499037      46.68      <.0001 
yr_rnd              -248.0712373     29.85894895      -8.31      <.0001 
some_col               1.4094272      0.58560219       2.41      0.0165 
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yr_rnd*some_col        5.9931903      1.57714998       3.80      0.0002 

In this section we found that the relationship between some_col and api00 depended on whether the 
school was from year round schools or from non-year round schools.  For the schools from year round 
schools, the relationship between some_col and api00 was significantly stronger than for those from 
non-year round schools.  In general, this type of analysis allows you to test whether the strength of the 
relationship between two continuous variables varies based on the categorical variable. 

3.8 Continuous and categorical variables, interaction with 1/2/3 variable    

The prior examples showed how to do regressions with a continuous variable and a categorical variable 
that has two levels.  These examples will extend this further by using a categorical variable with three 
levels, mealcat.     

3.8.1 Manually creating dummy variables  

We can use a data step to create all the dummy variables needed for the interaction of mealcat and 
some_col just as we did before for mealcat. With the dummy variables, we can use proc reg for the 
regression analysis. We'll use mealcat1 as the reference group.  

data mxcol_elemapi; 
  set "c:\sasreg\elemapi2"; 
    array mealdum(3) mealcat1-mealcat3; 
    array mxcol(3) mxcol1-mxcol3; 
  do i = 1 to 3; 
    mealdum(i)=(mealcat=i); 
    mxcol(i)=mealdum(i)*some_col; 
  end; 
drop i; 
run; 
 
proc reg data=mxcol_elemapi; 
  model api00 = some_col mealcat2 mealcat3 mxcol2 mxcol3; 
  run; 
quit;  
 

                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     5        6212307        1242461     263.00    <.0001 
Error                   394        1861365     4724.27696 
Corrected Total         399        8073672 
 
 
Root MSE             68.73338    R-Square     0.7695 
Dependent Mean      647.62250    Adj R-Sq     0.7665 
Coeff Var            10.61319 
 
 
                              Parameter Estimates 
 
                                      Parameter     Standard 
Variable   Label                DF     Estimate        Error  t Value  Pr > |t| 
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Intercept  Intercept             1    825.89370     11.99182    68.87    <.0001 
some_col   parent some college   1     -0.94734      0.48737    -1.94    0.0526 
mealcat2                         1   -239.02998     18.66502   -12.81    <.0001 
mealcat3                         1   -344.94758     17.05743   -20.22    <.0001 
mxcol2                           1      3.14094      0.72929     4.31    <.0001 
mxcol3                           1      2.60731      0.89604     2.91    0.0038 

The interaction now has two terms (mxcol2 and mxcol3).  To get an overall test of this interaction, we 
can use the test command.    

proc reg data=mxcol_elemapi; 
  model api00 = some_col mealcat2 mealcat3 mxcol2 mxcol3; 
  test mxcol2=mxcol3=0; 
run; 
quit; 

       Test 1 Results for Dependent Variable api00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
 
Numerator           2          48734      10.32    <.0001 
Denominator       394     4724.27696 

These results indicate that the overall interaction is indeed significant.  This means that the regression 
lines from the three groups differ significantly. As we have done before, let's compute the predicted 
values and make a graph of the predicted values so we can see how the regression lines differ.  

proc reg data=mxcol_elemapi; 
  model api00 = some_col mealcat2 mealcat3 mxcol2 mxcol3; 
  output out=pred predicted=p; 
  run; 
quit; 
goptions reset=all; 
axis1 label=(r=0 a=90); 
proc gplot data=pred; 
  plot p*some_col=mealcat /vaxis=axis1; 
run; 
quit; 

Since we had three groups, we get three regression lines, one for each category of mealcat. The solid 
line is for group 1, the dashed line for group 2, and the dotted line is for group 3.  
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Group 1 was the omitted group, therefore the slope of the line for group 1 is the coefficient for 
some_col which is -.94.  Indeed, this line has a downward slope.  If we add the coefficient for some_col 
to the coefficient for mxcol2 we get the coefficient for group 2, i.e., 3.14 + (-.94) yields 2.2, the slope 
for group 2. Indeed, group 2 shows an upward slope. Likewise,  if we add the coefficient for some_col 
to the coefficient for mxcol3 we get the coefficient for group 3, i.e., 2.6 + (-.94) yields 1.66, the slope 
for group 3,.  So, the slopes for the 3 groups are 

group 1: -0.94 
group 2:  2.2 
group 3:  1.66 

The test of the coefficient in the parameter estimates for mxcol2 tested whether the coefficient for group 
2 differed from group 1, and indeed this was significant.  Likewise, the test of the coefficient for 
mxcol3 tested whether the coefficient for group 3 differed from group 1, and indeed this was 
significant.  What did the test of the coefficient some_col test?  This coefficient represents the 
coefficient for group 1, so this tested whether the coefficient for group 1 (-0.94) was significantly 
different from 0.  This is probably a non-interesting test. 

The comparisons in the above analyses don't seem to be as interesting as comparing group 1 versus 2 
and then comparing group 2 versus 3.  These successive comparisons seem much more interesting. We 
can do this by making group 2 the omitted group, and then each group would be compared to group 2.    

 
proc reg data=mxcol_elemapi; 
  model api00 = some_col mealcat1 mealcat3 mxcol1 mxcol3; 
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  run; 
quit; 

                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     5        6212307        1242461     263.00    <.0001 
Error                   394        1861365     4724.27696 
Corrected Total         399        8073672 
 
 
Root MSE             68.73338    R-Square     0.7695 
Dependent Mean      647.62250    Adj R-Sq     0.7665 
Coeff Var            10.61319 
 
 
                              Parameter Estimates 
 
                                      Parameter     Standard 
Variable   Label                DF     Estimate        Error  t Value  Pr > |t| 
 
Intercept  Intercept             1    586.86372     14.30311    41.03    <.0001 
some_col   parent some college   1      2.19361      0.54253     4.04    <.0001 
mealcat1                         1    239.02998     18.66502    12.81    <.0001 
mealcat3                         1   -105.91760     18.75450    -5.65    <.0001 
mxcol1                           1     -3.14094      0.72929    -4.31    <.0001 
mxcol3                           1     -0.53364      0.92720    -0.58    0.5653 

Now, the test of mxcol1 tests whether the coefficient for group 1 differs from group 2, and it 
does.  Then, the test of mxcol3 tests whether the coefficient for group 3 significantly differs from group 
2, and it does not. This makes sense given the graph and given the estimates of the coefficients that we 
have, that -.94 is significantly different from 2.2 but 2.2 is not significantly different from 1.66.  

3.8.2 Using proc glm  

We can perform the same analysis using the proc glm command, as shown below.  The proc glm 
allows us to avoid dummy coding for either the categorical variable mealcat and for the interaction 
term of mealcat and some_col. The tricky part  is to control the reference group. 

proc glm data="c:\sasreg\elemapi2"; 
  class mealcat; 
  model api00=some_col mealcat some_col*mealcat /solution ss3; 
run; 
quit; 

                                      Sum of 
Source                     DF        Squares    Mean Square   F Value   Pr > F 
Model                       5    6212306.876    1242461.375    263.00   <.0001 
Error                     394    1861365.121       4724.277 
Corrected Total           399    8073671.998 
 
R-Square     Coeff Var      Root MSE    api00 Mean 
0.769452      10.61319      68.73338      647.6225 
 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
some_col                    1      36366.366      36366.366      7.70   0.0058 
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mealcat                     2    2012065.492    1006032.746    212.95   <.0001 
some_col*mealcat            2      97468.169      48734.084     10.32   <.0001 
 
 
                                             Standard 
Parameter                  Estimate             Error    t Value    Pr > |t| 
Intercept               480.9461176 B     12.13062708      39.65      <.0001 
some_col                  1.6599700 B      0.75190859       2.21      0.0278 
mealcat          1      344.9475807 B     17.05743173      20.22      <.0001 
mealcat          2      105.9176024 B     18.75449819       5.65      <.0001 
mealcat          3        0.0000000 B       .                .         . 
some_col*mealcat 1       -2.6073085 B      0.89604354      -2.91      0.0038 
some_col*mealcat 2        0.5336362 B      0.92720142       0.58      0.5653 
some_col*mealcat 3        0.0000000 B       .                .         . 
 
NOTE: The X'X matrix has been found to be singular, and a generalized inverse 
      was used to solve the normal equations.  Terms whose estimates are 
      followed by the letter 'B' are not uniquely estimable. 

Because the default order for categorical variables is their numeric values, glm omits the third category. 
On the other hand, the analysis we showed in previous section omitted the second category, the 
parameter estimates will not be the same. You can compare the results from below with the results 
above and see that the parameter estimates are not the same.  Because group 3 is dropped, that is the 
reference category and all comparisons are made with group 3. Other than default order, proc glm also 
allows freq count order, which in our case is the same as the default order since group 3 has the most 
count.   

These analyses showed that the relationship between some_col and api00 varied, depending on the 
level of mealcat.  In comparing group 1 with group 2, the coefficient for some_col was significantly 
different, but there was no difference in the coefficient for some_col in comparing groups 2 and 3.  

3.9 Summary  

This chapter covered some techniques for analyzing data with categorical variables, especially, 
manually constructing indicator variables and using the proc glm. Each method has its advantages and 
disadvantages, as described below.  

Manually constructing indicator variables can be very tedious and even error prone. For very simple 
models, it is not very difficult to create your own indicator variables, but if you have categorical 
variables with many levels and/or interactions of categorical variables, it can be laborious to manually 
create indicator variables. However, the advantage is that you can have quite a bit of control over how 
the variables are created and the terms that are entered into the model.  

The proc glm approach eliminates the need to create indicator variables making it easy to include 
variables that have lots of categories, and making it easy to create interactions by allowing you to 
include terms like some_col*mealcat. It can be easier to perform tests of simple main effects with the 
proc glm. However, the proc glm is not very flexible in letting you choose which category is the 
omitted category.  

As you will see in the next chapter, the regress command includes additional options like the robust 
option and the cluster option that allow you to perform analyses when you don't exactly meet the 
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assumptions of ordinary least squares regression.  In such cases, the regress command offers features 
not available in the anova command and may be more advantageous to use. 

 

Regression with SAS 
Chapter 4 - Beyond OLS 

Chapter Outline 
    4.1 Robust Regression Methods 
        4.1.1 Regression with Robust Standard Errors 
        4.1.2 Using the Proc Genmod for Clustered Data 
        4.1.3 Robust Regression 
        4.1.4 Quantile Regression 
    4.2 Constrained Linear Regression 
    4.3 Regression with Censored or Truncated Data 
        4.3.1 Regression with Censored Data 
        4.3.2 Regression with Truncated Data 
    4.4 Regression with Measurement Error 
    4.5 Multiple Equation Regression Models 
        4.5.1 Seemingly Unrelated Regression 
        4.5.2 Multivariate Regression 
    4.6 Summary       

In this chapter we will go into various commands that go beyond OLS. This chapter is a bit different 
from the others in that it covers a number of different concepts, some of which may be new to you. 
These extensions, beyond OLS, have much of the look and feel of OLS but will provide you with 
additional tools to work with linear models. 

The topics will include robust regression methods, constrained linear regression, regression with 
censored and truncated data, regression with measurement error, and multiple equation models. 

4.1 Robust Regression Methods 

It seems to be a rare dataset that meets all of the assumptions underlying multiple regression. We know 
that failure to meet assumptions can lead to biased estimates of coefficients and especially biased 
estimates of the standard errors. This fact explains a lot of the activity in the development of robust 
regression methods. 

The idea behind robust regression methods is to make adjustments in the estimates that take into 
account some of the flaws in the data itself. We are going to look at three robust methods: regression 
with robust standard errors, regression with clustered data, robust regression, and quantile regression. 

Before we look at these approaches, let's look at a standard OLS regression using the elementary school 
academic performance index (elemapi2.dta) dataset. We will look at a model that predicts the api 2000 
scores using the average class size in K through 3 (acs_k3), average class size 4 through 6 (acs_46), the 
percent of fully credentialed teachers (full), and the size of the school (enroll). First let's look at the 
descriptive statistics for these variables.  Note the missing values for acs_k3 and acs_k6.  

http://www.ats.ucla.edu/stat/sas/webbooks/reg/
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proc means data = "c:\sasreg\elemapi2" mean std max min; 
  var api00 acs_k3 acs_46 full enroll; 
run; 
The MEANS Procedure 
 
Variable            Mean         Std Dev         Minimum         Maximum 
------------------------------------------------------------------------ 
api00        647.6225000     142.2489610     369.0000000     940.0000000 
acs_k3        19.1608040       1.3686933      14.0000000      25.0000000 
acs_46        29.6851385       3.8407840      20.0000000      50.0000000 
full          84.5500000      14.9497907      37.0000000     100.0000000 
enroll       483.4650000     226.4483847     130.0000000         1570.00 
------------------------------------------------------------------------ 

Below we see the regression predicting api00 from acs_k3 acs_46 full and enroll. We see that all of 
the variables are significant except for acs_k3.  

 
proc reg data = "c:\sasreg\elemapi2"; 
  model api00 = acs_k3 acs_46 full enroll ;  
run; 

The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     4        3071909         767977      61.01    <.0001 
Error                   390        4909501          12588 
Corrected Total         394        7981410 
 
 
Root MSE            112.19832    R-Square     0.3849 
Dependent Mean      648.65063    Adj R-Sq     0.3786 
Coeff Var            17.29719 
 
 
                        Parameter Estimates 
 
                     Parameter       Standard 
Variable     DF       Estimate          Error    t Value    Pr > |t| 
 
Intercept     1       -5.20041       84.95492      -0.06      0.9512 
acs_k3        1        6.95438        4.37110       1.59      0.1124 
acs_46        1        5.96601        1.53105       3.90      0.0001 
full          1        4.66822        0.41425      11.27      <.0001 
enroll        1       -0.10599        0.02695      -3.93      <.0001 

Since the regression procedure is interactive and we haven't issued the quit command, we can test both 
of the class size variables, and we find the overall test of these two variables is significant.  

test acs_k3 = acs_46 = 0; 
run; 

       Test 1 Results for Dependent Variable api00 
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                                Mean 
Source             DF         Square    F Value    Pr > F 
 
Numerator           2         139437      11.08    <.0001 
Denominator       390          12588 

Here is the residual versus fitted plot for this regression. Notice that the pattern of the residuals is not 
exactly as we would hope.  The spread of the residuals is somewhat wider toward the middle right of 
the graph than at the left, where the variability of the residuals is somewhat smaller, suggesting some 
heteroscedasticity.  

plot r.*p.; 
run;  
 

 

Here is the index plot of Cook's D for this regression. We see 4 points that are somewhat high in both 
their leverage and their residuals.   

  plot cookd.*obs.; 
run;  
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None of these results are dramatic problems, but the plot of residual vs. predicted value suggests that 
there might be some outliers and some possible heteroscedasticity and the index plot of Cook's D shows 
some points in the upper right quadrant that could be influential. We might wish to use something other 
than OLS regression to estimate this model. In the next several sections we will look at some robust 
regression methods. 

4.1.1 Regression with Robust Standard Errors 

The SAS proc reg  includes an option called acov in the model statement for estimating the asymptotic 
covariance matrix of the estimates under the hypothesis of heteroscedasticity. The standard error 
obtained from the asymptotic covariance matrix is considered to be more  robust and can deal with a 
collection of minor concerns about failure to meet assumptions, such as minor problems about 
normality, heteroscedasticity, or some observations that exhibit large residuals, leverage or influence. 
For such minor problems, the standard error based on acov  may effectively deal with these concerns.  

With the acov option, the point estimates of the coefficients are exactly the same as in ordinary OLS, 
but we will calculate the standard errors based on the asymptotic covariance matrix. Here is the same 
regression as above using the acov option. We also use SAS ODS (Output Delivery System)  to output 
the parameter estimates along with the asymptotic covariance matrix. We calculated the robust standard 
error in a data step and merged them with the parameter estimate using proc sql and created the t-values 
and corresponding probabilities.  Note the changes in the standard errors and t-tests (but no change in 
the coefficients). In this particular example, using robust standard errors did not change any of the 
conclusions from the original OLS regression. We should also mention that the robust standard error 
has been adjusted for the sample size correction.   

proc reg data = "c:\sasreg\elemapi2"; 
      model api00 = acs_k3 acs_46 full enroll /acov; 
      ods output  ACovEst = estcov; 
      ods output ParameterEstimates=pest; 
run; 
quit; 
data temp_dm; 
  set estcov; 
  drop model dependent; 
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  array a(5) intercept acs_k3 acs_46 full enroll; 
  array b(5) std1-std5; 
  b(_n_) = sqrt((395/390)*a(_n_)); 
  std = max(of std1-std5); 
  keep variable std; 
run; 
proc sql; 
  select pest.variable, estimate, stderr, tvalue, probt, std as robust_stderr,  
         estimate/robust_stderr as tvalue_rb,  
         (1 - probt(abs(estimate/robust_stderr), 394))*2 as probt_rb  
  from pest, temp_dm 
  where pest.variable=temp_dm.variable; 
quit; 

                                                      robust_ 
Variable   Estimate     StdErr  tValue   Probt     stderr  tvalue_rb  probt_rb 
------------------------------------------------------------------------------ 
Intercept  -5.20041   84.95492   -0.06  0.9512   86.66308   -0.06001   0.95218 
acs_k3      6.95438    4.37110    1.59  0.1124   4.620599   1.505082  0.133104 
acs_46      5.96601    1.53105    3.90  0.0001   1.573214   3.792246  0.000173 
full        4.66822    0.41425   11.27  <.0001   0.414681   11.25737         0 
enroll     -0.10599    0.02695   -3.93  <.0001   0.028015   -3.78331  0.000179 

4.1.2 Using the Proc Genmod for Clustered Data 

As described in Chapter 2, OLS regression assumes that the residuals are independent. The elemapi2 
dataset contains data on 400 schools that come from 37 school districts. It is very possible that the 
scores within each school district may not be independent, and this could lead to residuals that are not 
independent within districts. SAS proc genmod is used to model correlated data.  We can use the class 
statement and the repeated statement  to indicate that the observations are clustered into districts (based 
on dnum) and that the observations may be correlated within districts, but would be independent 
between districts.  

proc genmod data="c:\sasreg\elemapi2"; 
    class dnum; 
    model api00 = acs_k3 acs_46 full enroll ; 
    repeated subject=dnum / type=ind ; 
run; 
quit; 

The GENMOD Procedure 
 
             Analysis Of GEE Parameter Estimates 
              Empirical Standard Error Estimates 
                   Standard   95% Confidence 
Parameter Estimate    Error       Limits            Z Pr > |Z| 
Intercept  -5.2004 119.5172 -239.450 229.0490   -0.04   0.9653 
acs_k3      6.9544   6.7726  -6.3196  20.2284    1.03   0.3045 
acs_46      5.9660   2.4839   1.0976  10.8344    2.40   0.0163 
full        4.6682   0.6904   3.3151   6.0213    6.76   <.0001 
enroll     -0.1060   0.0421  -0.1886  -0.0234   -2.51   0.0119 

As with the regression with robust error, the estimate of the coefficients are the same as the OLS 
estimates, but the standard errors take into account that the observations within districts are non-
independent.  Even though the standard errors are larger in this analysis, the three variables that were 
significant in the OLS analysis are significant in this analysis as well.   
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We notice that the standard error estimates given here are different from what Stata's result using 
regress with the cluster option. This is because that Stata further does a finite-sample adjustment. We 
can do some SAS programming here for the adjustment. The adjusted variance is a constant times the 
variance obtained from the empirical standard error estimates. This particular constant is  
(N-1)/(N-k)*M/(M-1).  

data em; 
  set 'c:\sasreg\elemapi2'; 
run; 
proc genmod data=em; 
    class dnum; 
    model api00 = acs_k3 acs_46 full enroll ; 
    repeated subject=dnum / type = ind covb ; 
 ods output geercov = gcov; 
    ods output GEEEmpPEst = parms; 
run; 
quit; 
proc sql; 
  select count(dnum),count(distinct dnum)  into :n, :m 
  from em; 
quit; 
proc sql; 
  select count(prm1) into :k 
  from gcov; 
quit; 
data gcov_ad; 
  set gcov; 
  array all(*) _numeric_; 
  do i = 1 to dim(all); 
  all(i) = all(i)*((&n-1)/(&n-&k))*(&m/(&m-1)); 
  if i = _n_ then std_ad = sqrt(all(i)); 
  end; 
drop i; 
keep std_ad; 
run; 
data all; 
  merge parms gcov_ad; 
run; 
proc print data = all noobs; 
run; 
Parm         Estimate      Stderr     LowerCL     UpperCL          Z     ProbZ     
std_ad 
Intercept     -5.2004    119.5172    -239.450    229.0490      -0.04    0.9653    
121.778 
acs_k3         6.9544      6.7726     -6.3196     20.2284       1.03    0.3045      
6.901 
acs_46         5.9660      2.4839      1.0976     10.8344       2.40    0.0163      
2.531 
full           4.6682      0.6904      3.3151      6.0213       6.76    <.0001      
0.703 
enroll        -0.1060      0.0421     -0.1886     -0.0234      -2.51    0.0119      
0.043 
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Regression with SAS 
Chapter 5: Additional coding systems for categorical variables in regression analysis   

Chapter Outline 
    5.1 Simple Coding 
    5.2 Forward Difference Coding 
    5.3 Backward Difference Coding 
    5.4 Helmert Coding 
    5.5 Reverse Helmert Coding 
    5.6 Deviation Coding 
    5.7 Orthogonal Polynomial Coding 
    5.8 User-Defined Coding 
    5.9 Summary  

Categorical variables require special attention in regression analysis because, unlike dichotomous or 
continuous variables, they cannot by entered into the regression equation just as they are.  For example, 
if you have a variable called race that is coded 1 = Hispanic, 2 = Asian 3 = Black 4 = White, then 
entering race in your regression will look at the linear effect of race, which is probably not what you 
intended. Instead, categorical variables like this need to be recoded into a series of variables which can 
then be entered into the regression model.  There are a variety of coding systems that can be used when 
coding categorical variables.  Ideally, you would choose a coding system that reflects the comparisons 
that you want to make.  In Chapter 3 of the Regression with SAS Web Book we covered the use of 
categorical variables in regression analysis focusing on the use of dummy variables, but that is not the 
only coding scheme that you can use.  For example, you may want to compare each level to the next 
higher level, in which case you would want to use "forward difference" coding, or you might want to 
compare each level to the mean of the subsequent levels of the variable, in which case you would want 
to use "Helmert" coding.  By deliberately choosing a coding system, you can obtain comparisons that 
are most meaningful for testing your hypotheses.  Regardless of the coding system you choose, the test 
of the overall effect of the categorical variable (i.e., the overall effect of race) will remain the 
same.  Below is a table listing various types of contrasts and the comparison that they make.   
   

Name of contrast Comparison made 
Simple Coding Compares each level of a variable to the reference level 
Forward Difference 
Coding Adjacent levels of a variable (each level minus the next level) 

Backward Difference 
Coding Adjacent levels of a variable (each level minus the prior level) 

Helmert Coding Compare levels of a variable with the mean of the subsequent levels of the 
variable 

Reverse Helmert Coding Compares levels of a variable with the mean of the previous levels of the 
variable 

Deviation Coding Compares deviations from the grand mean 
Orthogonal Polynomial 
Coding Orthogonal polynomial contrasts 

http://www.ats.ucla.edu/stat/sas/webbooks/reg/
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter3/sasreg3.htm
http://www.ats.ucla.edu/stat/sas/webbooks/reg/default.htm
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#SIMPLE#SIMPLE
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#forward#forward
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#forward#forward
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#backward#backward
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#backward#backward
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#HELMERT#HELMERT
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#reverse#reverse
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#DEVIATION#DEVIATION
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#ORTHOGONAL#ORTHOGONAL
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#ORTHOGONAL#ORTHOGONAL
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User-Defined Coding User-defined contrast 

There are a couple of notes to be made about the coding systems listed above.  The first is that they 
represent planned comparisons and not post hoc comparisons.  In other words, they are comparisons 
that you plan to do before you begin analyzing your data, not comparisons that you think of once you 
have seen the results of preliminary analyses.  Also, some forms of coding make more sense with 
ordinal categorical variables than with nominal categorical variables. Below we will show examples 
using race as a categorical variable, which is a nominal variable.  Because simple effect coding 
compares the mean of the dependent variable for each level of the categorical variable to the mean of 
the dependent variable at for the reference level, it makes sense with a nominal variable.  However, it 
may not make as much sense to use a coding scheme that tests the linear effect of race.  As we describe 
each type of coding system, we note those coding systems with which it does not make as much sense 
to use a nominal variable.  Also, you may notice that we follow several rules when creating the contrast 
coding schemes.  For more information about these rules, please see the section on User-Defined 
Coding.  

This page will illustrate two ways that you can conduct analyses using these coding schemes: 1) using 
proc glm with estimate statements to define "contrast" coefficients that specify levels of the categorical 
variable that are to be compared, and 2) using proc reg. When using proc reg to do contrasts, you first 
need to create k-1 new variables (where k is the number of levels of the categorical variable) and use 
these new variables as predictors in your regression model.  Method 1 uses a type of coding we will call 
"contrast coding" while method 2 uses a type of coding we will call "regression coding".    

The Example Data File 

The examples in this page will use dataset called hsb2.sas7bdat and we will focus on the categorical 
variable race, which has four levels (1 = Hispanic, 2 = Asian, 3 = African American and 4 = white) and 
we will use write as our dependent variable.  Although our example uses a variable with four levels, 
these coding systems work with variables that have more or fewer categories. No matter which coding 
system you select, you will always have one fewer recoded variables than levels of the original 
variable.  In our example, our categorical variable has four levels so we will have three new variables (a 
variable corresponding to the final level of the categorical variables would be redundant and therefore 
unnecessary).  

Before considering any analyses, let's look at the mean of the dependent variable, write, for each level 
of race.  This will help in interpreting the output from later analyses. 

proc means data = c:\sasreg\hsb2 mean n; 
  class race; 
  var write; 
run; 
The MEANS Procedure 
 
  Analysis Variable : write writing score 
 
                  N 
        race    Obs            Mean      N 
------------------------------------------ 
           1     24      46.4583333     24 
 
           2     11      58.0000000     11 

http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#User#User
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#User#User
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#User#User
http://www.ats.ucla.edu/stat/sas/webbooks/reg/hsb2.sas7bdat
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           3     20      48.2000000     20 
 
           4    145      54.0551724    145 
------------------------------------------ 

5.1 Simple Coding 

The results of simple coding are very similar to dummy coding in that each level is compared to the 
reference level. In the example below, level 4 is the reference level and the first comparison compares 
level 1 to level 4, the second comparison compares level 2 to level 4, and the third comparison 
compares level 3 to level 4.   

Method 1: PROC GLM 

The table below shows the simple coding making the comparisons described above.  The first contrast 
compares level 1 to level 4, and level 1 is coded as 1 and level 4 is coded as -1.  Likewise, the second 
contrast compares level 2 to level 4 by coding level 2 as 1 and level 4 as -1.  As you can see with 
contrast coding, you can discern the meaning of the comparisons simply by inspecting the contrast 
coefficients.  For example, looking at the contrast coefficients for c3, you can see that it compares level 
3 to level 4.  

SIMPLE contrast coding  

Level of race New variable 1 (c1) New variable 2 (c2) New variable 3 (c3) 
1 (Hispanic) 1 0 0 
2 (Asian) 0 1 0 
3 (African American) 0 0 1 
4 (white) -1 -1 -1 

Below we illustrate how to form these comparisons using proc glm.  As you see, a separate estimate 
statement is used for each contrast. 

proc glm data = c:\sasreg\hsb2; 
  class race; 
  model write = race; 
  estimate 'level 1 versus level 4' race 1 0 0 -1; 
  estimate 'level 2 versus level 4' race 0 1 0 -1; 
  estimate 'level 3 versus level 4' race 0 0 1 -1; 
run; 
quit; 

The contrast estimate for the first contrast compares the mean of the dependent variable, write, for 
levels 1 and 4 yielding -7.597 and is statistically significant (p<.000). The t-value associated with this 
test is -3.82.  The results of the second contrast, comparing the mean of write for levels 2 and 4 is not 
statistically significant (t = 1.40, p = .1638), while the third contrast is statistically significant.  Please 
note that while we have included the full SAS output for this example, we will only show the relevant 
output in later examples to conserve space. 
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The GLM Procedure 
 
Dependent Variable: write   writing score 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        3      1914.15805       638.05268       7.83    <.0001 
 
Error                      196     15964.71695        81.45264 
 
Corrected Total            199     17878.87500 
 
R-Square     Coeff Var      Root MSE    write Mean 
 
0.107063      17.10111      9.025111      52.77500 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
race                         3     1914.158046      638.052682       7.83    <.0001 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
race                         3     1914.158046      638.052682       7.83    <.0001 
 
                                              Standard 
Parameter                     Estimate           Error    t Value    Pr > |t| 
 
level 1 versus level 4     -7.59683908      1.98886958      -3.82      0.0002 
level 2 versus level 4      3.94482759      2.82250377       1.40      0.1638 
level 3 versus level 4     -5.85517241      2.15275967      -2.72      0.0071 

Method 2: Regression 

The regression coding is a bit more complex than contrast coding.  In our example below, level 4 is the 
reference level and x1 compares level 1 to level 4, x2 compares level 2 to level 4, and x3 compares 
level 3 to level 4.  For x1 the coding is 3/4 for level 1, and -1/4 for all other levels.  Likewise, for x2 the 
coding is 3/4 for level 2, and -1/4 for all other levels, and for x3 the coding is 3/4 for level 3, and -1/4 
for all other levels.  It is not intuitive that this regression coding scheme yields these comparisons; 
however, if you desire simple comparisons, you can follow this general rule to obtain these comparisons.  

SIMPLE regression coding  

Level of race New variable 1 (x1) New variable 2 (x2) New variable 3 (x3) 
1 (Hispanic) 3/4 -1/4 -1/4 
2 (Asian) -1/4 3/4 -1/4 
3 (African American) -1/4 -1/4 3/4 
4 (white) -1/4 -1/4 -1/4 

Below we show the more general rule for creating this kind of coding scheme using regression coding, 
where k is the number of levels of the categorical variable (in this instance, k = 4). 
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SIMPLE regression coding  

Level of race New variable 1 (x1) New variable 2 (x2) New variable 3 (x3) 
1 (Hispanic) (k-1) / k -1 / k -1 / k 
2 (Asian) -1 / k (k-1) / k -1 / k 
3 (African American) -1 / k -1 / k (k-1) / k 
4 (white) -1 / k -1 / k -1 / k 

Below we illustrate how to create x1, x2 and x3 and enter these new variables into the regression model 
using proc reg. 

data simple; 
  set c:\sasreg\hsb2; 
  if race = 1 then x1 = 3/4; else x1 = -1/4; 
  if race = 2 then x2 = 3/4; else x2 = -1/4; 
  if race = 3 then x3 = 3/4; else x3 = -1/4; 
run; 
 
proc reg data = simple; 
  model write = x1 x2 x3; 
run; 
quit; 

You will notice that the regression coefficients in the table below are the same as the contrast 
coefficients that we saw using proc glm.  Both the regression coefficient for x1 and the contrast 
estimate for c1 are the mean of write for level 1 of race (Hispanic) minus the mean of write for level 4 
(white). Likewise, the regression coefficient for x2 and the contrast estimate for c2 are the mean of 
write for level 2 (Asian) minus the mean of write for level 4 (white). You also can see that the t values 
and significance levels are also the same as those from the proc glm output.  Please note that while we 
have included the full SAS output for this example, we will only show the relevant output in later 
examples to conserve space. 

The REG Procedure 
Model: MODEL1 
Dependent Variable: write writing score 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     3     1914.15805      638.05268       7.83    <.0001 
Error                   196          15965       81.45264 
Corrected Total         199          17879 
 
Root MSE              9.02511    R-Square     0.1071 
Dependent Mean       52.77500    Adj R-Sq     0.0934 
Coeff Var            17.10111 
 
                                 Parameter Estimates 
 
                                      Parameter       Standard 
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Variable     Label            DF       Estimate          Error    t Value    Pr > 
|t| 
 
Intercept    Intercept         1       51.67838        0.98212      52.62      
<.0001 
x1                             1       -7.59684        1.98887      -3.82      
0.0002 
x2                             1        3.94483        2.82250       1.40      
0.1638 
x3                             1       -5.85517        2.15276      -2.72      
0.0071 

5.2 Forward Difference Coding 

In this coding system, the mean of the dependent variable for one level of the categorical variable is 
compared to the mean of the dependent variable for the next (adjacent) level.  In our example below, the 
first comparison compares the mean of write for level 1 with the mean of write for level 2 of race 
(Hispanics minus Asians).  The second comparison compares the mean of write for level 2 minus level 
3, and the third comparison compares the mean of write for level 3 minus level 4.  This type of coding 
may be useful with either a nominal or an ordinal variable.    

Method 1: PROC GLM 

FORWARD DIFFERENCE contrast coding  

Level of race New variable 1 (c1) New variable 2 (c2) New variable 3 (c3) 
  Level 1 v. Level 2 Level 2 v. Level 3 Level 3 v. Level 4 
1 (Hispanic)  1 0 0 
2 (Asian)  -1 1 0 
3 (African American)  0 -1 1 
4 (white)  0 0 -1 
proc glm data = c:\sasreg\hsb2; 
  class race; 
  model write = race; 
  estimate 'level 1 versus level 2' race 1 -1 0 0; 
  estimate 'level 2 versus level 3' race 0 1 -1 0; 
  estimate 'level 3 versus level 4' race 0 0 1 -1; 
run; 
quit; 
                                              Standard 
Parameter                     Estimate           Error    t Value    Pr > |t| 
 
level 1 versus level 2     -11.5416667      3.28612920      -3.51      0.0006 
level 2 versus level 3       9.8000000      3.38783369       2.89      0.0043 
level 3 versus level 4      -5.8551724      2.15275967      -2.72      0.0071 

With this coding system, adjacent levels of the categorical variable are compared.  Hence, the mean of 
the dependent variable at level 1 is compared to the mean of the dependent variable at level 2:  46.4583 
- 58 = -11.542, which is statistically significant.  For the comparison between levels 2 and 3, the 
calculation of the contrast coefficient would be 58 - 48.2 = 9.8, which is also statistically 
significant.  Finally, comparing levels 3 and 4, 48.2 - 54.0552 = -5.855, a statistically significant 
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difference.  One would conclude from this that each adjacent level of race is statistically significantly 
different. 

Method 2: Regression 

For the first comparison, where the first and second levels are compared, x1 is coded 3/4 for level 1 and 
the other levels are coded -1/4.  For the second comparison where level 2 is compared with level 3, x2 is 
coded 1/2 1/2 -1/2 -1/2, and for the third comparison where level 3 is compared with level 4, x3 is 
coded 1/4 1/4 1/4 -3/4.    

FORWARD DIFFERENCE regression coding  

Level of race New variable 1 (x1) New variable 2 (x2) New variable 3 (x3) 
  Level 1 v. Level 2 Level 2 v. Level 3 Level 3 v. Level 4 
1 (Hispanic)  3/4 1/2 1/4 
2 (Asian)  -1/4 1/2 1/4 
3 (African American)  -1/4 -1/2 1/4 
4 (white)  -1/4 -1/2 -3/4 

The general rule for this regression coding scheme is shown below, where k is the number of levels of 
the categorical variable (in this case k = 4).  

FORWARD DIFFERENCE regression coding  

Level of race New variable 1 (x1) New variable 2 (x2) New variable 3 (x3) 
  Level 1 v. Level 2 Level 2 v. Level 3 Level 3 v. Level 4 
1 (Hispanic)  (k-1)/k (k-2)/k (k-3)/k 
2 (Asian)  -1/k (k-2)/k (k-3)/k 
3 (African American)  -1/k -2/k (k-3)/k 
4 (white)  -1/k -2/k -3/k 
data forward; 
  set c:\sasreg\hsb2; 
 
  if race = 1 then x1 = 3/4; else x1 = -1/4; 
 
  if race = 1 or race = 2 then x2 = 1/2; 
  if race = 3 or race = 4 then x2 = -1/2; 
 
  if race = 4 then x3 = -3/4; else x3 = 1/4; 
 
run; 
 
proc reg data = forward; 
  model write = x1 x2 x3; 
run; 
quit; 
                                 Parameter Estimates 
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                                      Parameter       Standard 
Variable     Label            DF       Estimate          Error    t Value    Pr > 
|t| 
 
Intercept    Intercept         1       51.67838        0.98212      52.62      
<.0001 
x1                             1      -11.54167        3.28613      -3.51      
0.0006 
x2                             1        9.80000        3.38783       2.89      
0.0043 
x3                             1       -5.85517        2.15276      -2.72      
0.0071 

You can see the regression coefficient for x1 is the mean of write for level 1 (Hispanic) minus the mean 
of write for level 2 (Asian).  Likewise, the regression coefficient for x2 is the mean of write for level 2 
(Asian) minus the mean of write for level 3 (African American), and the regression coefficient for x3 is 
the mean of write for level 3 (African American) minus the mean of write for level 4 (white). 

5.3 Backward Difference Coding 

In this coding system, the mean of the dependent variable for one level of the categorical variable is 
compared to the mean of the dependent variable for the prior adjacent level.  In our example below, the 
first comparison compares the mean of write for level 2 with the mean of write for level 1 of race 
(Hispanics minus Asians).  The second comparison compares the mean of write for level 3 minus level 
2, and the third comparison compares the mean of write for level 4 minus level 3.  This type of coding 
may be useful with either a nominal or an ordinal variable.    

Method 1: PROC GLM 

BACKWARD DIFFERENCE contrast coding  

Level of race New variable 1 (c1) New variable 2 (c2) New variable 3 (c3) 
  Level 1 v. Level 2 Level 2 v. Level 3 Level 3 v. Level 4 
1 (Hispanic)  -1 0 0 
2 (Asian)  1 -1 0 
3 (African American)  0 1 -1 
4 (white)  0 0 1 
proc glm data = c:\sasreg\hsb2; 
  class race; 
  model write = race; 
  estimate 'level 1 versus level 2' race -1 1 0 0; 
  estimate 'level 2 versus level 3' race 0 -1 1 0; 
  estimate 'level 3 versus level 4' race 0 0 -1 1; 
run; 
quit; 
                                              Standard 
Parameter                     Estimate           Error    t Value    Pr > |t| 
 
level 1 versus level 2      11.5416667      3.28612920       3.51      0.0006 
level 2 versus level 3      -9.8000000      3.38783369      -2.89      0.0043 
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level 3 versus level 4       5.8551724      2.15275967       2.72      0.0071 

With this coding system, adjacent levels of the categorical variable are compared, with each level 
compared to the prior level.  Hence, the mean of the dependent variable at level 2 is compared to the 
mean of the dependent variable at level 1:  58 - 46.4583 = 11.542, which is statistically significant.  For 
the comparison between levels 3 and 2, the calculation of the contrast coefficient is 48.2 - 58 = -9.8, 
which is also statistically significant.  Finally, comparing levels 4 and 3, 54.0552 - 48.2 = 5.855, a 
statistically significant difference.  One would conclude from this that each adjacent level of race is 
statistically significantly different. 

Method 2: Regression 

For the first comparison, where the first and second levels are compared, x1 is coded 3/4 for level 1 
while the other levels are coded -1/4.  For the second comparison where level 2 is compared with level 
3, x2 is coded 1/2 1/2 -1/2 -1/2, and for the third comparison where level 3 is compared with level 4, x3 
is coded 1/4 1/4 1/4 -3/4.   

BACKWARD DIFFERENCE regression coding  

Level of race New variable 1 (x1) New variable 2 (x2) New variable 3 (x3) 
  Level 2 v. Level 1 Level 3 v. Level 2 Level 4 v. Level 3 
1 (Hispanic) - 3/4 -1/2 -1/4 
2 (Asian)  1/4 -1/2 -1/4 
3 (African American)  1/4 1/2 -1/4 
4 (white)  1/4 1/2 3/4 

The general rule for this regression coding scheme is shown below, where k is the number of levels of 
the categorical variable (in this case, k = 4).  

BACKWARD DIFFERENCE regression coding  

Level of race New variable 1 (x1) New variable 2 (x2) New variable 3 (x3) 
  Level 1 v. Level 2 Level 2 v. Level 3 Level 3 v. Level 4 
1 (Hispanic)  -(k-1)/k -(k-2)/k -(k-3)/k 
2 (Asian) 1/k -(k-2)/k -(k-3)/k 
3 (African American)  1/k 2/k -(k-3)/k 
4 (white)  1/k 2/k 3/k 
data backward; 
  set c:\sasreg\hsb2; 
 
  if race = 1 then x1 = -3/4; else x1 = 1/4; 
 
  if race = 1 or race = 2 then x2 = -1/2; 
  if race = 3 or race = 4 then x2 = 1/2; 
 
  if race = 4 then x3 = 3/4; else x3 = -1/4; 
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run; 
 
proc reg data = backward; 
  model write = x1 x2 x3; 
run; 
quit; 
                                 Parameter Estimates 
 
                                      Parameter       Standard 
Variable     Label            DF       Estimate          Error    t Value    Pr > 
|t| 
 
Intercept    Intercept         1       51.67838        0.98212      52.62      
<.0001 
x1                             1       11.54167        3.28613       3.51      
0.0006 
x2                             1       -9.80000        3.38783      -2.89      
0.0043 
x3                             1        5.85517        2.15276       2.72      
0.0071 

In the above example, the regression coefficient for x1 is the mean of write for level 2 minus the mean 
of write for level 1 (58- 46.4583 = 11.542).  Likewise, the regression coefficient for x2 is the mean of 
write for level 3 minus the mean of write for level 2, and the regression coefficient for x3 is the mean 
of write for level 4 minus the mean of write for level 3. 

5.4 Helmert Coding 

Helmert coding compares each level of a categorical variable to the mean of the subsequent 
levels.  Hence, the first contrast compares the mean of the dependent variable for level 1 of race with 
the mean of all of the subsequent levels of race (levels 2, 3, and 4), the second contrast compares the 
mean of the dependent variable for level 2 of race with the mean of all of the subsequent levels of race 
(levels 3 and 4), and the third contrast compares the mean of the dependent variable for level 3 of race 
with the mean of all of the subsequent levels of race (level 4). While this type of coding system does 
not make much sense with a nominal variable like race, it is useful in situations where the levels of the 
categorical variable are ordered say, from lowest to highest, or smallest to largest, etc.  

For Helmert coding, we see that the first comparison comparing level 1 with levels 2, 3 and 4 is coded 1, 
-1/3, -1/3 and -1/3, reflecting the comparison of level 1 with all other levels.  The second comparison is 
coded 0, 1, -1/2 and -1/2, reflecting that it compares level 2 with levels 3 and 4.  The third comparison 
is coded 0, 0, 1 and -1, reflecting that level 3 is compared to level 4.  

Method 1: PROC GLM  

HELMERT contrast coding  

Level of race New variable 1 (c1) New variable 2 (c2) New variable 3 (c3) 
  Level 1 v. Later Level 2 v. Later Level 3 v. Later 
1 (Hispanic)  1 0 0 
2 (Asian)  -1/3 1 0 
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3 (African American)  -1/3 -1/2 1 
4 (white)  -1/3 -1/2 -1 

Below we illustrate how to form these comparisons using proc glm with estimate statements.  Note 
that on the first estimate statement we indicate -.33333 and not just -.33.  We need to use this many 
decimals so the sum of all of the contrast coefficients (i.e., 1 + -.333333 + -.333333 + -.333333) is 
sufficiently close to zero, otherwise SAS will say that the term cannot be estimated. 

proc glm data = c:\sasreg\hsb2; 
  class race; 
  model write = race; 
  estimate 'level 1 versus levels 2, 3 & 4' race 1 -.33333 -.33333 -.33333; 
  estimate 'level 2 versus levels 3 & 4' race 0 1 -.5 -.5; 
  estimate 'level 3 versus level 4' race 0 0 1 -1; 
run; 
quit; 
                                                      Standard 
Parameter                             Estimate           Error    t Value    Pr > 
|t| 
 
level 1 versus levels 2, 3 & 4     -6.96006384      2.17520603      -3.20      
0.0016 
level 2 versus levels 3 & 4         6.87241379      2.92632513       2.35      
0.0198 
level 3 versus level 4             -5.85517241      2.15275967      -2.72      
0.0071 

The contrast estimate for the comparison between level 1 and the remaining levels is calculated by 
taking the mean of the dependent variable for level 1 and subtracting the mean of the dependent 
variable for levels 2, 3 and 4: 46.4583 - [(58 + 48.2 + 54.0552) / 3] = -6.960, which is statistically 
significant.  This means that the mean of write for level 1 of race is statistically significantly different 
from the mean of write for levels 2 through 4.  As noted above, this comparison probably is not 
meaningful because the variable race is nominal.  This type of comparison would be more meaningful 
if the categorical variable was ordinal.   

To calculate the contrast coefficient for the comparison between level 2 and the later levels, you 
subtract the mean of the dependent variable for levels 3 and 4 from the mean of the dependent variable 
for level 2:  58 - [(48.2 + 54.0552) / 2] = 6.872, which is statistically significant.  The contrast estimate 
for the comparison between level 3 and level 4 is the difference between the mean of the dependent 
variable for the two levels:  48.2 - 54.0552 = -5.855, which is also statistically significant. 

Method 2: Regression 

Below we see an example of Helmert regression coding.  For the first comparison (comparing level 1 
with levels 2, 3 and 4) the codes are 3/4 and -1/4 -1/4 -1/4.  The second comparison compares level 2 
with levels 3 and 4 and is coded 0 2/3 -1/3 -1/3.  The third comparison compares level 3 to level 4 and is 
coded 0 0 1/2 -1/2.   

HELMERT regression coding  
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Level of race New variable 1 (x1) New variable 2 (x2) New variable 3 (x3) 
  Level 1 v. Later Level 2 v. Later Level 3 v. Later 
1 (Hispanic)  3/4 0 0 
2 (Asian)  -1/4 2/3 0 
3 (African American)  -1/4 -1/3 1/2 
4 (white)  -1/4 -1/3 -1/2 

Below we illustrate how to create x1, x2 and x3 and enter these new variables into the regression model 
using porc reg. 

data helmert; 
  set c:\sasreg\hsb2; 
  if race = 1 then x1 = .75; else x1 = -.25; 
 
  if race = 1 then x2 = 0; 
  if race = 2 then x2 = 2/3; 
  if race = 3 or race = 4 then x2 = -1/3; 
 
  if race = 1 or race = 2 then x3 = 0; 
  if race = 3 then x3 = 1/2; 
  if race = 4 then x3 = -1/2; 
 
run; 
 
proc reg data = helmert; 
  model write = x1 x2 x3; 
run; 
quit; 

As you see below, the regression coefficient for x1 is the mean of write for level 1 (Hispanic) versus all 
subsequent levels (levels 2, 3 and 4).  Likewise, the regression coefficient for x2 is the mean of write 
for level 2 minus the mean of write for levels 3 and 4.  Finally, the regression coefficient for x3 is the 
mean of write for level 3 minus the mean of write for level 4. 

                                 Parameter Estimates 
 
                                      Parameter       Standard 
Variable     Label            DF       Estimate          Error    t Value    Pr > 
|t| 
 
Intercept    Intercept         1       51.67836        0.98212      52.62      
<.0001 
x1                             1       -6.96003        2.17521      -3.20      
0.0016 
x2                             1        6.87241        2.92633       2.35      
0.0198 
x3                             1       -5.85517        2.15276      -2.72      
0.0071 

5.5 Reverse Helmert Coding 
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Reverse Helmert coding (also know as difference coding) is just the opposite of Helmert coding: instead 
of comparing each level of categorical variable to the mean of the subsequent level(s), each is compared 
to the mean of the previous level(s).  In our example, the first contrast codes the comparison of the 
mean of the dependent variable for level 2 of race to the mean of the dependent variable for level 1 of 
race.  The second comparison compares the mean of the dependent variable level 3 of race with both 
levels 1 and  2 of race, and the third comparison compares the mean of the dependent variable for level 
4 of race with levels 1, 2 and 3. Clearly, this coding system does not make much sense with our 
example of race because it is a nominal variable.  However, this system is useful when the levels of the 
categorical variable are ordered in a meaningful way.  For example, if we had a categorical variable in 
which work-related stress was coded as low, medium or high, then comparing the means of the previous 
levels of the variable would make more sense.   

For reverse Helmert coding, we see that the first comparison comparing levels 1 and 2 are coded -1 and 
1 to compare these levels, and 0 otherwise.  The second comparison comparing levels 1, 2 with level 3 
are coded -1/2, -1/2,  1 and 0, and the last comparison comparing levels 1, 2 and 3 with level 4 are 
coded -1/3, -1/3, -1/3 and 1.  

Method 1: PROC GLM  

REVERSE HELMERT contrast coding  

  New variable 1 (c1) New variable 2 (c2) New variable 3 (c3) 
  Level 2 v. Level 1 Level 3 v. Previous Level 4 v. Previous 
1 (Hispanic) -1 -1/2 -1/3 
2 (Asian)  1 -1/2 -1/3 
3 (African American)  0 1 -1/3 
4 (white)  0 0 1 

Below we illustrate how to form these comparisons using proc glm with estimate statements.  Note 
that on the third estimate statement we indicate -.33333 and not just -.33.  We need to use this many 
decimals so the sum of all of the contrast coefficients (i.e., -.333333 + - .333333 + - .333333 + 1) is 
sufficiently close to zero, otherwise SAS will say that the term cannot be estimated. 

proc glm data = c:\sasreg\hsb2; 
  class race; 
  model write = race; 
  estimate 'level 2 versus level1' race -1 1 0 0; 
  estimate 'level 3 versus levels 1 & 2' race -.5 -.5 1 0; 
  estimate 'level 4 versus levels 1, 2 & 4' race -.33333 -.33333 -.33333 1; 
run; 
quit; 

An alternate way, which solves the problem of the repeating decimals, is shown below.  Only one 
output is shown because the two outputs are identical. 

proc glm data = c:\sasreg\hsb2; 
  class race; 
  model write = race; 
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  estimate 'level 2 versus level 1' race -1 1 0 0; 
  estimate 'level 3 versus levels 1 & 2' race -.5 -.5 1 0; 
  estimate 'level 4 versus levels 1, 2 & 4' race -1 -1 -1 3 / divisor=3; 
run; 
quit; 
                                                      Standard 
Parameter                             Estimate           Error    t Value    Pr > 
|t| 
 
level 2 versus level1               11.5416667      3.28612920       3.51      
0.0006 
level 3 versus levels 1 & 2         -4.0291667      2.60236299      -1.55      
0.1232 
level 4 versus levels 1, 2 & 4       3.1690296      1.48797250       2.13      
0.0344 

The contrast estimate for the first comparison shown in this output was calculated by subtracting the 
mean of the dependent variable for level 2 of the categorical variable from the mean of the dependent 
variable for level 1:  58 - 46.4583 = 11.542.  This result is statistically significant.  The contrast estimate 
for the second comparison (between level 3 and the previous levels) was calculated by subtracting the 
mean of the dependent variable for levels 1 and 2 from that of level 3:  48.2 - [(46.4583 + 58) / 2] = -
4.029.  This result is not statistically significant, meaning that there is not a reliable difference between 
the mean of write for level 3 of race compared to the mean of write for levels 1 and 2 (Hispanics and 
Asians).  As noted above, this type of coding system does not make much sense for a nominal variable 
such as race.  For the comparison of level 4 and the previous levels, you take the mean of the dependent 
variable for the those levels and subtract it from the mean of the dependent variable for level 
4:  54.0552 - [(46.4583 + 58 + 48.2) / 3] = 3.169.  This result is statistically significant.   

Method 2: Regression 

The regression coding for reverse Helmert coding is shown below.  For the first comparison, where the 
first and second level are compared, x1 is coded -1/2 and 1/2 and 0 otherwise.  For the second 
comparison, the values of x2 are coded -1/3 -1/3  2/3 and 0.  Finally, for the third comparison, the 
values of x3 are coded -1/4 -1/4 -/14 and 3/4.     

REVERSE HELMERT regression coding  

Level of race New variable 1 (x1) New variable 2 (x2) New variable 3 (x3) 
1 (Hispanic) -1/2 -1/3 -1/4 
2 (Asian) 1/2 -1/3 -1/4 
3 (African American) 0 2/3 -1/4 
4 (white) 0 0 3/4 

Below we illustrate how to create x1, x2 and x3 and enter these new variables into the regression model 
using proc reg. 

data diff; 
  set c:\sasreg\hsb2; 
  if race = 1 then x1 = -1/2; 
  if race = 2 then x1 = 1/2; 
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  if race = 3 or race = 4 then x1 = 0; 
 
  if race = 1 or race = 2 then x2 = -1/3; 
  if race = 3 then x2 = 2/3; 
  if race = 4 then x2 = 0; 
 
  if race = 4 then x3 = 3/4; else x3 = -1/4; 
 
run; 
 
proc reg data = diff; 
  model write = x1 x2 x3; 
run; 
quit; 
                                 Parameter Estimates 
 
                                      Parameter       Standard 
Variable     Label            DF       Estimate          Error    t Value    Pr > 
|t| 
 
Intercept    Intercept         1       51.67839        0.98212      52.62      
<.0001 
x1                             1       11.54167        3.28613       3.51      
0.0006 
x2                             1       -4.02917        2.60236      -1.55      
0.1232 
x3                             1        3.16905        1.48799       2.13      
0.0344 

In the above examples, both the regression coefficient for x1 and the contrast estimate for c1 would be 
the mean of write for level 1 (Hispanic) minus the mean of write for level 2 (Asian).  Likewise, the 
regression coefficient for x2 and the contrast estimate for c2 would be the mean of write for levels 1 
and 2 combined minus the mean of write for level 3.  Finally, the regression coefficient for x3 and the 
contrast estimate for c3 would be the mean of write for levels 1, 2 and 3 combined minus the mean of 
write for level 4. 

5.6 Deviation Coding 

This coding system compares the mean of the dependent variable for a given level to the overall mean 
of the dependent variable.  In our example below, the first comparison compares level 1 (Hispanics) to 
all levels of race, the second comparison compares level 2 (Asians) to all levels of race, and the third 
comparison compares level 3 (African Americans) to all levels of race.  

As you can see, the logic of the contrast coding is fairly straightforward.  The first comparison 
compares level 1 to levels 2, 3 and 4.  A value of 3/4 is assigned to level 1 and a value of -1/4 is 
assigned to levels 2, 3 and 4.  Likewise, the second comparison compares level 2 to levels 1, 3 and 4. A 
value of 3/4 is assigned to level 2 and a value of -1/4 is assigned to levels 1, 3 and 4. A similar pattern is 
followed for assigning values for the third comparison.  Note that you could substitute 3 for 3/4 and 1 
for 1/4 and you would get the same test of significance, but the contrast coefficient would be different.  

Method 1: PROC GLM 

DEVIATION contrast coding  
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Level of race New variable 1 (c1) New variable 2 (c2) New variable 3 (c3) 

  Level 1 v. Mean Level 2 v. Mean Level 3 v. Mean 

1 (Hispanic) 3/4 -1/4 -1/4 

2 (Asian) -1/4 3/4 -1/4 
3 (African American) -1/4 -1/4 3/4 
4 (white) -1/4 -1/4 -1/4 

Below we illustrate how to form these comparisons using proc glm. 

proc glm data = c:\sasreg\hsb2; 
  class race; 
  model write = race; 
  estimate 'level 1 versus levels 2, 3 & 4' race .75 -.25 -.25 -.25; 
  estimate 'level 2 versus levels 1, 3 & 4' race -.25 .75 -.25 -.25; 
  estimate 'level 3 versus levels 1, 2 & 4' race -.25 -.25 .75 -.25; 
run; 
quit; 
                                                      Standard 
Parameter                             Estimate           Error    t Value    Pr > 
|t| 
 
level 1 versus levels 2, 3 & 4     -5.22004310      1.63140849      -3.20      
0.0016 
level 2 versus levels 1, 3 & 4      6.32162356      2.16031394       2.93      
0.0038 
level 3 versus levels 1, 2 & 4     -3.47837644      1.73230472      -2.01      
0.0460 

The contrast estimate is the mean for level 1 minus the grand mean.  However, this grand mean is not 
the mean of the dependent variable that is listed in the output of the means command above.  Rather it 
is the mean of means of the dependent variable at each level of the categorical variable:  (46.4583 + 58 
+ 48.2 + 54.0552) / 4 = 51.678375.  This contrast estimate is then 46.4583 - 51.678375 = -5.220.  The 
difference between this value and zero (the null hypothesis that the contrast coefficient is zero) is 
statistically significant (p = .0016), and the t-value for this test of -3.20.  The results for the next two 
contrasts were computed in a similar manner. 

Method 2: Regression 

As you see in the example below, the regression coding is accomplished by assigning 1 to level 1 for 
the first comparison (because level 1 is the level to be compared to all others), a 1 to level 2 for the 
second comparison (because level 2 is to be compared to all others), and 1 to level 3 for the third 
comparison (because level 3 is to be compared to all others).  Note that a  -1 is assigned to level 4 for all 
three comparisons (because it is the level that is never compared to the other levels) and all other values 
are assigned a 0.  This regression coding scheme yields the comparisons described above.  

DEVIATION regression coding  

Level of race New variable 1 (x1) New variable 2 (x2) New variable 3 (x3) 
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  Level 1 v. Mean Level 2 v. Mean Level 3 v. Mean 

1 (Hispanic) 1 0 0 

2 (Asian) 0 1 0 
3 (African American) 0 0 1 
4 (white) -1 -1 -1 

Below we illustrate how to create x1, x2 and x3 and enter these new variables into the regression model 
using proc reg. 

data deviation; 
  set c:\sasreg\hsb2; 
  if race = 1 then x1 = 1; 
  if race = 2 or race = 3 then x1 = 0; 
  if race = 4 then x1 = -1; 
 
  if race = 2 then x2 = 1; 
  if race = 1 or race = 3 then x2 = 0; 
  if race = 4 then x2 = -1; 
 
  if race = 3 then x3 = 1; 
  if race = 1 or race = 2 then x3 = 0; 
  if race = 4 then x3 = -1;  
run; 
 
proc reg data = deviation; 
  model write = x1 x2 x3; 
run; 
quit; 

In this example, both the regression coefficient for x1 is the mean of write for level 1 (Hispanic) minus 
the grand mean of write.  Likewise, the regression coefficient for x2 is the mean write for level 2 
(Asian) minus the grand mean of write, and so on. As we saw in the previous analyses, all three 
contrasts are statistically significant. 

                                 Parameter Estimates 
 
                                      Parameter       Standard 
Variable     Label            DF       Estimate          Error    t Value    Pr > 
|t| 
 
Intercept    Intercept         1       51.67838        0.98212      52.62      
<.0001 
x1                             1       -5.22004        1.63141      -3.20      
0.0016 
x2                             1        6.32162        2.16031       2.93      
0.0038 
x3                             1       -3.47838        1.73230      -2.01      
0.0460 

5.7 Orthogonal Polynomial Coding 
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Orthogonal polynomial coding is a form of trend analysis in that it is looking for the linear, quadratic 
and cubic trends in the categorical variable.  This type of coding system should be used only with an 
ordinal variable in which the levels are equally spaced.  Examples of such a variable might be income 
or education.  The table below shows the contrast coefficients for the linear, quadratic and cubic trends 
for the four levels.  These could be obtained from most statistics books on linear models.  

POLYNOMIAL  

Level of race Linear (x1) Quadratic (x2) Cubic (x3) 
1 (Hispanic)  -.671 .5 -.224 
2 (Asian)  -.224 -.5 .671 
3 (African American)  .224 -.5 -.671 
4 (white)  .671 .5 .224 

Method 1: PROC GLM 

proc glm data = c:\sasreg\hsb2; 
  class race; 
  model write = race; 
  estimate 'linear' race -.671 -.224 .224 .671; 
  estimate 'quadratic' race .5 -.5 -.5 .5; 
  estimate 'cubic' race -.224 .671 -.671 .224; 
run; 
quit; 
                                            Standard 
Parameter                   Estimate           Error    t Value    Pr > |t| 
 
linear                    2.90227902      1.53520851       1.89      0.0602 
quadratic                -2.84324713      1.96424409      -1.45      0.1494 
cubic                     8.27749195      2.31648010       3.57      0.0004 

To calculate the contrast estimates for these comparisons, you need to multiply the code used in the new 
variable by the mean for the dependent variable for each level of the categorical variable, and then sum 
the values.  For example, the code used in x1 for level 1 of race is -.671 and the mean of write for level 
1 is 46.4583.  Hence, you would multiply -.671 and 46.4583 and add that to the product of the code for 
level 2 of x1 and its mean, and so on.  To obtain the contrast estimate for the linear contrast, you would 
do the following:  -.671*46.4583 + -.224*58 + .224*48.2 + .671*54.0552 = 2.905 (with rounding 
error).  This result is not statistically significant at the .05 alpha level, but it is close.  The quadratic 
component is also not statistically significant, but the cubic one is.  This suggests that, if the mean of the 
dependent variable was plotted against race, the line would tend to have two bends.  As noted earlier, 
this type of coding system does not make much sense with a nominal variable such as race. 

Method 2: Regression  

The regression coding for orthogonal polynomial coding is the same as the contrast coding.  Below you 
can see the SAS code for creating x1, x2 and x3 that correspond to the linear, quadratic and cubic trends 
for race.  

data poly; 
  set c:\sasreg\hsb2; 
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  if race = 1 then x1 = -.671; 
  if race = 2 then x1 = -.224; 
  if race = 3 then x1 = .224; 
  if race = 4 then x1 = .671; 
 
  if race = 1 then x2 = .5; 
  if race = 2 then x2 = -.5; 
  if race = 3 then x2 = -.5; 
  if race = 4 then x2 = .5; 
 
  if race = 1 then x3 = -.224; 
  if race = 2 then x3 = .671; 
  if race = 3 then x3 = -.671; 
  if race = 4 then x3 = .224; 
 
run; 
 
proc reg data = poly; 
  model write = x1 x2 x3; 
run; 
quit; 
                                 Parameter Estimates 
 
                                      Parameter       Standard 
Variable     Label            DF       Estimate          Error    t Value    Pr > 
|t| 
 
Intercept    Intercept         1       51.67838        0.98212      52.62      
<.0001 
x1                             1        2.89986        1.53393       1.89      
0.0602 
x2                             1       -2.84325        1.96424      -1.45      
0.1494 
x3                             1        8.27059        2.31455       3.57      
0.0004 

The regression coefficients obtained from this analysis are the same as the contrast coefficients obtained 
using proc glm.   

5.8 User Defined Coding 

You can use SAS for any general kind of coding scheme.  For our example, we would like to make the 
following three comparisons:  

1) level 1 to level 3   
2) level 2 to levels 1 and 4  
3) levels 1 and 2 to levels 3 and 4. 

In order to compare level 1 to level 3, we use the contrast coefficients 1 0 -1 0. To compare level 2 to 
levels 1 and 4 we use the contrast coefficients -1/2 1 0 -1/2 .  Finally, to compare levels 1 and 2 with 
levels 3 and 4 we use the coefficients 1/2 1/2 -1/2 -1/2.  Before proceeding to the SAS code necessary to 
conduct these analyses, let's take a moment to more fully explain the logic behind the selection of these 
contrast coefficients.   
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For the first contrast, we are comparing level 1 to level 3, and the contrast coefficients are 1 0 -1 
0.  This means that the levels associated with the contrast coefficients with opposite signs are being 
compared.  In fact, the mean of the dependent variable is multiplied by the contrast coefficient.  Hence, 
levels 2 and 4 are not involved in the comparison:  they are multiplied by zero and "dropped out."  You 
will also notice that the contrast coefficients sum to zero.  This is necessary.  If the contrast coefficients 
do not sum to zero, the contrast is not estimable and SAS will issue an error message. Which level of 
the categorical variable is assigned a positive or negative value is not terribly important:  1 0 -1 0 is the 
same as -1 0 1 0 in that both of these codings compare the first and the third levels of the 
variable.  However, the sign of the regression coefficient would change.   

Now let's look at the contrast coefficients for the second and third comparisons.  You will notice that in 
both cases we use fractions that sum to one (or minus one).  They do not have to sum to one (or minus 
one).  You may wonder why we would use fractions like -1/2 1 0 -1/2 instead of whole numbers such as 
-1 2 0 -1.  While -1/2 1 0 -1/2 and -1 2 0 -1 both compare level 2 with levels 1 and 4 and both will give 
you the same t-value and p-value for the regression coefficient, the contrast estimates/regression 
coefficients themselves would be different, as would their interpretation.  The coefficient for the -1/2 1 
0 -1/2 contrast is the mean of level 2 minus the mean of the means for levels 1 and 4:  58 - (46.4583 + 
54.0552)/2 = 7.74325.  (Alternatively, you can multiply the contrasts by the mean of the dependent 
variable for each level of the categorical variable: -1/2*46.4583 + 1*58.00 + 0*48.20 + -1/2*54.0552 = 
7.74325.  Clearly these are equivalent ways of thinking about how the contrast coefficient is 
calculated.)  By comparison, the coefficient for the -1 2 0 -1 contrast is two times the mean for level 2 
minus the means of the dependent variable for levels 1 and 4:  2*58 - (46.4583 + 54.0552) = 15.4865, 
which is the same as -1*46.4583 + 2*58 + 0*48.20 - 1*54.0552 = 15.4865. Note that the regression 
coefficient using the contrast coefficients -1 2 0 -1 is twice the regression coefficient obtained when -
1/2 1 0 -1/2 is used. 

Method 1: PROC GLM 

In order to compare level 1 to level 3, we use the contrast coefficients 1 0 -1 0. To compare level 2 to 
levels 1 and 4 we use the contrast coefficients -1/2 1 0 -1/2 .  Finally, to compare levels 1 and 2 with 
levels 3 and 4, we use the coefficients 1/2 1/2 -1/2 -1/2.  These coefficients are used in the estimate 
statements below. 

proc glm data = c:\sasreg\hsb2; 
  class race; 
  model write = race; 
  estimate 'level 1 versus level 3' race 1 0 -1 0; 
  estimate 'level 2 versus levels 1 & 4' race -.5 1 0 -.5; 
  estimate 'levels 1 & 2 versus levels 3 & 4' race .5 .5 -.5 -.5; 
run; 
quit; 
                                                        Standard 
Parameter                               Estimate           Error    t Value    Pr > 
|t| 
 
level 1 versus level 3               -1.74166667      2.73248820      -0.64      
0.5246 
level 2 versus levels 1 & 4           7.74324713      2.89718584       2.67      
0.0082 
levels 1 & 2 versus levels 3 & 4      1.10158046      1.96424409       0.56      
0.5756 
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The contrast estimate for the first comparison is the mean of level 1 minus the mean for level 3, and the 
significance of this is .525, i.e., not significant.  The second contrast estimate is 7.743, which is the 
mean of level 2 minus the mean of level 1 and level 4, and this difference is significant, p = 0.008.  The 
final contrast estimate is 1.1 which is the mean of levels 1 and 2 minus the mean of levels 3 and 4, and 
this contrast is not statistically significant, p = .576. 

Method 2: Regression 

As in the prior example, we will make the following three comparisons:  

1) level 1 to level 3,   
2) level 2 to levels 1 and 4 and    
3) levels 1 and 2 to levels 3 and 4. 

For methods 1 and 2 it was quite easy to translate the comparisons we wanted to make into contrast 
codings, but it is not as easy to translate the comparisons we want into a regression coding scheme.  If 
we know the contrast coding system, then we can convert that into a regression coding system using the 
SAS program shown below. As you can see, we place the three contrast codings we want into the 
matrix c and then perform a set of matrix operations on c, yielding the matrix x. We then display x 
using the print command.  

proc iml; 
  c = {  1 -.5  .5,  
         0   1  .5, 
        -1   0 -.5, 
         0 -.5 -.5 }; 
  x = c*inv( c`*c ); 
  print x; 
run; 
quit; 

 Below we see the output from this program showing the regression coding scheme we would use. 

            X 
 
     -0.5        -1       1.5 
      0.5         1      -0.5 
     -1.5        -1       1.5 
      1.5         1      -2.5 

This converted the contrast coding into the regression coding that we need for running this analysis with 
proc reg.  Below, we use if-then statements to create x1, x2 and x3 according to the coding shown 
above and then enter them into the regression analysis. 

data special; 
  set c:\sasreg\hsb2; 
  if race = 1 then x1 = -0.5; 
  if race = 2 then x1 =   .5; 
  if race = 3 then x1 = -1.5; 
  if race = 4 then x1 =  1.5; 
 
  if race = 1 or race = 3 then x2 = -1; 
  if race = 2 or race = 4 then x2 =  1; 
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  if race = 1 or race = 3 then x3 = 1.5; 
  if race = 2 then x3 = -.5; 
  if race = 4 then x3 =-2.5; 
 
run; 
 
proc reg data = special; 
  model write = x1 x2 x3; 
run; 
quit; 

The first comparison of the mean of the dependent variable for level 1 to level 3 of the categorical 
variable was not statistically significant, while the comparison of the mean of the dependent variable for 
level 2 to that of levels 1 and 4 was.  The comparison of the mean of the dependent variable for levels 1 
and 2 to that of levels 3 and 4 also was not statistically significant. 

                                 Parameter Estimates 
 
                                      Parameter       Standard 
Variable     Label            DF       Estimate          Error    t Value    Pr > 
|t| 
 
Intercept    Intercept         1       51.67838        0.98212      52.62      
<.0001 
x1                             1       -1.74167        2.73249      -0.64      
0.5246 
x2                             1        7.74325        2.89719       2.67      
0.0082 
x3                             1        1.10158        1.96424       0.56      
0.5756 

5.9 Summary 

This page has described a number of different coding systems that you could use for categorical data, 
and two different strategies you could use for performing the analyses.  You can choose a coding 
system that yields comparisons that make the most sense for testing your hypotheses.  In general we 
would recommend using the easiest method that accomplishes your goals. 

Regression with SAS 
Chapter 6 - More on Interactions of Categorical Predictors 

Chapter Outline 
   6.0 Introduction 
   6.1. Analysis with two categorical variables 
   6.2. Simple effects 
     6.2.1 Analyzing simple effects using PROC GLM 
    6.2.2 Analyzing Simple Effects Using  PROC REG 
   6.3. Simple comparisons 
     6.3.1 Analyzing simple comparisons using PROC REG 
     6.3.2 Analyzing simple comparisons using PROC GLM 
   6.4. Partial Interaction  
     6.4.1 Analyzing partial interactions using PROC GLM 

http://www.ats.ucla.edu/stat/sas/webbooks/reg/default.htm


 274

     6.4.2 Analyzing partial interactions using PROC REG 
   6.5. Interaction contrasts 
     6.5.1 Analyzing interaction contrasts using PROC GLM 
     6.5.2 Analyzing interaction contrasts using PROC REG 
   6.6. Computing adjusted means 
     6.6.1 Computing adjusted means via PROC GLM 
     6.6.1 Computing adjusted means via PROC REG 
   6.7. More details on meaning of coefficients 
   6.8. Simple effects via dummy coding versus effect coding 
     6.8.1 Example 1. Simple effects of yr_rnd at levels of mealcat 
     6.8.2 Example 2. Simple effects of mealcat at levels of yr_rnd  

6.0 Introduction  

This chapter will use the elemapi2 data that you have seen in the prior chapters. We assume that you 
have put the data files in "c:\sasreg\" directory.  

data elemapi2; 
  set 'c:\sasreg\elemapi2'; 
run; 

For this chapter we will use the elemapi2 data file that we have been using in prior chapters. We will 
focus on the variables mealcat, and collcat as they relate to the outcome variable api00 (performance 
on the api in the year 2000. The variable mealcat is the variable meals broken up into three categories, 
and the variable collcat is the variable some_col broken into 3 categories. We could think of mealcat as 
being the number of students receiving free meals and broken up into low, middle and high. The 
variable collcat can be thought of as the number of parents with some college education, and we could 
think of it as being broken up into low, medium and high. For our analysis, we think that both mealcat 
and collcat may be related to api00, but it is also possible that the impact of mealcat might depend on 
the level of collcat. In other words, we think that there might be an interaction of these two categorical 
variables. In this chapter we will look at how these two categorical variables are related to api 
performance in the school, and we will look at the interaction of these two categorical variables as well. 
We will see that there is an interaction of these categorical variables, and will focus on different ways of 
further exploring the interaction.  Let's have a quick look at these variables.   

proc tabulate data=elemapi2; 
  class collcat mealcat ; 
  var api00; 
  table mealcat='mealcat',  
        mean=' '*api00='API Index for 2000'*collcat='collcat'*F=10.2  
        / RTS=13.; 
run; 
---------------------------------------------- 
|           |       API Index for 2000       | 
|           |--------------------------------| 
|           |            collcat             | 
|           |--------------------------------| 
|           |    1     |    2     |    3     | 
|-----------+----------+----------+----------| 
|mealcat    |          |          |          | 
|-----------|          |          |          | 
|1          |    816.91|    825.65|    782.15| 

http://www.ats.ucla.edu/stat/sas/webbooks/reg/elemapi2.sas7bdat
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|-----------+----------+----------+----------| 
|2          |    589.35|    636.60|    655.64| 
|-----------+----------+----------+----------| 
|3          |    493.92|    508.83|    541.73| 
---------------------------------------------- 

 6.1. Analysis with two categorical variables  

One traditional way to analyze this would be to perform a 3 by 3 factorial analysis of variance using 
proc glm, as shown below. The results show a main effect of collcat (F=4.5, p-0.0117), a main effect of 
mealcat (F=509.04, p=0.0000) and an interaction of collcat by mealcat, (F=6.63, p=0.0000). We also 
use lsmeans and output statement to output the predicted means for each group and get ourselve ready 
to graph the cell means. 

proc glm data = elemapi2; 
  class collcat mealcat; 
  model api00 = collcat | mealcat /ss3; 
  lsmeans collcat*mealcat; 
  output out = pred p = pred; 
run; 
quit; 
The GLM Procedure 
 
   Class Level Information 
Class         Levels    Values 
collcat            3    1 2 3 
mealcat            3    1 2 3 
 
Number of observations    400 
The GLM Procedure 
Dependent Variable: api00   api 2000 
 
                                      Sum of 
Source                     DF        Squares    Mean Square   F Value   Pr > F 
Model                       8    6243714.810     780464.351    166.76   <.0001 
Error                     391    1829957.187       4680.197 
Corrected Total           399    8073671.998 
 
R-Square     Coeff Var      Root MSE    api00 Mean 
0.773343      10.56356      68.41197      647.6225 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
collcat                     2      42140.566      21070.283      4.50   0.0117 
mealcat                     2    4764843.563    2382421.781    509.04   <.0001 
collcat*mealcat             4     124167.809      31041.952      6.63   <.0001 
 
Least Squares Means 
collcat    mealcat    api00 LSMEAN 
1          1            816.914286 
1          2            589.350000 
1          3            493.918919 
2          1            825.651163 
2          2            636.604651 
2          3            508.833333 
3          1            782.150943 
3          2            655.637681 
3          3            541.733333 
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We can now create the graph of cell means of api00 using the dataset pred. 

proc sort data = pred; 
  by mealcat; 
run; 
symbol1 v=circle i=join ci=blue  h= 2; 
symbol2 v=triangle i=join ci=red h =2; 
symbol3 v=square i=join ci=black h =2; 
proc gplot data = pred; 
  plot pred*mealcat=collcat ; 
run; 
quit; 

   

We can do the same analysis using the regression approach via proc reg. We use simple regression 
coding for both collcat and mealcat. We also create interaction terms for them. The first test statement 
tests the effect of main effect of collcat, the second the main effect of mealcat and the last one on the 
effect of overall interaction.  

data reg1; 
  set elemapi2; 
  s2 = -1/3; s3=-1/3; 
  if collcat = 2 then s2 = 2/3; 
  if collcat = 3 then s3 = 2/3; 
  m2 = -1/3; m3 = -1/3; 
  if mealcat = 2 then m2 = 2/3; 
  if mealcat = 3 then m3 = 2/3; 
  sm22 = s2*m2; 
  sm23 = s2*m3; 
  sm32 = s3*m2; 
  sm33 = s3*m3; 
run; 
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proc reg data = reg1; 
  model api00 = s2 s3 m2 m3 sm22 sm23 sm32 sm33; 
  Collcat: test s2=s3=0; 
  Mealcat: test m2=m3=0; 
  Interaction: test sm22=sm23=sm32=sm33=0; 
  output out = pred2 p = pred; 
run; 
quit; 
The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
Model                     8        6243715         780464     166.76    <.0001 
Error                   391        1829957     4680.19741 
Corrected Total         399        8073672 
 
 
Root MSE             68.41197    R-Square     0.7733 
Dependent Mean      647.62250    Adj R-Sq     0.7687 
Coeff Var            10.56356 
 
                            Parameter Estimates 
 
                               Parameter      Standard 
Variable    Label       DF      Estimate         Error   t Value   Pr > |t| 
Intercept   Intercept    1     650.08826       3.87189    167.90     <.0001 
s2                       1      23.63531       9.10533      2.60     0.0098 
s3                       1      26.44625       9.99513      2.65     0.0085 
m2                       1    -181.04135       9.07713    -19.94     <.0001 
m3                       1    -293.41027       9.44946    -31.05     <.0001 
sm22                     1      38.51777      24.19532      1.59     0.1122 
sm23                     1       6.17754      20.08262      0.31     0.7585 
sm32                     1     101.05102      22.88808      4.42     <.0001 
sm33                     1      82.57776      24.43941      3.38     0.0008 
 
    Test Collcat Results for Dependent Variable API00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
Numerator           2          21070       4.50    0.0117 
Denominator       391     4680.19741 
 
    Test Mealcat Results for Dependent Variable API00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
Numerator           2        2382422     509.04    <.0001 
Denominator       391     4680.19741 
 
  Test Interaction Results for Dependent Variable API00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
Numerator           4          31042       6.63    <.0001 
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Denominator       391     4680.19741 

First, note that the results of the test statements correspond to those from proc glm statement. This is 
because collcat and mealcat were coded using simple effect coding, a coding scheme where the 
contrasts sum to 0. If this had been coded using dummy coding,  then the results of the test commands 
for mealcat and collcat from the proc reg would not have corresponded to the proc glm results. In 
addition to simple coding, we could have used deviation or helmert coding schemes and the results of 
the test commands would have matched the result from proc glm, although the meaning of the 
individual tests would have been different. This point will be explored in more detail later in this 
chapter.  

The graph of the cell means we obtained before illustrates the interaction between collcat and mealcat. 
The graph shows the 3 levels of collcat as 3 different lines, and the 3 levels of mealcat as the 3 values 
on the x axis of the graph. We can see that the effect of collcat differs based on the level of mealcat. 
For example, when mealcat is low, schools where collcat is 3 have the lowest api00 scores, as 
compared to schools that are medium or high on mealcat, where schools with collcat of 3 have the 
highest api00 scores.  

Let's investigate this interaction further by looking at the simple effects of collcat at each level of 
mealcat.  

   6.2. Simple effects 
   6.2.1 Analyzing simple effects using PROC GLM 
 
This analysis looks at the simple effects of collcat at the different levels of mealcat using proc glm. 
The lsmeans statement with option slice = mealcat gives the test of effects of collcat at each level of 
mealcat.    

proc glm data= elemapi2; 
  class collcat mealcat; 
  model api00 = mealcat|collcat ; 
  lsmeans mealcat*collcat / slice = mealcat ; 
run; 
quit; 
The GLM Procedure 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
Model                        8     6243714.810      780464.351     166.76    <.0001 
Error                      391     1829957.187        4680.197 
Corrected Total            399     8073671.998 
 
R-Square     Coeff Var      Root MSE    API00 Mean 
0.773343      10.56356      68.41197      647.6225 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
MEALCAT                      2     4764843.563     2382421.781     509.04    <.0001 
COLLCAT                      2       42140.566       21070.283       4.50    0.0117 
COLLCAT*MEALCAT              4      124167.809       31041.952       6.63    <.0001 
COLLCAT    MEALCAT    API00 LSMEAN 
1          1            816.914286 
1          2            589.350000 
1          3            493.918919 



 279

2          1            825.651163 
2          2            636.604651 
2          3            508.833333 
3          1            782.150943 
3          2            655.637681 
3          3            541.733333 
 
          COLLCAT*MEALCAT Effect Sliced by MEALCAT for API00 
           
                           Sum of 
MEALCAT        DF         Squares     Mean Square    F Value    Pr > F 
1               2           50909           25455       5.44    0.0047 
2               2           68629           34314       7.33    0.0007 
3               2           29979           14990       3.20    0.0417 

6.2.2 Analyzing Simple Effects Using  PROC REG  

We have demonstrated how to test the simple effect of collcat at each level of mealcat using PROC 
GLM in the previous section. That is through the approach of ANOVA. We can also obtain the same 
analysis through regression approach. After all, Anova is regression. In regression approach, we will 
create the coding for variable collcat, mealcat and their interaction. The coding scheme is specific for 
the effect we want to see. For example, in this section, we will do an analysis parallel to the previous 
section. That is to say that we want to see the simple effect of collcat at each level of mealcat. We will 
use simple coding for mealcat, though in our case the type of coding for mealcat does not really 
matter.  The scheme for simple coding is shown chapter 5. The reference group for mealcat is group 
1.  We use helmert coding for collcat.  We should note that these terms are not used in the analysis, but 
are used  for creating the simple effects of collcat at each level of mealcat.  

data reg2; 
  set elemapi2; 
  mcat1 = 1/3; mcat2 = 1/3; 
  if mealcat = 3 then mcat1 = -2/3; 
  if mealcat = 2 then mcat2 = -2/3; 
  ccat1 = -1/3;  
  if collcat = 1 then do; 
          ccat1 = 2/3; 
   ccat2 = 0; 
   end; 
  if collcat = 2 then ccat2 = .5; 
  if collcat = 3 then ccat2 = -.5; 
  c1m1 = 0; c2m1 = 0; c1m2 = 0; 
  c2m2 = 0; c1m3 = 0; c2m3 = 0; 
  if ( mealcat = 1)  then do; c1m1 = ccat1; 
                              c2m1 = ccat2; end; 
  if ( mealcat = 2)  then do; c1m2 = ccat1; 
                              c2m2 = ccat2; end; 
  if ( mealcat = 3)  then do; c1m3 = ccat1; 
                              c2m3 = ccat2; end; 
run; 

Now, that we have seen the helmert coding for collcat, we can see how this is used to create the simple 
effects of collcat at each level of mealcat. First, we look at the two comparisons of collcat at mealcat 
of 1. Note that the coding is the same as we saw above, but only when mealcat is 1, otherwise these 
variables are coded 0. Likewise, we look at the terms that form the effects of collcat when mealcat is 2, 
and we see that the variables are coded the same way when mealcat is 2, and otherwise 0. The same is 
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true for the case when mealcat  is 3. The following matrix is the coding we just used for all the 
interaction terms.    

collcat mealcat c1m1 c2m1 c1m2 c2m2 c1m3 c2m3
1 1  2/3 0 0 0 0 0 
2 1 -1/3  1/2 0 0 0 0 
3 1 -1/3 -1/2 0 0 0 0 
1 2 0 0  2/3 0 0 0 
2 2 0 0 -1/3  1/2 0 0 
3 2 0 0 -1/3 -1/2 0 0 
1 3 0 0 0 0  2/3 0 
2 3 0 0 0 0 -1/3  1/2 
3 3 0 0 0 0 -1/3 -1/2 

Now we are ready for our regression analysis. The test statements used below are for testing the simple 
effect of collcat  at each level of mealcat. 

proc reg data = reg2; 
  model api00 = mcat1 mcat2 c1m1 c2m1 c1m2 c2m2 c1m3 c2m3; 
  mealcat1: test c1m1 = c2m1 = 0; 
  mealcat2: test c1m2 = c2m2 = 0; 
  mealcat3: test c1m3 = c2m3 = 0; 
run; 
quit; 
The REG Procedure 
Model: MODEL1 
Dependent Variable: API00 api 2000 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
Model                     8        6243715         780464     166.76    <.0001 
Error                   391        1829957     4680.19741 
Corrected Total         399        8073672 
 
Root MSE             68.41197    R-Square     0.7733 
Dependent Mean      647.62250    Adj R-Sq     0.7687 
Coeff Var            10.56356 
 
                               Parameter Estimates 
 
                                  Parameter       Standard 
Variable     Label        DF       Estimate          Error    t Value    Pr > |t| 
Intercept    Intercept     1      650.08826        3.87189     167.90      <.0001 
MCAT1                      1      293.41027        9.44946      31.05      <.0001 
MCAT2                      1      181.04135        9.07713      19.94      <.0001 
C1M1                       1       13.01323       13.52800       0.96      0.3367 
C2M1                       1       43.50022       14.04092       3.10      0.0021 
C1M2                       1      -56.77117       16.67866      -3.40      0.0007 
C2M2                       1      -19.03303       13.29175      -1.43      0.1530 
C1M3                       1      -31.36441       12.86955      -2.44      0.0153 
C2M3                       1      -32.90000       20.23653      -1.63      0.1048 
   Test mealcat1 Results for Dependent Variable API00 
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                                Mean 
Source             DF         Square    F Value    Pr > F 
Numerator           2          25455       5.44    0.0047 
Denominator       391     4680.19741 
 
   Test mealcat2 Results for Dependent Variable API00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
Numerator           2          34314       7.33    0.0007 
Denominator       391     4680.19741 
 
   Test mealcat3 Results for Dependent Variable API00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
Numerator           2          14990       3.20    0.0417 
Denominator       391     4680.19741 

6.3 Simple Comparisons 

In the analyses above we looked at the simple effect of collcat at each level of mealcat. For example, 
we looked at the overall effect of collcat when mealcat was 1. This is the simple effect of collcat at 
mealcat=1. Because collcat has more than 2 levels, we may wish to make further comparisons among 
the 3 levels of collcat within mealcat=1. Simple comparisons allow us to make such comparisons.  

6.3.1 Analyzing Simple Comparisons Using PROC REG 

In the previous regression analysis, we used helmert coding for collcat. We choose this coding scheme 
so we could compare group 1 with groups 2 and 3 and then compare groups 2 and 3 within mealcat = 1. 
For example, if we wanted to compare collcat 1 vs. 2 and 3, we would want to look at the effect c1m1, 
and if we wanted to compare collcat groups 2 and 3 when mealcat is 1, then we would look at the 
effect c2m1. For example, c1m1  is not significant with t-value = 0.96 and p-value = 0.3367. That is to 
say that the difference between group 1 of collcat with group 2 and group 3 with mealcat = 1 is not 
significant. 

6.3.2 Analyzing Simple Comparisons Using PROC GLM 

We can also look at the simple comparisons using PROC GLM. For example, for the comparsion of 
group 1 vs 2+ of collcat within mealcat = 1, we can do the following. The estimate statement below 
indicates that the comparison on collcat is between group 1 and all the upper groups and the 
comparison is restricted to within mealcat = 1. 

proc glm data = elemapi2; 
  class collcat mealcat; 
  model api00 = collcat mealcat collcat*mealcat/ss3; 
  estimate 'collcat 1 vs 2+ within mealcat = 1' 
              collcat 1 -.5 -.5 
              collcat*mealcat 1  0 0 
               -.5 0 0 
               -.5 0 0; 
run; 
quit; 



 282

The GLM Procedure 
 
Dependent Variable: API00   api 2000 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
Model                        8     6243714.810      780464.351     166.76    <.0001 
Error                      391     1829957.187        4680.197 
Corrected Total            399     8073671.998 
 
R-Square     Coeff Var      Root MSE    API00 Mean 
0.773343      10.56356      68.41197      647.6225 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
COLLCAT                      2       42140.566       21070.283       4.50    0.0117 
MEALCAT                      2     4764843.563     2382421.781     509.04    <.0001 
COLLCAT*MEALCAT              4      124167.809       31041.952       6.63    <.0001 
 
                                                          Standard 
Parameter                                 Estimate           Error    t Value    Pr 
> |t| 
collcat 1 vs 2+ within mealcat = 1      13.0132326      13.5279998       0.96      
0.3367 

6.4 Partial Interaction 

A partial interaction allows you to apply contrasts to one of the effects in an interaction term. For 
example, we can draw the interaction of collcat by mealcat like this below.  

  Collcat low Collcat Med Collcat High
Mealcat Low       
Mealcat Med       
Mealcat High       

Say that we wanted to compare, in the context of this interaction, group 1 for collcat vs. groups 2 and 3. 
The table of this partial interaction would look like this.  The contrast coefficients of -2 1 1 applied to 
collcat indicate the comparison of  group 1 for collcat vs. groups 2 and 3.   

  -2 1 1 
  Collcat low Collcat Med Collcat High
Mealcat Low       
Mealcat Med       
Mealcat High       

Likewise, we also might want to compare groups 2 and 3 of collcat by mealcat, and the table of this 
interaction would look like this.  

  0 -1 1 
  Collcat low Collcat Med Collcat High
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Mealcat Low       
Mealcat Med       
Mealcat High       

These are called partial interactions because contrast coefficients are applied to one of the terms 
involved in the interaction.  

6.4.1 Analyzing partial interactions using PROC GLM 

We wish to compare groups 1 versus 2 on collcat. Similarly, we can also compare  groups 2 and 3 on 
collcat. For example, we want to test the partial interaction of collcat comparing group 1 vs. 2 and 3 by 
mealcat, we can do the following contrast statement. Because mealcat has 2 degrees of freedom, the 
test of partial interaction also has 2 degrees of freedom. The 2 degrees of freedom of factor mealcat can 
be broken down into 2 comparisons. These two interaction contrasts are separated by a semi-colon, 
which tells SAS to join these contrasts together into a single test with 2 degrees of freedom.  

proc glm data = elemapi2; 
  class collcat mealcat; 
  model api00 = collcat mealcat collcat*mealcat; 
  contrast 'test of sm11 and sm12' collcat*mealcat    1  -1  0 
                                                    -.5  .5  0 
                                                    -.5  .5  0, 
        collcat*mealcat   0   1 -1 
                                                      0 -.5 .5 
                                                      0 -.5 .5; 
  contrast 'test of sm21 and sm22'  collcat*mealcat   0   0  0 
                                                      1  -1  0 
                                                     -1   1  0, 
        collcat*mealcat   0   0  0 
                                                      0   1 -1 
                                                      0  -1  1; 
run; 
quit; 
The GLM Procedure 
 
<output omitted> 
 
Contrast                    DF    Contrast SS    Mean Square   F Value   Pr > F 
 
test of sm11 and sm12        2    54141.40962    27070.70481      5.78   0.0033 
test of sm21 and sm22        2    66511.60133    33255.80067      7.11   0.0009 

6.4.2 Analyzing partial interactions Using PROC REG 

With regression analysis, we can also compare groups 1 vs. 2 and 3 on collcat, or compare groups 2 and 
3 on collcat. This implies Helmert coding on collcat, as we did before.   

data reg3; 
  set elemapi2; 
  if mealcat = 1 then m1 = 2/3; 
  if mealcat = 2 then m1 = -1/3; 
  if mealcat = 3 then m1 = -1/3; 
  if mealcat = 1 then m2 = 1/3; 
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  if mealcat = 2 then m2 = 1/3; 
  if mealcat = 3 then m2 = -2/3; 
  
  if collcat = 1 then s1 =  2/3; 
  if collcat = 2 then s1 = -1/3; 
  if collcat = 3 then s1 = -1/3; 
  if collcat = 1 then s2 =  0; 
  if collcat = 2 then s2 =  1/2; 
  if collcat = 3 then s2 = -1/2; 
 
  sm11 = s1*m1; 
  sm12 = s1*m2; 
  sm21 = s2*m1; 
  sm22 = s2*m2; 
run; 
 
proc reg data = reg3; 
  model api00 = s1 s2 m1 m2 sm11 sm12 sm21 sm22; 
  test sm11 = sm12 = 0; 
  test sm21 = sm22 = 0; 
run; 
quit; 
The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     8        6243715         780464     166.76    <.0001 
Error                   391        1829957     4680.19741 
Corrected Total         399        8073672 
 
 
Root MSE             68.41197    R-Square     0.7733 
Dependent Mean      647.62250    Adj R-Sq     0.7687 
Coeff Var            10.56356 
 
 
                            Parameter Estimates 
 
                               Parameter      Standard 
Variable    Label       DF      Estimate         Error   t Value   Pr > |t| 
 
Intercept   Intercept    1     650.08826       3.87189    167.90     <.0001 
s1                       1     -25.04078       8.34539     -3.00     0.0029 
s2                       1      -2.81094       9.32938     -0.30     0.7633 
m1                       1     181.04135       9.07713     19.94     <.0001 
m2                       1     112.36892       9.90759     11.34     <.0001 
sm11                     1      69.78440      21.47520      3.25     0.0013 
sm12                     1     -25.40675      21.06663     -1.21     0.2285 
sm21                     1      62.53325      19.33438      3.23     0.0013 
sm22                     1      13.86697      24.21132      0.57     0.5671 
 
 
       Test 1 Results for Dependent Variable api00 
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                                Mean 
Source             DF         Square    F Value    Pr > F 
 
Numerator           2          27071       5.78    0.0033 
Denominator       391     4680.19741 
 
 
       Test 2 Results for Dependent Variable api00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
 
Numerator           2          33256       7.11    0.0009 
Denominator       391     4680.19741 

6.5. Interaction Contrasts  

Above we saw that a partial interaction allows you to apply contrast coefficients to one of the terms in a 
2 way interaction. An interaction contrast allows you to apply contrast coefficients to both of the terms 
in a two way interaction.  

For example, with respect to collcat,  let's say that we wish to compare groups 2 and 3, and with respect 
to mealcat we wish to compare groups 1 and 2. The table of this looks like this below.  

-1 1 0 
  Collcat 

low 
Collcat 
Med 

Collcat 
High 

0 Mealcat Low       
-1 Mealcat Med       
1 Mealcat High       

We also would like to form a second interaction contrast that also compares groups 2 and 3 with respect 
to collcat, and compares groups 2 and 3 on mealcat. A table of this comparison is shown below.  

0 -1 1 
  Collcat 

low 
Collcat 
Med 

Collcat 
High 

0 Mealcat Low       
-1 Mealcat Med       
1 Mealcat High       

If we look at the graph of the predicted values (repeated below) we constructed before, it compares line 
2 and 3 (collcat 2 vs. 3) by mealcat 1 vs. 2, and then again by mealcat 2 vs. 3.  
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6.5.1 Analyzing Interaction Contrasts Using PROG GLM 

proc glm data = elemapi2; 
  class collcat mealcat; 
  model api00 = collcat mealcat collcat*mealcat; 
  contrast 'collcat 2v3 with mealcat 1v2' collcat*mealcat 0  0  0 
                                                          1 -1  0 
                                                         -1  1  0; 
  contrast 'somecat 2v3 with mealcat 2v3' collcat*mealcat 0  0  0 
                                                          0  1 -1 
         0 -1  1; 
run; 
quit; 
The GLM Procedure 
 
 <output omitted> 
 
Contrast                           DF    Contrast SS    Mean Square   F Value 
 
collcat 2v3 with mealcat 1v2        1    48958.23687    48958.23687     10.46 
somceat 2v3 with mealcat 2v3        1     1535.28987     1535.28987      0.33 
 
Contrast                       Pr > F 
 
collcat 2v3 with mealcat 1v2   0.0013 
somceat 2v3 with mealcat 2v3   0.5671 

6.5.2 Analyzing interaction contrasts using PROC REG  

In regression analysis, we have seen that difference coding schemes of the variables give us difference 
contrasts and comparisons. Because we would like to compare groups 1 vs. 2, and then  groups 2 vs. 3 
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on mealcat,  we will use forward difference coding for mealcat (which will compare 1 vs. 2, then 2 vs. 
3).   

data reg4; 
  set elemapi2; 
  if mealcat = 1 then m1 = 2/3; 
  if mealcat = 2 then m1 = -1/3; 
  if mealcat = 3 then m1 = -1/3; 
  if mealcat = 1 then m2 = 1/3; 
  if mealcat = 2 then m2 = 1/3; 
  if mealcat = 3 then m2 = -2/3; 
  
  if collcat = 1 then s1 =  2/3; 
  if collcat = 2 then s1 = -1/3; 
  if collcat = 3 then s1 = -1/3; 
  if collcat = 1 then s2 =  0; 
  if collcat = 2 then s2 =  1/2; 
  if collcat = 3 then s2 = -1/2; 
 
  sm11 = s1*m1; 
  sm12 = s1*m2; 
  sm21 = s2*m1; 
  sm22 = s2*m2; 
run; 
 
proc reg data = reg4; 
  model api00 = s1 s2 m1 m2 sm11 sm12 sm21 sm22; 
run; 
quit; 
The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     8        6243715         780464     166.76    <.0001 
Error                   391        1829957     4680.19741 
Corrected Total         399        8073672 
 
 
Root MSE             68.41197    R-Square     0.7733 
Dependent Mean      647.62250    Adj R-Sq     0.7687 
Coeff Var            10.56356 
 
 
                            Parameter Estimates 
 
                               Parameter      Standard 
Variable    Label       DF      Estimate         Error   t Value   Pr > |t| 
 
Intercept   Intercept    1     650.08826       3.87189    167.90     <.0001 
s1                       1     -25.04078       8.34539     -3.00     0.0029 
s2                       1      -2.81094       9.32938     -0.30     0.7633 
m1                       1     181.04135       9.07713     19.94     <.0001 
m2                       1     112.36892       9.90759     11.34     <.0001 
sm11                     1      69.78440      21.47520      3.25     0.0013 
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sm12                     1     -25.40675      21.06663     -1.21     0.2285 
sm21                     1      62.53325      19.33438      3.23     0.0013 
sm22                     1      13.86697      24.21132      0.57     0.5671 

6.6 Computing Adjusted Means  

Our model will be almost  the same as before, in addition we include an additional covariate emer. We 
want to obtain the adjusted means of api00 adjusted for variable emer. These adjusted means compute 
the mean that would be expected if every school in the sample were at the mean for the variable emer.  

6.6.1 Computing Adjusted Means via PROC GLM  

The syntax to get the adjusted means using proc glm is as follows. The default is to adjust at the means 
and it can be changed by using at variable = value option following the lsmeans statement.   

proc glm data = elemapi2; 
  class collcat mealcat; 
  model api00 = collcat mealcat collcat*mealcat emer /ss3; 
  lsmeans collcat*mealcat; 
run; 
quit; 
The GLM Procedure 
                                      Sum of 
Source                     DF        Squares    Mean Square   F Value   Pr > F 
Model                       9    6402428.265     711380.918    166.01   <.0001 
Error                     390    1671243.733       4285.240 
Corrected Total           399    8073671.998 
 
R-Square     Coeff Var      Root MSE    api00 Mean 
0.793001      10.10801      65.46175      647.6225 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
collcat                     2      34730.090      17365.045      4.05   0.0181 
mealcat                     2    3017331.845    1508665.923    352.06   <.0001 
collcat*mealcat             4      96789.116      24197.279      5.65   0.0002 
emer                        1     158713.455     158713.455     37.04   <.0001 
collcat    mealcat    api00 LSMEAN 
1          1            797.560428 
1          2            596.972811 
1          3            509.872241 
2          1            812.550248 
2          2            636.404940 
2          3            523.884659 
3          1            767.935241 
3          2            652.976146 
3          3            550.461628 

6.6.2 Computing Adjusted Means via REGRESSION  

Now we illustrate how to get the same adjusted means if you were to to the analysis via the proc reg. 
First, we need to create all the necessary dummy variables for the categorical variables. The choice of 
coding schemes does not matter for the purpose of obtaining the adjusted means. We choose the same 
coding scheme we used before for both mealcat and collcat below.  After coding our variables properly, 
we proceed to proc reg to generate the regression equation used later in the proc score statement to 
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generate predicted valued based on the equation. The proc sql statement below simply generates a new 
variable meanemer as the mean of emer. 

data reg6; 
  set elemapi2; 
  if collcat = 1 then s2 = 2/3; 
  if collcat = 2 then s2 = -1/3; 
  if collcat = 3 then s2 = -1/3; 
  if collcat = 1 then s3 = -1/3; 
  if collcat = 2 then s3 = 2/3; 
  if collcat = 3 then s3 = -1/3; 
  if mealcat = 1 then m2 = 2/3; 
  if mealcat = 2 then m2 = -1/3; 
  if mealcat = 3 then m2 = -1/3; 
  if mealcat = 1 then m3 = -1/3; 
  if mealcat = 2 then m3 = 2/3; 
  if mealcat = 3 then m3 = -1/3; 
  sm22 = s2*m2; 
  sm23 = s2*m3; 
  sm32 = s3*m2; 
  sm33 = s3*m3; 
run; 
 
proc reg data = reg6 outest = pred6 noprint; 
  yhat: model api00 = s2 s3 m2 m3 sm22 sm23 sm32 sm33 emer; 
run; 
quit; 
 
proc sql; 
  create table xy as 
  select *, mean(emer) as meanemer 
  from reg6; 
quit; 

NOTE:  You need to rename meanemer to emer or else the proc score will not work The variables 
listed on the var statement in the proc score must be the same as the IVs in the regression.  If they are 
not, you get a cryptic message about not finding a variable , even though you can see the variable in the 
data set. 

data xyz; 
  set xy; 
  emer = meanemer; 
run; 
   
proc score data = xyz score = pred6 out = ep type = parms; 
  var s2 s3 m2 m3 sm22 sm23 sm32 sm33 emer; 
run; 
 
proc means data = ep mean; 
  class collcat mealcat; 
  var yhat; 
run;  
The MEANS Procedure 
 
            Analysis Variable : yhat 
 
             Percentage 
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             free meals 
                   in 3    N 
  collcat    categories  Obs      Mean    
------------------------------------------- 
    1             1       35   797.5629402  
                  2       20   596.9753239  
                  3       74   509.8747538  
    2             1       43   812.5527606  
                  2       43   636.4074521  
                  3       48   523.8871715  
    3             1       53   767.9377531  
                  2       69   652.9786583  
                  3       15   550.4641407  
------------------------------------------- 

6.7 More Details on Meaning of the Coefficients  

So far we have discussed a variety of techniques that you can use to help interpret interactions of 
categorical variables in regression, but we have not gone into a great detail about the meaning of the 
coefficients in these analyses. Let's consider this further. Consider the analysis below using collcat and 
mealcat, using simple contrasts on both of these variables. The reference group for both variables will 
be group 1.   

data reg7; 
  set elemapi2; 
  if collcat = 1 then s1 = -1/3; 
  if collcat = 2 then s1 = 2/3; 
  if collcat = 3 then s1 = -1/3; 
  if collcat = 1 then s2 = -1/3; 
  if collcat = 2 then s2 = -1/3; 
  if collcat = 3 then s2 = 2/3; 
  if mealcat = 1 then m1 = -1/3; 
  if mealcat = 2 then m1 = 2/3; 
  if mealcat = 3 then m1 = -1/3; 
  if mealcat = 1 then m2 = -1/3; 
  if mealcat = 2 then m2 = -1/3; 
  if mealcat = 3 then m2 = 2/3; 
  sm11 = s1*m1; 
  sm12 = s1*m2; 
  sm21 = s2*m1; 
  sm22 = s2*m2; 
run; 
 
proc reg data = reg7; 
  model api00 = s1 s2 m1 m2 sm11 sm12 sm21 sm22; 
  output out = predreg7 p = yhat; 
run; 
quit; 
The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
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Model                     8        6243715         780464     166.76    <.0001 
Error                   391        1829957     4680.19741 
Corrected Total         399        8073672 
 
 
Root MSE             68.41197    R-Square     0.7733 
Dependent Mean      647.62250    Adj R-Sq     0.7687 
Coeff Var            10.56356 
 
 
                            Parameter Estimates 
 
                               Parameter      Standard 
Variable    Label       DF      Estimate         Error   t Value   Pr > |t| 
 
Intercept   Intercept    1     650.08826       3.87189    167.90     <.0001 
s1                       1      23.63531       9.10533      2.60     0.0098 
s2                       1      26.44625       9.99513      2.65     0.0085 
m1                       1    -181.04135       9.07713    -19.94     <.0001 
m2                       1    -293.41027       9.44946    -31.05     <.0001 
sm11                     1      38.51777      24.19532      1.59     0.1122 
sm12                     1       6.17754      20.08262      0.31     0.7585 
sm21                     1     101.05102      22.88808      4.42     <.0001 
sm22                     1      82.57776      24.43941      3.38     0.0008 

We can produce the adjusted means as shown below. These will be useful for interpreting the meaning 
of the coefficients.  

proc means data = predreg7 mean; 
 class collcat mealcat; 
 var yhat; 
run; 
The MEANS Procedure 
 
 Analysis Variable : yhat Predicted Value of api00 
 
                  Percentage 
                  free meals 
                        in 3      N 
     collcat      categories    Obs            Mean 
--------------------------------------------------- 
           1               1     35     816.9142857 
                           2     20     589.3500000 
                           3     74     493.9189189 
           2               1     43     825.6511628 
                           2     43     636.6046512 
                           3     48     508.8333333 
           3               1     53     782.1509434 
                           2     69     655.6376812 
                           3     15     541.7333333 
--------------------------------------------------- 

Let's consider the meaning of the coefficient for s1. The coding for this variable compares group 2 vs. 
group 1, hence this coefficient corresponds to mean(collcat = 2) - mean(collcat = 1). Note that these are 
the unweighted means, so we compute the mean for collcat = 2 as the mean of the 3 cells corresponding 
to collcat = 2, i.e. (825.651+636.605+508.833)/3 . If we compare the result below to the coefficient for 
s1 we see that they are the same,   
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(825.651+636.605+508.833)/3 - (816.914+589.35+493.919)/3 = 23.635333.  

Likewise, the coefficient for s2 is mean(collcat = 3) - mean(collcat = 1), computed below. The value 
below corresponds to the coefficient for s2.  

(782.151+655.638+541.733)/3 - (816.914+589.35+493.919)/3 = 26.446333 

Likewise, the coefficient for m1 works out to be mean(mealcat = 2) - mean(mealcat = 1), computed 
below.  

(589.35+636.605+655.638)/3 - (816.914+825.651+782.151)/3 = -181.041. 

And the coefficient for m2 is mean(mealcat = 3) - mean(mealcat = 1), computed below.  

(493.919+508.833+541.733)/3 - (816.914+825.651+782.151)/3 = -293.41033 

To get the meaning of the coefficients for the interaction terms, let's write out the regression equation 
and take a closer look at the coefficients. From the parameter estimates, we have the following linear 
equation for predicted values:  

yhat = 650.090 + 23.635*s1   + 26.446*s2  
               - 181.042*m1  - 293.412*m2  
               + 38.518*s1*m1  + 6.178*s1*m2  
               + 101.051*s2*m1 + 82.578*s2*m2. 

Because of the simple coding scheme we use for both variables, we have from the above equation,  

yhat(collcat = 2) - yhat(collcat = 1) = 23.635 + 38.518*ms1 + 6.178*ms2.  

One way to think about this equation is that for any level of mealcat comparing group 2 vs. group 1 on 
collcat only involves s1. It then follows that the coefficient for sm11 is to compare the difference of 
group 2 vs. 1 on collcat when mealcat is 2 with the difference of group 2 vs. 1 on collcat  when 
mealcat is 1. In other words, sm11 is  

[cell(2,2)-cell(1,2)] - [cell(2,1)-cell(1,1)].   

Plugging all the corresponding cell means to the above formula, we get  

        (636.6047 - 589.3500) - (825.6512 - 816.9143) = 38.5175,  

which is the coefficient for sm11. Using the same argument, we can have the following  

sm11 : [cell(2,2)-cell(1,2)] - [cell(2,1)-cell(1,1)], 

sm12 : [cell(2,3)-cell(1,3)] - [cell(2,1)-cell(1,1)], 

sm21 : [cell(3,2)-cell(1,2)] - [cell(3,1)-cell(1,1)], 

sm22 : [cell(3,3)-cell(1,3)] - [cell(3,1)-cell(1,1)]. 
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We can go through the same process to verify the meaning of the coefficients for the other 3 interaction 
terms. We verify that sm12 is 6.1775.  

(508.8333  - 493.9189)  - (825.6512 - 816.9143) = 6.1775. 

We also verify that sm21 is 101.051.  

(655.6377 - 589.3500) - (782.1509 - 816.9143) = 101.0511. 

Last we verify that sm22 is 82.5778.  

(  541.7333 - 493.9189) - ( 782.1509 - 816.9143) = 82.5778. 

6.8 Simple Effects via Dummy Coding vs. Effect Coding  

We have used in this chapter different types of coding schemes. You may wonder why we have gone to 
the effort of creating and testing these effects instead of just using dummy coding and what is the 
difference between different coding schemes and how to choose them. In this section,  let's compare 
how to get simple effects using the effect coding to how we would get simple effects using dummy 
coding. We hope to show that it is much easier to use effect coding so that the interpretation of the 
coefficients is much more intuitive.  

6.8.1 Example 1. Simple effects of yr_rnd at levels of mealcat  

Let's use an example from Chapter 3 (section 3.5). In that example we looked at and analysis using 
mealcat and yr_rnd and the interaction of these two variables. First, we look at how to do a simple 
effects analysis looking at the simple effects of yr_rnd at each level of mealcat using effect coding. To 
make our results correspond to those from Chapter 3, we will make category 3 of mealcat the reference 
category.  

data reg8; 
  set elemapi2; 
 if mealcat = 1 then do; ms1 =2/3;  ms2 = -1/3; end;  
 if mealcat = 2 then do; ms1 =-1/3; ms2= 2/3; end; 
 if mealcat = 3 then do; ms1 =-1/3; ms2 = -1/3; end; 
 if yr_rnd = 0 then yr1 = -1/2; 
 else yr1 = 1/2; 
 ym1 = 0; 
 ym2 = 0; 
 ym3 = 0; 
 if mealcat = 1 then  ym1 = yr1; 
 if mealcat = 2 then  ym2 = yr1; 
 if mealcat = 3 then  ym3 = yr1; 
run; 
proc reg data = reg8; 
  model api00 = ms1 ms2 ym1 ym2 ym3; 
run; 
quit; 
The REG Procedure 
Model: MODEL1 
Dependent Variable: API00 api 2000 
                             Analysis of Variance 
 

http://www.ats.ucla.edu/stat/spss/webbooks/reg/chapter3/spssreg3.htm
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                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
Model                     5        6204728        1240946     261.61    <.0001 
Error                   394        1868944     4743.51314 
Corrected Total         399        8073672 
 
Root MSE             68.87317    R-Square     0.7685 
Dependent Mean      647.62250    Adj R-Sq     0.7656 
Coeff Var            10.63477 
 
                               Parameter Estimates 
 
                                  Parameter       Standard 
Variable     Label        DF       Estimate          Error    t Value    Pr > |t| 
Intercept    Intercept     1      632.23557        5.80048     109.00      <.0001 
MS1                        1      267.81076       14.61559      18.32      <.0001 
MS2                        1      114.65715       11.12812      10.30      <.0001 
ym1                        1      -74.25691       26.75629      -2.78      0.0058 
ym2                        1      -51.74017       18.88854      -2.74      0.0064 
ym3                        1      -33.49254       11.77129      -2.85      0.0047 
Now we can obtain the simple effect of yr_rnd at mealcat = 1 by inspecting the coefficient for ym1, 
the simple effect of yr_rnd at mealcat = 2 by inspecting the coefficient for ym2 and the simple effect 
of yr_rnd at mealcat = 3 by inspecting the coefficient for ym3.  

Now let's perform the same analysis using dummy coding. Again, we will explicitly make the 3rd 
category for mealcat to be the omitted category.  

data reg9; 
  set elemapi2; 
  if mealcat = 1 then do; md1 = 1; md2 = 0; end; 
  if mealcat = 2 then do; md1 = 0; md2 = 1; end; 
  if mealcat = 3 then do; md1 = 0; md2 = 0; end; 
 ymd1 = yr_rnd*md1; 
    ymd2 = yr_rnd*md2; 
run; 
proc reg data = reg9; 
  model api00 = yr_rnd md1 md2 ymd1 ymd2; 
run; 
The REG Procedure 
Model: MODEL1 
Dependent Variable: API00 
 
                        Parameter Estimates 
 
                     Parameter       Standard 
Variable     DF       Estimate          Error    t Value    Pr > |t| 
 
Intercept     1      521.49254        8.41420      61.98      <.0001 
YR_RND        1      -33.49254       11.77129      -2.85      0.0047 
MD1           1      288.19295       10.44284      27.60      <.0001 
MD2           1      123.78097       10.55185      11.73      <.0001 
ymd1          1      -40.76438       29.23118      -1.39      0.1639 
ymd2          1      -18.24763       22.25624      -0.82      0.4128 

In order to form a test of simple main effects we need to make a table like the one shown below that 
relates the cell means to the coefficients in the regression. Please see Chapter 3, section 3.5 for 
information on how this table was constructed. 
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            mealcat=1           mealcat=2         mealcat=3 
            ------------------------------------------------- 
  yr_rnd=0   const               const             const     
             + md1               + md2             
            ------------------------------------------------- 
  yr_rnd=1  const               const             const     
            + yr_rnd            + yr_rnd          + yr_rnd 
            + md1               + md2            
            + ymd1              + ymd2  

Let's start by looking at how to get the simple effect of yr_rnd when mealcat is 3. Looking at the table 
above, we can see that we would want to compare const with const  +  yr_rnd, , which is the same as 
testing the coefficient for yr_rnd is zero. This is a single parameter test and is shown in the output 
above. The t-value is -2.85 and the p-value is .0047. 
Note that the coefficient for yr_rnd corresponds to the test of the effect of yr_rnd when all other 
variables are set to 0 (the reference category), i.e. when mealcat is set to the reference category. You 
may be tempted to interpret the coefficient for yr_rnd as the overall difference between year round 
schools and non-year round schools, but in this example we see that it really corresponds to the simple 
effect of yr_rnd. When using dummy coding people commonly misinterpret the lower order effects to 
refer to overall effects rather than simple effects. 

Now let's look at the simple effect of yr_rnd when mealcat=1. Looking at the table above we see that 
this involves the comparison of the coefficients for yr_rnd=1 vs. yr_rnd=0 when mealcat=1, i.e. 
comparing const + yr_rnd +md1 + ymd1 vs. const + md1. Removing the terms that drop out we see 
that to test the simple effect of yr_rnd when mealcat = 1 is the same to test yr_rnd + ymd1 = 0. We 
will have to do a test statement here following the previous proc reg.   

  test yr_rnd + ymd1 = 0; 
run; 
quit; 
       Test 1 Results for Dependent Variable API00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
 
Numerator           1          36536       7.70    0.0058 
Denominator       394     4743.51314 
These examples illustrate that it is more complicated to form simple effects when using dummy coding, 
and also that the interpretation of lower order effects when using dummy coding may not have the 
meaning that you would expect.  

 6.8.2 Example 2. Simple effects of mealcat at levels of yr_rnd  

Example 1 looked at simple effects for yr_rnd, a variable with only 2 levels and it showed how to use 
the test statement in SAS for it. In this example, let's consider the simple effects of mealcat at each 
level of yr_rnd. Because mealcat has more than 2 levels, we will see what is required for doing tests of 
simple effects for variables with more than 2 levels. We will show both proc glm and proc reg 
approach here.   

proc glm data = elemapi2; 
  class yr_rnd mealcat; 
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  model api00 = yr_rnd mealcat yr_rnd*mealcat; 
  contrast '1' mealcat 1 0 -1 
               yr_rnd*mealcat 1 0 -1 
                              0 0  0,   
                      mealcat 0 1 -1 
               yr_rnd*mealcat 0 1 -1 
                              0 0  0; 
  contrast '2' mealcat 1 0 -1 
               yr_rnd*mealcat 0 0  0 
                              1 0 -1,   
                      mealcat 0 1 -1 
               yr_rnd*mealcat 0 0  0 
                              0 1 -1; 
run; 
quit; 
The GLM Procedure 
 
<output omitted> 
Contrast       DF    Contrast SS    Mean Square   F Value   Pr > F 
 
1              2    3903569.804    1951784.902    411.46   <.0001 
2              2     476157.455     238078.727     50.19   <.0001 

Here is how to do it with proc reg. The first test statement below looks at mealcat at yr_rnd = 0 and the 
second test statement looks at mealcat at yr_rnd = 1. 

data reg10; 
  set elemapi2; 
  if yr_rnd = 0 then yrrnd = -.5; 
  if yr_rnd = 1 then yrrnd = .5; 
  if mealcat = 1 then m1 = 2/3; 
  if mealcat = 2 then m1 = -1/3; 
  if mealcat = 3 then m1 = -1/3; 
  if mealcat = 1 then m2 = -1/3; 
  if mealcat = 2 then m2 = 2/3; 
  if mealcat = 3 then m2 = -1/3; 
  if yr_rnd = 0 then my11 = m1; else my11 = 0; 
  if yr_rnd = 0 then my21 = m2; else my21 = 0; 
  if yr_rnd = 1 then my12 = m1; else my12 = 0; 
  if yr_rnd = 1 then my22 = m2; else my22 = 0; 
run; 
proc reg data = reg10; 
 model api00 = yrrnd my11 my21 my12 my22; 
 test my11 = my21 = 0; 
 test my12 = my22 = 0; 
run; 
quit; 
The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                            Parameter Estimates 
 
                               Parameter      Standard 
Variable    Label       DF      Estimate         Error   t Value   Pr > |t| 
Intercept   Intercept    1     632.23557       5.80048    109.00     <.0001 
yrrnd                    1     -53.16321      11.60095     -4.58     <.0001 
my11                     1     288.19295      10.44284     27.60     <.0001 
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my21                     1     123.78097      10.55185     11.73     <.0001 
my12                     1     247.42857      27.30218      9.06     <.0001 
my22                     1     105.53333      19.59588      5.39     <.0001 
 
       Test 1 Results for Dependent Variable api00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
Numerator           2        1951785     411.46    <.0001 
Denominator       394     4743.51314 
 
 
       Test 2 Results for Dependent Variable api00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
Numerator           2         238079      50.19    <.0001 
Denominator       394     4743.51314 

We can also test the simple effects of mealcat at each level of yr_rnd via dummy coding. In SAS, each 
equal sign in the test statement equals one degree of freedom:  because there are two equals signs in the 
second test statement, it is a two degree-of-freedom test, which is meant to do. The same logic holds 
true for the fourth test statement and this test is the simple effect of mealcat when yr_rnd=1.  

data reg11; 
  set elemapi2; 
  m1 = 0; 
  if mealcat = 1 then m1 = 1; 
  m2 = 0; 
  if mealcat = 2 then m2 = 1; 
  m1y = m1*yr_rnd; 
  m2y = m2*yr_rnd; 
run; 
proc reg data = reg11; 
  model api00 = m1 m2 yr_rnd m1y m2y; 
  test m1 - m2 = 0; 
  test m1 = m2 = 0; 
  test m1 + m1y - m2 - m2y = 0; 
  test m1 + m1y = m2 + m2y = 0; 
run; 
quit; 
The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
       Test 1 Results for Dependent Variable api00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
 
Numerator           1        1627262     343.05    <.0001 
Denominator       394     4743.51314 
 
 
       Test 2 Results for Dependent Variable api00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 



 298

 
Numerator           2        1951785     411.46    <.0001 
Denominator       394     4743.51314 
 
 
       Test 3 Results for Dependent Variable api00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
 
Numerator           1          96095      20.26    <.0001 
Denominator       394     4743.51314 
 
 
       Test 4 Results for Dependent Variable api00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
 
Numerator           2         238079      50.19    <.0001 
Denominator       394     4743.51314 
 
 

 

Regression with SAS 
Chapter 7: Categorical and Continuous Predictors and 
Interactions 

Chapter Outline 
    1. Continuous and categorical predictors without interaction 
    2. Continuous and categorical predictors with interaction 
    3. Show slopes for each group 
         3.1 Show slopes by performing separate analyses 
         3.2 Show slopes for each group from one analysis 
    4. Compare slopes across groups 
    5. Simple effects and simple comparisons of group, strategy 1 
         5.1 Simple effects and comparisons when meals is 1 sd below mean 
         5.2 Simple effects and comparisons when meals is at the mean 
         5.3 Simple effects and comparisons when meals is 1 sd above the mean 
    6. Simple effects and simple comparisons of group, strategy 2 
    7. More on predicted values 

1.0 Continuous and categorical predictors without interaction 

data elemapi2; 
  set 'd:\sas\sasdata\elemapi2'; 
run; 

Creating the variables Icollcat2 and Icollcat3 by using the reverse Helmert coding on collcat. 

data elemapi2; 

http://www.ats.ucla.edu/stat/sas/webbooks/reg/default.htm
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  set elemapi2; 
  Icollcat2 = 0; 
  if collcat = 1 then Icollcat2 = -.5; 
  if collcat = 2 then Icollcat2 =  .5; 
  Icollcat3 = 2/3; 
  if collcat = 1 then Icollcat3 = -1/3; 
  if collcat = 2 then Icollcat3 = -1/3; 
run; 
proc freq data=elemapi2; 
  tables ( Icollcat2 Icollcat3)*collcat/ norow nocol nopercent ; 
run; 
The FREQ Procedure 
 
Table of Icollcat2 by collcat 
Icollcat2     collcat 
 
Frequency|       1|       2|       3|  Total 
---------+--------+--------+--------+ 
    -0.5 |    129 |      0 |      0 |    129 
---------+--------+--------+--------+ 
       0 |      0 |      0 |    137 |    137 
---------+--------+--------+--------+ 
     0.5 |      0 |    134 |      0 |    134 
---------+--------+--------+--------+ 
Total         129      134      137      400 
Table of Icollcat3 by collcat 
Icollcat3     collcat 
 
Frequency    |       1|       2|       3|  Total 
-------------+--------+--------+--------+ 
-0.333333333 |    129 |    134 |      0 |    263 
-------------+--------+--------+--------+ 
0.6666666667 |      0 |      0 |    137 |    137 
-------------+--------+--------+--------+ 
Total             129      134      137      400 

Traditional ANCOVA: regressing a continuous dependent variable on predictors that includes both 
categorical and  
continuous predictors (without any interactions). 

proc reg data= elemapi2; 
  model api00 = Icollcat2 Icollcat3 meals; 
  output out=temp p=predict; 
run; 
quit; 
The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
Model                     3        6586952        2195651     584.83    <.0001 
Error                   396        1486720     3754.34394 
Corrected Total         399        8073672 
 
Root MSE             61.27270    R-Square     0.8159 
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Dependent Mean      647.62250    Adj R-Sq     0.8145 
Coeff Var             9.46118 
                     Parameter Estimates 
 
                     Parameter       Standard 
Variable     DF       Estimate          Error    t Value    Pr > |t| 
Intercept    1      885.17891        6.71886     131.75      <.0001 
Icollcat2    1       14.01454        7.62786       1.84      0.0669 
Icollcat3    1       17.23322        6.58145       2.62      0.0092 
meals        1       -3.94267        0.09883     -39.89      <.0001 

Generating the graph with a regression line for each level of collcat.  
Note: Each line has the same slope, namely the coefficient of meals in the regression output. The 
coefficient of  
Icollcat2 is the difference in y-intercepts between the lines for collcat=1 and collcat=2 whereas the 
coefficient of  
Icollcat3 is the difference in y-intercept between the line for collcat=3 and the average of the lines for 
collcat=1  
and collcat=2. This is simply a result of using the reverse Helmert coding for collcat when creating 
Icollcat2 and  
Icollcat3. 

goptions reset=all;  
symbol1 v=square i=join c=blue h=.6; 
symbol2 v=dot i=join c=red h=.6; 
symbol3 v=plus i=join c=green h=.6; 
axis1 label=(a=90 'Predicted'); 
 
proc gplot data=temp; 
  plot predict*meals=collcat/overlay  vaxis=axis1; 
run; 
quit; 

 

2.0  Continuous and categorical predictors with interaction 

Testing the homogeneity of slopes by creating the two interactions and then testing to see if the overall  
interaction is significant. 
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data elemapi2; 
  set elemapi2; 
  Icolmeal2 = Icollcat2*meals; 
  Icolmeal3 = Icollcat3*meals; 
run; 
proc reg data=elemapi2; 
  model api00 = meals Icollcat2 Icollcat3 Icolmeal2 Icolmeal3; 
  output out=temp p=predict; 
  interaction: test Icolmeal2=Icolmeal3=0; 
run; 
quit; 
The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
Model                     5        6629930        1325986     361.86    <.0001 
Error                   394        1443742     3664.32012 
Corrected Total         399        8073672 
 
Root MSE             60.53363    R-Square     0.8212 
Dependent Mean      647.62250    Adj R-Sq     0.8189 
Coeff Var             9.34705 
                                 Parameter Estimates 
 
                       Parameter       Standard 
Variable       DF      Estimate          Error    t Value    Pr > |t| 
Intercept      1      882.47026        6.69004     131.91      <.0001 
meals          1       -3.85935        0.10064     -38.35      <.0001 
Icollcat2      1       10.29492       16.24717       0.63      0.5267 
Icollcat3      1      -26.42920       14.31193      -1.85      0.0655 
Icolmeal2      1        0.02815        0.22250       0.13      0.8994 
Icolmeal3      1        0.79489        0.23242       3.42      0.0007 
The REG Procedure 
Model: MODEL1 
 
  Test interaction Results for Dependent Variable api00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
Numerator           2          21489       5.86    0.0031 
Denominator       394     3664.32012 

Generating a graph with a regression line for each of the levels of collcat.  
Note: The lines are no longer parallel like they were in the previous graph which we  
expected to see since the overall interaction test was significant. 

goptions reset=all; 
symbol1 v=square i=join c=blue h=.6; 
symbol2 v=dot i=join c=red h=.6; 
symbol3 v=plus i=join c=green h=.6; 
axis1 label=(a=90 'Predicted'); 
 
proc gplot data=temp; 
  plot predict*meals = collcat/overlay  vaxis=axis1; 



 302

run; 
quit; 

 

3.0  Show slopes for each group 

3.1  Show slopes by performing separate analyses 

It is entirely possible to get the slope and y-intercept for the regression line for each of 
the levels of collcat. The by statement in the regression will accomplish this very easily.  
Note: We need to sort the data set on collcat before we can use the by statement. 

proc sort data=elemapi2 out=elemapisort; 
  by collcat; 
run; 
proc reg data=elemapisort; 
  by collcat; 
  model api00=meals; 
run; 
quit; 
collcat=1 
The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
Model                     1        2617393        2617393     664.41    <.0001 
Error                   127         500307     3939.42342 
Corrected Total         128        3117699 
 
Root MSE             62.76483    R-Square     0.8395 
Dependent Mean      596.34884    Adj R-Sq     0.8383 
Coeff Var            10.52485 
                                 Parameter Estimates 
 
                     Parameter       Standard 
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Variable     DF       Estimate          Error    t Value    Pr > |t| 
Intercept    1      886.13253       12.52709      70.74      <.0001 
meals        1       -4.13839        0.16055     -25.78      <.0001 
collcat=2 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
Model                     1        2424782        2424782     676.61    <.0001 
Error                   132         473050     3583.71194 
Corrected Total         133        2897832 
 
Root MSE             59.86411    R-Square     0.8368 
Dependent Mean      651.50000    Adj R-Sq     0.8355 
Coeff Var             9.18866 
                                 Parameter Estimates 
 
                     Parameter       Standard 
Variable     DF       Estimate          Error    t Value    Pr > |t| 
Intercept    1      896.42745       10.74270      83.45      <.0001 
meals        1       -4.11024        0.15801     -26.01      <.0001 
collcat=3 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
Model                     1         975466         975466     279.96    <.0001 
Error                   135         470385     3484.33611 
Corrected Total         136        1445851 
 
Root MSE             59.02827    R-Square     0.6747 
Dependent Mean      692.10949    Adj R-Sq     0.6723 
Coeff Var             8.52875 
                                 Parameter Estimates 
 
                     Parameter       Standard 
Variable     DF       Estimate          Error    t Value    Pr > |t| 
Intercept    1      864.85079       11.48996      75.27      <.0001 
meals        1       -3.32943        0.19899     -16.73      <.0001 

3.2 Obtaining slopes for each group in one analysis 

Obtaining the slope of meals for each level of collcat by first sorting the data and then using a by 
statement can be a bit cumbersome. Instead we can use the estimate statement in proc glm. Recall the 
variable coded using the reverse Helmert coding:  

              collcat     Icollcat2     Icollcat3 
               1             -.5             -1/3  
               2              .5             -1/3  
               3               0             -2/3 

Thus, in order to get the slope of meals we need to have the appropriate coefficient for each of the 
interaction variables. For example, for the collcat=1 group the coefficient for Icolmeal2 will be the 
coefficient in the column for Icollcat2 in the collcat=1 row in the table above. In other words, the 
coefficient for Icolmeal2 will be -.5. This is because Icolmeal2 is the interaction of Icollcat2 and meals. 
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Using the same logic we find that the coefficient for Icolmeal3 is -1/3, the coefficient for Icollcat3 in 
the collcat=1 row in the table above. Furthermore, using the same reasoning we find that for the 
collcat=2 group the coefficient for Icolmeal2 is .5 and for Icolmeal3 the coefficient is -1/3. For the 
collcat=3 group the coefficient for  
Icolmeal2 is 0 and for Icolmeal3 it is -2/3. 

Note: We are using the regression coding and the proc glm is missing a class statement which means 
that proc glm is basically functioning as a proc reg--but it is a new an improved proc reg because now it 
has an estimate statement!!!! 

proc glm data=elemapi2; 
  model api00 =  meals Icollcat2 Icollcat3 Icolmeal2 Icolmeal3; 
  estimate 'slope of meals at collcat=1' meals 1 Icolmeal2 -.5  
           Icolmeal3 -.333333333; 
  estimate 'slope of meals at collcat=2' meals 1 Icolmeal2 .5  
           Icolmeal3 -.3333333333; 
  estimate 'slope of meals at collcat=3' meals 1 Icolmeal2 0  
           Icolmeal3 .666666667; 
run; 
quit; 
The GLM Procedure 
Number of observations    400 
The GLM Procedure 
 
Dependent Variable: api00   api 2000 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
Model                        5     6629929.872     1325985.974     361.86    <.0001 
Error                      394     1443742.126        3664.320 
Corrected Total            399     8073671.998 
R-Square     Coeff Var      Root MSE    api00 Mean 
0.821179      9.347054      60.53363      647.6225 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
meals                        1     6549825.145     6549825.145    1787.46    <.0001 
Icollcat2                    1       11385.768       11385.768       3.11    0.0787 
Icollcat3                    1       25740.884       25740.884       7.02    0.0084 
Icolmeal2                    1         115.990         115.990       0.03    0.8589 
Icolmeal3                    1       42862.086       42862.086      11.70    0.0007 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
meals                        1     5389132.969     5389132.969    1470.70    <.0001 
Icollcat2                    1        1471.242        1471.242       0.40    0.5267 
Icollcat3                    1       12495.833       12495.833       3.41    0.0655 
Icolmeal2                    1          58.655          58.655       0.02    0.8994 
Icolmeal3                    1       42862.086       42862.086      11.70    0.0007 
                                                   Standard 
Parameter                          Estimate           Error    t Value    Pr > |t| 
slope of meals at collcat=1     -4.13839216      0.15484383     -26.73      <.0001 
slope of meals at collcat=2     -4.11024157      0.15978196     -25.72      <.0001 
slope of meals at collcat=3     -3.32942579      0.20406098     -16.32      <.0001 
                                  Standard 
Parameter         Estimate           Error    t Value    Pr > |t| 
Intercept      882.4702589      6.69003553     131.91      <.0001 
meals           -3.8593532      0.10063563     -38.35      <.0001 
Icollcat2       10.2949246     16.24717093       0.63      0.5267 
Icollcat3      -26.4292002     14.31192705      -1.85      0.0655 
Icolmeal2        0.0281506      0.22250143       0.13      0.8994 
Icolmeal3        0.7948911      0.23241688       3.42      0.0007 
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Obtaining the exact same results using the GLM default coding (and a class statement so that proc glm 
functions  
as proc glm and not as a proc reg). 

proc glm data=elemapi2; 
  class collcat; 
  model api00 =  meals collcat collcat*meals ; 
  estimate 'slope of meals at collcat=1' meals 1  collcat*meals 1 0 0; 
  estimate 'slope of meals at collcat=2' meals 1  collcat*meals 0 1 0; 
  estimate 'slope of meals at collcat=3' meals 1  collcat*meals 0 0 1; 
run; 
quit; 
The GLM Procedure 
 
   Class Level Information 
 
Class         Levels    Values 
collcat            3    1 2 3 
 
Number of observations    400 
The GLM Procedure 
Dependent Variable: api00   api 2000 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
Model                        5     6629929.872     1325985.974     361.86    <.0001 
Error                      394     1443742.126        3664.320 
Corrected Total            399     8073671.998 
R-Square     Coeff Var      Root MSE    api00 Mean 
0.821179      9.347054      60.53363      647.6225 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
meals                        1     6549825.145     6549825.145    1787.46    <.0001 
collcat                      2       37126.652       18563.326       5.07    0.0067 
meals*collcat                2       42978.076       21489.038       5.86    0.0031 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
meals                        1     5389132.969     5389132.969    1470.70    <.0001 
collcat                      2       14535.351        7267.676       1.98    0.1390 
meals*collcat                2       42978.076       21489.038       5.86    0.0031 
                                                   Standard 
Parameter                          Estimate           Error    t Value    Pr > |t| 
slope of meals at collcat=1     -4.13839216      0.15484383     -26.73      <.0001 
slope of meals at collcat=2     -4.11024157      0.15978196     -25.72      <.0001 
slope of meals at collcat=3     -3.32942579      0.20406098     -16.32      <.0001 

4.0  Comparing Slopes Across Groups 
 
By using the reverse Helmert coding we can compare slopes of group 1 versus group2  
by looking at the t-test for the coefficient of Icolmeal2. We can compare the slopes of  
group 3 versus the average of groups 1 and 2 by looking at the t-test for the coefficient  
of Icolmeal2 and Icolmeal3. From this we can conclude that the slopes of groups 1 and 2 are not  
significantly different (p=0.8994) but that the slope of group 3 is significantly different  
from the slope of the average of groups 1 and 2 (p=0.0007). 

proc reg data=elemapi2; 
  model api00 = meals Icollcat2 Icollcat3 Icolmeal2 Icolmeal3; 
run; 
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quit; 
The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
Model                     5        6629930        1325986     361.86    <.0001 
Error                   394        1443742     3664.32012 
Corrected Total         399        8073672 
 
Root MSE             60.53363    R-Square     0.8212 
Dependent Mean      647.62250    Adj R-Sq     0.8189 
Coeff Var             9.34705 
                                 Parameter Estimates 
 
                     Parameter       Standard 
Variable     DF       Estimate          Error    t Value    Pr > |t| 
Intercept    1      882.47026        6.69004     131.91      <.0001 
meals        1       -3.85935        0.10064     -38.35      <.0001 
Icollcat2    1       10.29492       16.24717       0.63      0.5267 
Icollcat3    1      -26.42920       14.31193      -1.85      0.0655 
Icolmeal2    1        0.02815        0.22250       0.13      0.8994 
Icolmeal3    1        0.79489        0.23242       3.42      0.0007 

5.0  Simple Effects and Simple Comparisons of Groups, method I 

The tests of the coefficients of the interactions reflect if the slopes of the groups are  
significantly different across the whole dataset. However, sometimes it can be very  
informative to test for significant difference between the groups at specific points in the  
dataset. A common strategy is to test for differences at the mean, the mean - 1 standard  
deviation, the mean + 1 standard deviation. So, we need to calculate the mean and  
standard deviation of meals.  
Here we insert the graph maybe with circles and/or moving parts! 

proc means data=elemapi2 mean std; 
  var meals; 
run; 
proc reg data=elemapi2 noprint; 
  model api00 = meals Icollcat2 Icollcat3 Icolmeal2  
                Icolmeal3; 
  output out=temp p=predict; 
run; 
quit; 
goptions reset=all;  
symbol1 v=square i=join c=blue h=.6; 
symbol2 v=dot i=join c=red h=.6; 
symbol3 v=plus i=join c=green h=.6; 
axis1 label=(a=90 'Predicted'); 
axis2 label=(' '); 
 
proc gplot data=temp; 
  plot predict*meals=collcat/overlay  vaxis=axis1  
                        haxis=axis2 href=28.403299 60.3150000 92.226701; 
run; 
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quit; 
The MEANS Procedure 
 
Analysis Variable : meals pct free meals 
 
        Mean         Std Dev 
---------------------------- 
  60.3150000      31.9117011 
---------------------------- 

 

5.1  Simple effects and comparisons when meals = means - 1std.  
 
First, we generate a variable for meals that is shifted to be centered at one standard  
deviation below the mean using proc sql. We also create new interaction variables  
using the new variable for meals. 

proc sql; 
  create table low as 
  select *, meals - ( mean(meals) - std(meals) ) as meals_low 
  from elemapi2; 
quit; 
data low; 
  set low; 
  Icolmeals2_low = Icollcat2*meals_low; 
  Icolmeals3_low = Icollcat3*meals_low; 
run; 

Now that we have the new variable for meals we can perform the same regression as previously and the  
only difference is that instead of meals we will use meals_low. By using the variable for meals 
centered  
at one standard deviation below the mean we can now test for group differences at this specific point.  
If you refer to the graph above we are testing for group differences at the first vertical line. Since the  
three lines are very close together we anticipate that we probably won't find any significant differences. 

proc reg data=low; 
  model api00 = meals_low Icollcat2 Icollcat3 Icolmeals2_low Icolmeals3_low; 
  test: test Icollcat2=Icollcat3=0; 
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run; 
quit; 
The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
Model                     5        6629930        1325986     361.86    <.0001 
Error                   394        1443742     3664.32012 
Corrected Total         399        8073672 
 
Root MSE             60.53363    R-Square     0.8212 
Dependent Mean      647.62250    Adj R-Sq     0.8189 
Coeff Var             9.34705 
                                 Parameter Estimates 
 
                          Parameter       Standard 
Variable          DF       Estimate          Error    t Value    Pr > |t| 
Intercept         1      772.85190        4.36931     176.88      <.0001 
meals_low         1       -3.85935        0.10064     -38.35      <.0001 
Icollcat2         1       11.09449       11.05054       1.00      0.3160 
Icollcat3         1       -3.85167        8.95725      -0.43      0.6674 
Icolmeals2_low    1        0.02815        0.22250       0.13      0.8994 
Icolmeals3_low    1        0.79489        0.23242       3.42      0.0007 
 
     Test test Results for Dependent Variable api00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
Numerator           2     2346.37142       0.64    0.5277 
Denominator       394     3664.32012 

By looking at the coefficient for Icollcat2 in the regression output we can see if the simple comparison 
of the group collcat=1 and the group collcat=2 is significant. The t-test has a p-value of 0.316 and this 
comparison is therefore not statistically significant at the 0.05 level. We can see if the simple 
comparison of groups 3 vs group 12 is significant by looking at the coefficient for Icollcat3. We can 
also calculate these numbers by recalling that Icollcat2 is the difference in the y-intercept between 
groups 1 and 2. Let's calculate the predicted values (y-intercepts) for group 1 and for group 2 using 
proc glm and then we can subtract them to get exactly the coefficient for Icollcat2. We will also obtain 
the test of the simple comparison between group 3 and groups 1,2, as well as the predicted values for 
groups 12 and 3 at meals=28.4 (one standard deviation below the mean). 

Note: We are using the regression coding and the proc glm is missing a class statement which means 
that proc glm is basically functioning as a proc reg--but it is a new an improved proc reg because now 
it has an estimate statement!!!! 

proc glm data=low; 
  model api00 = meals_low Icollcat2 Icollcat3 Icolmeals2_low Icolmeals3_low; 
  estimate 'simple comparisons group 1 v 2, m=28.4' Icollcat2 1; 
  estimate 'predicted value group 1, m=28.4' intercept 1 Icollcat2 -.5  
            Icollcat3 -.3333333; 
  estimate 'predicted value group 2, m=28.4' intercept 1 Icollcat2 .5  
            Icollcat3 -.3333333; 
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  estimate 'simple comparisons group 3 vs 12, m=28.4' Icollcat3 1; 
  estimate 'predicted value group 1,1, m=28.4' intercept 1 Icollcat2 0  
            Icollcat3 -.3333333; 
  estimate 'predicted value group 2, m=28.4' intercept 1 Icollcat2 0  
            Icollcat3 .6666667; 
run; 
quit; 
The GLM Procedure 
Number of observations    400 
The GLM Procedure 
 
Dependent Variable: api00   api 2000 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
Model                        5     6629929.872     1325985.974     361.86    <.0001 
Error                      394     1443742.126        3664.320 
Corrected Total            399     8073671.998 
R-Square     Coeff Var      Root MSE    api00 Mean 
0.821179      9.347054      60.53363      647.6225 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
meals_low                    1     6549825.145     6549825.145    1787.46    <.0001 
Icollcat2                    1       11385.768       11385.768       3.11    0.0787 
Icollcat3                    1       25740.884       25740.884       7.02    0.0084 
Icolmeals2_low               1         115.990         115.990       0.03    0.8589 
Icolmeals3_low               1       42862.086       42862.086      11.70    0.0007 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
meals_low                    1     5389132.969     5389132.969    1470.70    <.0001 
Icollcat2                    1        3693.531        3693.531       1.01    0.3160 
Icollcat3                    1         677.552         677.552       0.18    0.6674 
Icolmeals2_low               1          58.655          58.655       0.02    0.8994 
Icolmeals3_low               1       42862.086       42862.086      11.70    0.0007 
                                                      Standard 
Parameter                            Estimate           Error    t Value    Pr > 
|t| 
comparisons group 1 v 2, m=28.4      11.094494      11.0505357       1.00      
0.3160 
pred value group 1, m=28.4          768.588540       8.3629162      91.90      
<.0001 
pred value group 2, m=28.4          779.683035       7.2232933     107.94      
<.0001 
comparisons group 3 vs 12, m=28.4    -3.851671       8.9572501      -0.43      
0.6674 
pred value group 1,1, m=28.4        774.135788       5.5252676     140.11      
<.0001 
pred value group 2, m=28.4          770.284116       7.0500883     109.26      
<.0001 
                                       Standard 
Parameter              Estimate           Error    t Value    Pr > |t| 
Intercept           772.8518972      4.36931324     176.88      <.0001 
meals_low            -3.8593532      0.10063563     -38.35      <.0001 
Icollcat2            11.0944942     11.05053567       1.00      0.3160 
Icollcat3            -3.8516714      8.95725011      -0.43      0.6674 
Icolmeals2_low        0.0281506      0.22250143       0.13      0.8994 
Icolmeals3_low        0.7948911      0.23241688       3.42      0.0007 
Obtaining the exact same results using the GLM coding (and a class statement so that proc glm 
functions as proc glm and not as a proc reg). 
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proc glm data=elemapi2; 
  class collcat; 
  model api00 =  meals collcat collcat*meals ; 
  estimate 'slope of 2 v 1 at m=28.4' collcat -1 1 0 collcat*meals -28.4 28.4 0; 
  estimate 'pred values, group 1, m=28.4'  intercept 1 meals 28.4 collcat 1 0 0 
collcat*meals 28.4 0 0; 
  estimate 'pred values, group 2, m=28.4'  intercept 1 meals 28.4 collcat 0 1 0 
collcat*meals 0 28.4 0; 
  estimate 'pred values, group 12, m=28.4'  intercept 1 meals 28.4 collcat .5 .5 0 
collcat*meals 14.2 14.2 0; 
  estimate 'pred values, group 3, m=28.4'  intercept 1 meals 28.4 collcat 0 0 1 
collcat*meals 0 0 28.4; 
  estimate 'slope of 3 v 12 at m=28.4' collcat -.5 -.5 1 collcat*meals -14.2 -14.2 
28.4; 
run; 
quit; 
 
The GLM Procedure 
 
   Class Level Information 
 
Class         Levels    Values 
 
collcat            3    1 2 3 
 
Number of observations    400 
The GLM Procedure 
Dependent Variable: api00   api 2000 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        5     6629929.872     1325985.974     361.86    <.0001 
Error                      394     1443742.126        3664.320 
Corrected Total            399     8073671.998 
 
R-Square     Coeff Var      Root MSE    api00 Mean 
 
0.821179      9.347054      60.53363      647.6225 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
meals                        1     6549825.145     6549825.145    1787.46    <.0001 
collcat                      2       37126.652       18563.326       5.07    0.0067 
meals*collcat                2       42978.076       21489.038       5.86    0.0031 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
meals                        1     5389132.969     5389132.969    1470.70    <.0001 
collcat                      2       14535.351        7267.676       1.98    0.1390 
meals*collcat                2       42978.076       21489.038       5.86    0.0031 
 
                                                     Standard 
Parameter                            Estimate           Error    t Value    Pr > 
|t| 
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slope of 2 v 1 at m=28.4            11.094401      11.0510713       1.00      
0.3160 
pred values, group 1, m=28.4       768.602193       8.3633100      91.90      
<.0001 
pred values, group 2, m=28.4       779.696594       7.2236571     107.94      
<.0001 
pred values, group 12, m=28.4      774.149393       5.5255356     140.10      
<.0001 
pred values, group 3, m=28.4       770.295100       7.0505458     109.25      
<.0001 
slope of 3 v 12 at m=28.4           -3.854294       8.9577754      -0.43      
0.6672 
 
 

5.2  Simple Effects and Comparisons for meals=mean.  
 
First, we generate a variable for meals that is shifted to be centered at the mean using proc sql. We also 
create new interaction variables  
using the new variable for meals. 

proc sql; 
  create table mean as 
  select *, meals - mean(meals) as meals_mean 
  from elemapi2; 
quit; 
data mean; 
  set mean; 
  Icolmeals2_mean = Icollcat2*meals_mean; 
  Icolmeals3_mean = Icollcat3*meals_mean; 
run; 

Performing the regression using meals_mean and testing for the simple effects of collcat at 
meals=mean. Conclusion: The three groups of collcat are significantly different at meals=mean. The 
individual t-tests for Icollcat2 and Icollcat3, however, indicate that only the comparisons between 
group 3 and groups 1,2 is significant (p<.000). 

proc reg data=mean; 
  model api00=meals_mean Icollcat2 Icollcat3 Icolmeals2_mean Icolmeals3_mean; 
  test: test Icollcat2=Icollcat3=0; 
run; 
quit; 
The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
Model                     5        6629930        1325986     361.86    <.0001 
Error                   394        1443742     3664.32012 
Corrected Total         399        8073672 
 
Root MSE             60.53363    R-Square     0.8212 
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Dependent Mean      647.62250    Adj R-Sq     0.8189 
Coeff Var             9.34705 
                                  Parameter Estimates 
 
                           Parameter       Standard 
Variable           DF       Estimate          Error    t Value    Pr > |t| 
Intercept          1      649.69337        3.12218     208.09      <.0001 
meals_mean         1       -3.85935        0.10064     -38.35      <.0001 
Icollcat2          1       11.99283        7.61738       1.57      0.1162 
Icollcat3          1       21.51465        6.64932       3.24      0.0013 
Icolmeals2_mean    1        0.02815        0.22250       0.13      0.8994 
Icolmeals3_mean    1        0.79489        0.23242       3.42      0.0007 
     Test test Results for Dependent Variable api00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
Numerator           2          23138       6.31    0.0020 
Denominator       394     3664.32012 

Looking at the simple comparisons, first of group 1 vs 2 and then for group 3 vs 1,2 using proc glm. 

Note: We are using the regression coding and the proc glm is missing a class statement which means 
that proc glm is basically functioning as a proc reg--but it is a new an improved proc reg because now 
it has an estimate statement!!!! 

proc glm data=mean; 
  model api00 =meals_mean Icollcat2 Icollcat3 Icolmeals2_mean Icolmeals3_mean; 
  estimate 'simple comparisons group 1 v 2, m=60.3' Icollcat2 1; 
  estimate 'simple comparisons group 3 vs 12, m=60.3' Icollcat3 1; 
run; 
quit; 
The GLM Procedure 
Number of observations    400 
The GLM Procedure 
 
Dependent Variable: api00   api 2000 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
Model                        5     6629929.872     1325985.974     361.86    <.0001 
Error                      394     1443742.126        3664.320 
Corrected Total            399     8073671.998 
R-Square     Coeff Var      Root MSE    api00 Mean 
0.821179      9.347054      60.53363      647.6225 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
meals_mean                   1     6549825.145     6549825.145    1787.46    <.0001 
Icollcat2                    1       11385.768       11385.768       3.11    0.0787 
Icollcat3                    1       25740.884       25740.884       7.02    0.0084 
Icolmeals2_mean              1         115.990         115.990       0.03    0.8589 
Icolmeals3_mean              1       42862.086       42862.086      11.70    0.0007 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
meals_mean                   1     5389132.969     5389132.969    1470.70    <.0001 
Icollcat2                    1        9082.915        9082.915       2.48    0.1162 
Icollcat3                    1       38362.580       38362.580      10.47    0.0013 
Icolmeals2_mean              1          58.655          58.655       0.02    0.8994 
Icolmeals3_mean              1       42862.086       42862.086      11.70    0.0007 
                                                         Standard 
Parameter                                Estimate           Error    t Value    Pr 
> |t| 
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comparisons group 1 v 2, m=60.3        11.9928275      7.61738092       1.57      
0.1162 
comparisons group 3 vs 12, m=60.3      21.5146549      6.64931923       3.24      
0.0013 
                                        Standard 
Parameter               Estimate           Error    t Value    Pr > |t| 
Intercept            649.6933723      3.12217544     208.09      <.0001 
meals_mean            -3.8593532      0.10063563     -38.35      <.0001 
Icollcat2             11.9928275      7.61738092       1.57      0.1162 
Icollcat3             21.5146549      6.64931923       3.24      0.0013 
Icolmeals2_mean        0.0281506      0.22250143       0.13      0.8994 
Icolmeals3_mean        0.7948911      0.23241688       3.42      0.0007 
Obtaining the exact same results using the GLM coding (and a class statement so that proc glm 
functions as proc glm and not as a proc reg). 
proc glm data=elemapi2; 
  class collcat; 
  model api00 =  meals collcat collcat*meals ; 
  estimate 'slope of 2 v 1 at m=60.3' collcat -1 1 0 collcat*meals -60.3 60.3 0; 
  estimate 'slope of 3 v 12 at m=60.3' collcat -.5 -.5 1 collcat*meals -30.15 -
30.15 60.3; 
run; 
quit; 
 
The GLM Procedure 
 
   Class Level Information 
 
Class         Levels    Values 
 
collcat            3    1 2 3 
 
 
Number of observations    400 
The GLM Procedure 
Dependent Variable: api00   api 2000 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        5     6629929.872     1325985.974     361.86    <.0001 
Error                      394     1443742.126        3664.320 
Corrected Total            399     8073671.998 
 
R-Square     Coeff Var      Root MSE    api00 Mean 
 
0.821179      9.347054      60.53363      647.6225 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
meals                        1     6549825.145     6549825.145    1787.46    <.0001 
collcat                      2       37126.652       18563.326       5.07    0.0067 
meals*collcat                2       42978.076       21489.038       5.86    0.0031 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
meals                        1     5389132.969     5389132.969    1470.70    <.0001 
collcat                      2       14535.351        7267.676       1.98    0.1390 
meals*collcat                2       42978.076       21489.038       5.86    0.0031 
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                                                 Standard 
Parameter                        Estimate           Error    t Value    Pr > |t| 
 
slope of 2 v 1 at m=60.3       11.992405        7.6178035       1.57      0.1162 
slope of 3 v 12 at m=60.3      21.502731        6.6486489       3.23      0.0013 
 

5.3  Simple Effects and Comparisons when Meals=mean+1 std 

First, we generate a variable for meals that is shifted to be centered at one standard deviation above the 
mean using proc sql. We also create new interaction variables using the new variable for meals. 

proc sql; 
  create table high as 
  select *, meals - ( mean(meals) + std(meals) ) as meals_high 
  from elemapi2; 
quit; 
data high; 
  set high; 
  Icolmeals2_high = Icollcat2*meals_high; 
  Icolmeals3_high = Icollcat3*meals_high; 
run; 

Performing the regression using meals_mean and testing for the simple effects of collcat at 
meals=mean. Conclusion: The three groups of collcat are significantly different at meals=mean. The 
individual t-tests for Icollcat2 and Icollcat3 however indicate that only the comparison between group 
3 and groups 1,2 is significant (p<.000). 

proc reg data=high; 
  model api00 =meals_high Icollcat2 Icollcat3 Icolmeals2_high Icolmeals3_high; 
  test: test Icollcat2=Icollcat3=0; 
run; 
quit; 
The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
Model                     5        6629930        1325986     361.86    <.0001 
Error                   394        1443742     3664.32012 
Corrected Total         399        8073672 
 
Root MSE             60.53363    R-Square     0.8212 
Dependent Mean      647.62250    Adj R-Sq     0.8189 
Coeff Var             9.34705 
                                  Parameter Estimates 
 
                                        Parameter       Standard 
Variable           DF       Estimate          Error    t Value    Pr > |t| 
Intercept          1      526.53485        4.58606     114.81      <.0001 
meals_high         1       -3.85935        0.10064     -38.35      <.0001 
Icollcat2          1       12.89116        9.73478       1.32      0.1862 
Icollcat3          1       46.88098       10.87258       4.31      <.0001 
Icolmeals2_high    1        0.02815        0.22250       0.13      0.8994 
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Icolmeals3_high    1        0.79489        0.23242       3.42      0.0007 
     Test test Results for Dependent Variable api00 
                                Mean 
Source             DF         Square    F Value    Pr > F 
Numerator           2          38869      10.61    <.0001 
Denominator       394     3664.32012 

Looking at the simple comparisons, first of group 1 vs 2 and then for group 3 vs 1,2 using proc glm. 

Note: We are using the regression coding and the proc glm is missing a class statement which means 
that proc glm is basically functioning as a proc reg--but it is a new an improved proc reg because now 
it has an estimate statement!!!! 

proc glm data=high; 
  model api00 =meals_high Icollcat2 Icollcat3 Icolmeals2_high Icolmeals3_high; 
  estimate 'simple comparisons group 1 v 2, m=92.2' Icollcat2 1; 
  estimate 'simple comparisons group 3 vs 12, m=92.2' Icollcat3 1; 
run; 
quit; 
The GLM Procedure 
Number of observations    400 
The GLM Procedure 
Dependent Variable: api00   api 2000 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
Model                        5     6629929.872     1325985.974     361.86    <.0001 
Error                      394     1443742.126        3664.320 
Corrected Total            399     8073671.998 
R-Square     Coeff Var      Root MSE    api00 Mean 
0.821179      9.347054      60.53363      647.6225 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
meals_high                   1     6549825.145     6549825.145    1787.46    <.0001 
Icollcat2                    1       11385.768       11385.768       3.11    0.0787 
Icollcat3                    1       25740.884       25740.884       7.02    0.0084 
Icolmeals2_high              1         115.990         115.990       0.03    0.8589 
Icolmeals3_high              1       42862.086       42862.086      11.70    0.0007 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
meals_high                   1     5389132.969     5389132.969    1470.70    <.0001 
Icollcat2                    1        6425.767        6425.767       1.75    0.1862 
Icollcat3                    1       68127.391       68127.391      18.59    <.0001 
Icolmeals2_high              1          58.655          58.655       0.02    0.8994 
Icolmeals3_high              1       42862.086       42862.086      11.70    0.0007 
                                                         Standard 
Parameter                                Estimate           Error    t Value    Pr 
> |t| 
comparisons group 1 v 2, m=92.2        12.8911608       9.7347822       1.32      
0.1862 
comparisons group 3 vs 12, m=92.2      46.8809811      10.8725776       4.31      
<.0001 
                                        Standard 
Parameter               Estimate           Error    t Value    Pr > |t| 
Intercept            526.5348475      4.58605897     114.81      <.0001 
meals_high            -3.8593532      0.10063563     -38.35      <.0001 
Icollcat2             12.8911608      9.73478216       1.32      0.1862 
Icollcat3             46.8809811     10.87257762       4.31      <.0001 
Icolmeals2_high        0.0281506      0.22250143       0.13      0.8994 
Icolmeals3_high        0.7948911      0.23241688       3.42      0.0007 
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Obtaining the exact same results using the GLM coding (and a class statement so that proc glm 
functions as proc glm and not as a proc reg). 
proc glm data=elemapi2; 
  class collcat; 
  model api00 =  meals collcat collcat*meals ; 
  estimate 'slope of 2 v 1 at m=92.2' collcat -1 1 0 collcat*meals -92.2 92.2 0; 
  estimate 'slope of 3 v 12 at m=92.2' collcat -.5 -.5 1 collcat*meals -46.1 -46.1 
92.2; 
run; 
quit; 
 
The GLM Procedure 
 
   Class Level Information 
 
Class         Levels    Values 
 
collcat            3    1 2 3 
 
 
Number of observations    400 
The GLM Procedure 
Dependent Variable: api00   api 2000 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        5     6629929.872     1325985.974     361.86    <.0001 
Error                      394     1443742.126        3664.320 
Corrected Total            399     8073671.998 
 
R-Square     Coeff Var      Root MSE    api00 Mean 
 
0.821179      9.347054      60.53363      647.6225 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
meals                        1     6549825.145     6549825.145    1787.46    <.0001 
collcat                      2       37126.652       18563.326       5.07    0.0067 
meals*collcat                2       42978.076       21489.038       5.86    0.0031 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
meals                        1     5389132.969     5389132.969    1470.70    <.0001 
collcat                      2       14535.351        7267.676       1.98    0.1390 
meals*collcat                2       42978.076       21489.038       5.86    0.0031 
 
                                                 Standard 
Parameter                        Estimate           Error    t Value    Pr > |t| 
 
slope of 2 v 1 at m=92.2       12.8904091       9.7310376       1.32      0.1860 
slope of 3 v 12 at m=92.2      46.8597567      10.8676142       4.31      <.0001 
 
 

6.0  Simple effects, simple group and interaction comparisons, strategy 2 
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How to get all the all these comparisons from both proc reg and proc glm. proc reg only has a test 
statement. That means it will not give the estimate for the effect we are interested, only the significance 
test. For that reason, we have to switch to proc glm using its estimate statement. 

Note1: .5*28.403 = 14.2015 and (1/3)*28.403=9.4676667, and (2/3)*28.403=18.935333.  
Note2: For the interactions it is much more confusing because you have to pre-calculate all the correct 
coefficients. For example, the first interaction you can use (1*Icollcat2+ 60.315*Icolmeal2) - 
(1*Icollcat + 28.403*Icolmeal2) whereas in proc glm you have to reduce that to 31.912*Icolmeal2 in 
order to use it in an estimate statement. If you repeat the variables SAS will only recognize it the first 
time you use a variable and ignore it the other times. 

Note: We are using the regression coding and the proc glm is missing a class statement which means 
that proc glm is basically functioning as a proc reg--but it is a new an improved proc reg because now 
it has an estimate statement!!!! 

proc reg data=elemapi2; 
  model api00 = meals Icollcat2 Icollcat3 Icolmeal2 Icolmeal3; 
  low: test Icollcat2+28.403*Icolmeal2=0, Icollcat3+28.403*Icolmeal3=0; 
  mean: test Icollcat2+60.315*Icolmeal2=0, Icollcat3+60.315*Icolmeal3=0; 
  high: test Icollcat2+92.23*Icolmeal2=0, Icollcat3+92.23*Icolmeal3=0; 
run; 
quit; 
proc glm data=elemapi2; 
  model api00 = meals Icollcat2 Icollcat3 Icolmeal2 Icolmeal3; 
  estimate 'Group 1 v 2, meals=28.403' Icollcat2 1 Icolmeal2 28.403; 
  estimate 'Predicted values, Group 1, m=28.403' intercept 1 Icollcat2 -.5  
            Icollcat3 -.3333333 meals 28.403 Icolmeal2 -14.2015  
            Icolmeal3 -9.4676667; 
  estimate 'Predicted values, Group 2, m=28.403' intercept 1 Icollcat2 .5  
            Icollcat3 -.3333333 meals 28.403 Icolmeal2 14.2015 
            Icolmeal3 -9.4676667; 
  estimate 'Group 3 v 12, meals=28.403' Icollcat3 1 Icolmeal3 28.403; 
  estimate 'Predicted values, Group 12, m=28.403' intercept 1 Icollcat2 0  
            Icollcat3 -.3333333 meals 28.403 Icolmeal2 0  
            Icolmeal3 -9.4676667; 
  estimate 'Predicted values, Group 1, m=28.403' intercept 1 Icollcat2 0  
            Icollcat3 .6666666667 meals 28.403 Icolmeal2 0  
            Icolmeal3 18.935333; 
  estimate 'Group 1 v 2, meals=60.315' Icollcat2 1 Icolmeal2 60.315; 
  estimate 'Group 3 v 12, meals=60.315' Icollcat3 1 Icolmeal3 60.315; 
  estimate 'Group 1 v 2, meals=92.23' Icollcat2 1 Icolmeal2 92.23; 
  estimate 'Group 3 v 12, meals=92.23' Icollcat3 1 Icolmeal3 92.23; 
  estimate 'Interaction: group 1 v 2, m=mean v m=mean+1std' Icolmeal2 31.912; 
  estimate 'Interaction: group 3 v 12, m=mean v m=mean+1std' Icolmeal3 31.912; 
run; 
quit; 
The REG Procedure 
Model: MODEL1 
Dependent Variable: api00 api 2000 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
Model                     5        6629930        1325986     361.86    <.0001 
Error                   394        1443742     3664.32012 
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Corrected Total         399        8073672 
 
Root MSE             60.53363    R-Square     0.8212 
Dependent Mean      647.62250    Adj R-Sq     0.8189 
Coeff Var             9.34705 
                                 Parameter Estimates 
 
                                       Parameter       Standard 
Variable     DF       Estimate          Error    t Value    Pr > |t| 
Intercept    1      882.47026        6.69004     131.91      <.0001 
meals        1       -3.85935        0.10064     -38.35      <.0001 
Icollcat2    1       10.29492       16.24717       0.63      0.5267 
Icollcat3    1      -26.42920       14.31193      -1.85      0.0655 
Icolmeal2    1        0.02815        0.22250       0.13      0.8994 
Icolmeal3    1        0.79489        0.23242       3.42      0.0007 
 
      Test low Results for Dependent Variable api00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
Numerator           2     2346.39755       0.64    0.5277 
Denominator       394     3664.32012 
     Test mean Results for Dependent Variable api00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
Numerator           2          23138       6.31    0.0020 
Denominator       394     3664.32012 
     Test high Results for Dependent Variable api00 
 
                                Mean 
Source             DF         Square    F Value    Pr > F 
Numerator           2          38869      10.61    <.0001 
Denominator       394     3664.32012 
The GLM Procedure 
Number of observations    400 
The GLM Procedure 
 
Dependent Variable: api00   api 2000 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
Model                        5     6629929.872     1325985.974     361.86    <.0001 
Error                      394     1443742.126        3664.320 
Corrected Total            399     8073671.998 
R-Square     Coeff Var      Root MSE    api00 Mean 
0.821179      9.347054      60.53363      647.6225 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
meals                        1     6549825.145     6549825.145    1787.46    <.0001 
Icollcat2                    1       11385.768       11385.768       3.11    0.0787 
Icollcat3                    1       25740.884       25740.884       7.02    0.0084 
Icolmeal2                    1         115.990         115.990       0.03    0.8589 
Icolmeal3                    1       42862.086       42862.086      11.70    0.0007 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
meals                        1     5389132.969     5389132.969    1470.70    <.0001 
Icollcat2                    1        1471.242        1471.242       0.40    0.5267 
Icollcat3                    1       12495.833       12495.833       3.41    0.0655 
Icolmeal2                    1          58.655          58.655       0.02    0.8994 
Icolmeal3                    1       42862.086       42862.086      11.70    0.0007 
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                                                      Standard 
Parameter                               Estimate         Error  t Value  Pr > |t| 
Group 1 v 2, meals=28.403              11.094486    11.0505842     1.00    0.3160 
Pred values, Group 1, m=28.403        768.589777     8.3629518    91.90    <.0001 
Pred values, Group 2, m=28.403        779.684262     7.2233262   107.94    <.0001 
Group 3 v 12, meals=28.403             -3.851909     8.9572977    -0.43    0.6674 
Pred values, Group 12, m=28.403       774.137020     5.5252918   140.11    <.0001 
Pred values, Group 1, m=28.403        770.285111     7.0501298   109.26    <.0001 
Group 1 v 2, meals=60.315              11.992828     7.6173809     1.57    0.1162 
Group 3 v 12, meals=60.315             21.514655     6.6493192     3.24    0.0013 
Group 1 v 2, meals=92.23               12.891254     9.7352449     1.32    0.1862 
Group 3 v 12, meals=92.23              46.883603    10.8731909     4.31    <.0001 
Group 1 v 2, m=mean v m=mean+1std       0.898342     7.1004657     0.13    0.8994 
Group 3 v 12, m=mean v m=mean+1std     25.366564     7.4168876     3.42    0.0007 
 
                                  Standard 
Parameter         Estimate           Error    t Value    Pr > |t| 
Intercept      882.4702589      6.69003553     131.91      <.0001 
meals           -3.8593532      0.10063563     -38.35      <.0001 
Icollcat2       10.2949246     16.24717093       0.63      0.5267 
Icollcat3      -26.4292002     14.31192705      -1.85      0.0655 
Icolmeal2        0.0281506      0.22250143       0.13      0.8994 
Icolmeal3        0.7948911      0.23241688       3.42      0.0007 
Obtaining the exact same results using the GLM coding (and a class statement so that proc glm 
functions as proc glm and not as a proc reg). 
proc glm data=elemapi2; 
  class collcat; 
  model api00 =  meals collcat collcat*meals ; 
  estimate 'slope of 2 v 1 at m=28.4' collcat -1 1 0 collcat*meals -28.4 28.4 0; 
  estimate 'pred values, group 1, m=28.4'  intercept 1 meals 28.4 collcat 1 0 0 
collcat*meals 28.4 0 0; 
  estimate 'pred values, group 2, m=28.4'  intercept 1 meals 28.4 collcat 0 1 0 
collcat*meals 0 28.4 0; 
  estimate 'slope of 3 v 12 at m=28.4' collcat -.5 -.5 1 collcat*meals -14.2 -14.2 
28.4; 
  estimate 'pred values, group 12, m=28.4'  intercept 1 meals 28.4 collcat .5 .5 0 
collcat*meals 14.2 14.2 0; 
  estimate 'pred values, group 3, m=28.4'  intercept 1 meals 28.4 collcat 0 0 1 
collcat*meals 0 0 28.4; 
  estimate 'slope of 2 v 1 at m=60.3' collcat -1 1 0 collcat*meals -60.3 60.3 0; 
  estimate 'slope of 3 v 12 at m=60.3' collcat -.5 -.5 1 collcat*meals -30.15 -
30.15 60.3; 
  estimate 'slope of 2 v 1 at m=92.2' collcat -1 1 0 collcat*meals -92.2 92.2 0; 
  estimate 'slope of 3 v 12 at m=92.2' collcat -.5 -.5 1 collcat*meals -46.1 -46.1 
92.2; 
  estimate 'slope of 2 v 1 at m=60.3 v m=28.4' collcat*meals -31.9 31.9 0; 
  estimate 'slope of 3 v 12 at m=60.3 v m=28.4' collcat*meals -15.95 -15.95 31.9 ; 
run; 
quit; 
 
 
 
 
The GLM Procedure 
 
   Class Level Information 
 
Class         Levels    Values 
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collcat            3    1 2 3 
 
 
Number of observations    400 
The GLM Procedure 
Dependent Variable: api00   api 2000 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        5     6629929.872     1325985.974     361.86    <.0001 
Error                      394     1443742.126        3664.320 
Corrected Total            399     8073671.998 
 
R-Square     Coeff Var      Root MSE    api00 Mean 
 
0.821179      9.347054      60.53363      647.6225 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
meals                        1     6549825.145     6549825.145    1787.46    <.0001 
collcat                      2       37126.652       18563.326       5.07    0.0067 
meals*collcat                2       42978.076       21489.038       5.86    0.0031 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
meals                        1     5389132.969     5389132.969    1470.70    <.0001 
collcat                      2       14535.351        7267.676       1.98    0.1390 
meals*collcat                2       42978.076       21489.038       5.86    0.0031 
 
                                                          Standard 
Parameter                                 Estimate           Error    t Value    Pr 
> |t| 
 
slope of 2 v 1 at m=28.4                 11.094401      11.0510713       1.00      
0.3160 
pred values, group 1, m=28.4            768.602193       8.3633100      91.90      
<.0001 
pred values, group 2, m=28.4            779.696594       7.2236571     107.94      
<.0001 
slope of 3 v 12 at m=28.4                -3.854294       8.9577754      -0.43      
0.6672 
pred values, group 12, m=28.4           774.149393       5.5255356     140.10      
<.0001 
pred values, group 3, m=28.4            770.295100       7.0505458     109.25      
<.0001 
slope of 2 v 1 at m=60.3                 11.992405       7.6178035       1.57      
0.1162 
slope of 3 v 12 at m=60.3                21.502731       6.6486489       3.23      
0.0013 
slope of 2 v 1 at m=92.2                 12.890409       9.7310376       1.32      
0.1860 
slope of 3 v 12 at m=92.2                46.859757      10.8676142       4.31      
<.0001 
slope of 2 v 1 at m=60.3 v m=28.4         0.898004       7.0977957       0.13      
0.8994 
slope of 3 v 12 at m=60.3 v m=28.4       25.357025       7.4140986       3.42      
0.0007 
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output and explanation. 

Demo Analysis #1 

The between groups test indicates that there the variable group is significant, consequently in the graph 
we see that the lines for the two groups are rather far apart. The within subject test indicate that there is 
not a significant time effect, in other words, the groups do not change in depression over time. In the 
graph we see that the groups have lines that are flat, i.e. the slopes of the lines are approximately equal 
to zero. Also, since the lines are parallel, we are not surprised that the interaction between time and 
group is not significant.  

 

<Abbreviated output from proc glm> 
 
 
Tests of Hypotheses for Between Subjects Effects 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
GROUP                       1    155.0416667    155.0416667   3721.00   <.0001  
Error                       6      0.2500000      0.0416667 
 
Univariate Tests of Hypotheses for Within Subject Effects 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
time                        2     0.08333333     0.04166667      1.00   0.3966 
time*GROUP                  2     0.08333333     0.04166667      1.00   0.3966 
Error(time)                12     0.50000000     0.04166667 

Demo Analysis #2 

The between groups test indicates that there the variable group is not significant, consequently in the 
graph we see that the lines for the two groups are rather close together. The within subject test indicate 
that there is a significant time effect, in other words, the groups do change in depression over time. In 
the graph we see that the groups have lines that increase over time. Again, the lines are parallel 
consistent with the finding that the interaction is not significant. 
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<Abbreviated output from proc glm> 
Tests of Hypotheses for Between Subjects Effects 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
GROUP                       1     15.0416667     15.0416667      0.84   0.3957 
Error                       6    107.9166667     17.9861111 
   
Univariate Tests of Hypotheses for Within Subject Effects 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
time                        2    978.2500000    489.1250000     53.68   <.0001 
time*GROUP                  2      1.0833333      0.5416667      0.06   0.9426 
Error(time)                12    109.3333333      9.1111111 

Demo Analysis #3 

The between groups test indicates that there the variable group is significant, consequently in the graph 
we see that the lines for the two groups are rather far apart. The within subject test indicate that there is 
a significant time effect, in other words, the groups do change over time, both groups are getting less 
depressed over time. Moreover, the interaction of time and group is significant which means that the 
groups are changing over time but are changing in different ways, which means that in the graph the 
lines will not be parallel. In the graph we see that the groups have non-parallel lines that decrease over 
time and are getting progressively closer together over time.  
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Tests of Hypotheses for Between Subjects Effects 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
GROUP                       1    2035.041667    2035.041667    343.15   <.0001 
Error                       6      35.583333       5.930556 
 
Univariate Tests of Hypotheses for Within Subject Effects 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
time                        2    2830.333333    1415.166667    553.76   <.0001 
time*GROUP                  2     200.333333     100.166667     39.20   <.0001 
Error(time)                12      30.666667       2.555556 

Demo Analysis #4 

The within subject test indicate that the interaction of time and group is significant. The main effect of 
time is not significant. However, the significant interaction indicates that the groups are changing over 
time and they are changing in different ways, in other words, in the graph the lines of the groups will 
not be parallel. The between groups test indicates that there the variable group is significant. In the 
graph for this particular case we see that one group is increasing in depression over time and the other 
group is decreasing in depression over time. 
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Tests of Hypotheses for Between Subjects Effects 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
GROUP                       1    2542.041667    2542.041667    628.96   <.0001 
Error                       6      24.250000       4.041667 
 
Univariate Tests of Hypotheses for Within Subject Effects 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
time                        2       1.000000       0.500000      0.08   0.9246 
time*GROUP                  2    1736.333333     868.166667    137.08   <.0001 
Error(time)                12      76.000000       6.333333 

Creating Graphs of the Means for Demo Analysis #4 

The SAS code for creating the graph for demo=4.  

/* We use the out option in the lsmeans statement to create the data set means. */ 
proc glm data=demo4; 
  class group; 
  model time1 time2 time3 = group; 
  repeated time 3 ; 
  lsmeans group / out=means; 
run; 
quit; 
 
/*We want to look at the means to make sure we created the correct dataset.*/  
proc print data=means;  
run; 
 
/* For a better understanding of all the gplot options used here please  
visit our webpage on using proc gplot.*/ 
 
goptions reset=all; 
symbol1 c=blue v=star h=.8 i=j; 
symbol2 c=red v=dot h=.8 i=j; 
axis1 label=(a=90 'Means'); 
axis2 label=('Time') value=('1' '2' '3'); 
proc gplot data=means; 

http://www.ats.ucla.edu/stat/sas/code/proc_gplot_stuff.htm
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  plot lsmean*_name_=group/ vaxis=axis1 haxis=axis2; 
run; 
quit; 

 

 

Exercise data examples 

The data consists of people who were randomly assigned to two different diets: low-fat and not low-fat 
and three different types of exercise: at rest, walking leisurely and running. Their pulse rate was 
measured at three different time points during their assigned exercise: at 1 minute, 15 minutes and 30 
minutes. 

data exercise; 
  input id exertype diet time1 time2 time3; 
cards; 
1     1         1       85       85       88 
2     1         1       90       92       93 
3     1         1       97       97       94 
4     1         1       80       82       83 
5     1         1       91       92       91 
6     1         2       83       83       84 
7     1         2       87       88       90 
8     1         2       92       94       95 
9     1         2       97       99       96 
10    1         2      100       97      100 
11    2         1       86       86       84 
12    2         1       93      103      104 
13    2         1       90       92       93 
14    2         1       95       96      100 
15    2         1       89       96       95 
16    2         2       84       86       89 
17    2         2      103      109       90 
18    2         2       92       96      101 
19    2         2       97       98      100 
20    2         2      102      104      103 
21    3         1       93       98      110 
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22    3         1       98      104      112 
23    3         1       98      105       99 
24    3         1       87      132      120 
25    3         1       94      110      116 
26    3         2       95      126      143 
27    3         2      100      126      140 
28    3         2      103      124      140 
29    3         2       94      135      130 
30    3         2       99      111      150 
; 
run; 

Exercise example, model 1 (time and diet) 

Let us first consider the model including diet as the group variable. The graph below suggests that the 
pulse rate is growing over time.  The pulse rates may vary for the 2 diets and it is possible that the pulse 
rate is growing faster for the "red" diet than the "blue" diet.   

proc glm data=exercise; 
  class diet; 
  model time1 time2 time3 = diet; 
  repeated time 3 / printe; 
run; 
quit; 

 

Looking at the results from the manova test the effect of time is significant but the interaction of time 
and diet is not significant. The between subject test of the effect of diet is also not significant. 
Consequently, in the graph we have lines that are not flat, in fact, they are actually increasing over time, 
which was expected since the effect of time was significant. Furthermore, the lines are approximately 
parallel which was anticipated since the interaction was not significant.  

                            Sphericity Tests 
 
                                   Mauchly's 
Variables                    DF    Criterion    Chi-Square    Pr > ChiSq 
 
Transformed Variates          2    0.4531199     21.373158        <.0001 
Orthogonal Components         2     0.673336     10.678793        0.0048 
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Manova Test Criteria and Exact F Statistics for the Hypothesis of no time Effect 
                       H = Type III SSCP Matrix for time 
                             E = Error SSCP Matrix 
 
                              S=1    M=0    N=12.5 
 
Statistic                        Value    F Value    Num DF    Den DF    Pr > F 
Wilks' Lambda               0.64349965       7.48         2        27    0.0026 
Pillai's Trace              0.35650035       7.48         2        27    0.0026 
Hotelling-Lawley Trace      0.55400240       7.48         2        27    0.0026 
Roy's Greatest Root         0.55400240       7.48         2        27    0.0026 
 
 
                  Manova Test Criteria and Exact F Statistics 
                   for the Hypothesis of no time*DIET Effect 
                     H = Type III SSCP Matrix for time*DIET 
                             E = Error SSCP Matrix 
 
                              S=1    M=0    N=12.5 
 
Statistic                        Value    F Value    Num DF    Den DF    Pr > F 
Wilks' Lambda               0.94402156       0.80         2        27    0.4595 
Pillai's Trace              0.05597844       0.80         2        27    0.4595 
Hotelling-Lawley Trace      0.05929784       0.80         2        27    0.4595 
Roy's Greatest Root         0.05929784       0.80         2        27    0.4595 
 
Tests of Hypotheses for Between Subjects Effects 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
DIET                        1     1261.87778     1261.87778      3.15   0.0869 
Error                      28    11227.02222      400.96508 
Repeated Measures Analysis of Variance 
Univariate Tests of Hypotheses for Within Subject Effects 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
time                        2    2066.600000    1033.300000     11.81   <.0001 
time*diet                   2     192.822222      96.411111      1.10   0.3394 
Error(time)                56    4900.577778      87.510317 
 
                          Adj Pr > F 
Source                  G - G     H - F 
time                   0.0003    0.0002 
time*diet              0.3264    0.3303 
Error(time) 
 
Greenhouse-Geisser Epsilon    0.7538 
Huynh-Feldt Epsilon           0.8158 

Exercise example, model 2 (time and exercise type) 

Next, let us consider the model including exertype as the group variable.   

proc glm data=exercise; 
  class exertype; 
  model time1 time2 time3 = exertype; 
  repeated time 3 ; 
run; 
quit; 
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The interaction of time and exertype is significant as is the effect of time. The between subject test of 
the effect of exertype is also significant. Consequently, in the graph we have lines that are not parallel 
which we expected since the interaction was significant. Furthermore, we see that some of the lines that 
are rather far apart and at least one line is not horizontal which was anticipated since exertype and time 
were both significant. The output for this analysis is omitted. 

Here is the code for the graph. 

proc glm data=exercise; 
  class exertype; 
  model time1 time2 time3 = exertype; 
  repeated time 3 ; 
  lsmeans exertype / out=means; 
run; 
quit; 
proc print data=means; 
run; 
 
goptions reset=all; 
symbol1 c=blue v=star h=.8 i=j; 
symbol2 c=red v=dot h=.8 i=j; 
symbol3 c=green v=square h=.8 i=j; 
axis1 order=(60 to 150 by 30) label=(a=90 'Means'); 
axis2 label=('Time') value=('1' '2' '3'); 
proc gplot data=means; 
  plot lsmean*_name_=exertype / vaxis=axis1 haxis=axis2; 
run; 
quit; 

Further Issues 

Missing Data 

• Compare GLM and Mixed on Missing Data  

Variance-Covariance Structures 
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• Discuss "univariate" vs. "multivariate" tests.  
• Discuss "sphericity" and test of sphericity.  

Independence 

As though analyzed using between subjects analysis. 

σ2  
0 � σ2 
0 � 0 � σ2  

Compound Symmetry 

The univariate tests assumes that the variance-covariance structure has compound symmetry. There is 
a single Variance (represented by σ2) for all 3 of the time points and there is a single covariance 
(represented by σ1) for each of the pairs of trials.  This is illustrated below. 

σ2 
σ1 σ2 
σ1 σ1 σ2  

Unstructured 

The manova tests assumes that each variance and covariance is unique, see below, referred to as an 
unstructured covariance matrix.  Each trial has its own variance (e.g. σ1

2 is the variance of trial 1) and 
each pair of trials has its own covariance (e.g. σ21 is the covariance of trial 1 and trial2). 

σ1
2 

σ21 σ2
2 

σ31 σ32 σ3
2 

We can use the sphericity test to indicate which is most appropriate: the manova or the univariate test. 
The null hypothesis test of the test of sphericity is: the variance-covariance structure has compound 
symmetry. If the sphericity test is not significant then the variance-covariance structure has compound 
symmetry and then it is appropriate to use the results from the univariate tests. If, however, the 
sphericity test is significant then we reject that the variance-covariance structure has compound 
symmetry and it is most appropriate to use the results from the manova test or alternatively use the 
corrections for the univariate test. It is very important, however, to note that the sphericity test is 
overly sensitive. It is very likely to reject compound symmetry when the data only slightly deviates 
from compound symmetry, so in actuality this test could be very deceiving and may be best ignored. 

Autoregressive 

Another common covariance structure which is frequently observed in repeated measures data is an 
autoregressive structure, which recognizes that observations which are more proximate are more 
correlated than measures that are more distant. 
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σ2  
σρ σ2 
σρ2 σρ σ2 

Autoregressive Heterogenous Variances 

If the variances change over time, then the covariance would look like this. 

σ1
2  

σρ     σ2
2 

σρ2   σρ     σ3
2 

However, we cannot use this kind of covariance structure in a traditional repeated measures analysis, 
but we can use SAS PROC MIXED for such an analysis.  

(For a complete list of all variance-covariance structures that SAS supports in proc mixed please see 
the SAS help page: http://saspdf.ats.ucla.edu/sasdoc/sashtml/stat/chap41/sect20.htm#mixedrepeat .) 

Let's look at the correlations, variances and covariances for the exercise data. 

proc corr data=exercise cov; 
  var time1 time2 time3; 
run; 
                Covariance Matrix, DF = 29 
 
                  time1             time2             time3 
time1        37.8436782        48.7885057        60.2850575 
time2        48.7885057       212.1195402       233.7609195 
time3        60.2850575       233.7609195       356.3229885 
 
 
   Pearson Correlation Coefficients, N = 30 
 
              time1         time2         time3 
time1       1.00000       0.54454       0.51915 
time2       0.54454       1.00000       0.85028 
time3       0.51915       0.85028       1.00000 

SAS Exercise example, model 2 using Proc Mixed 

Even though we are very impressed with our results so far, we are not completely convinced that the 
variance-covariance structure really has compound symmetry. In order to compare models with 
different variance-covariance structures we have to use proc mixed and try the different structures that 
we think our data might have. However, in order to use proc mixed we must reshape our data from its 
wide form to a long form. 

proc transpose data=exercise out=long; 
  by id diet exertype; 
run; 
data long; 
  set long (rename=(col1=pulse) ); 
  time = substr(_NAME_, 5, 1 )+0; 

http://saspdf.ats.ucla.edu/sasdoc/sashtml/stat/chap41/sect20.htm#mixedrepeat
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  drop _name_; 
run; 
proc print data=long (obs=20); 
  var id diet exertype time pulse; 
run; 
 
Obs    id    DIET    EXERTYPE    time    pulse 
 
  1     1      1         1         1       85 
  2     1      1         1         2       85 
  3     1      1         1         3       88 
  4     2      1         1         1       90 
  5     2      1         1         2       92 
  6     2      1         1         3       93 
  7     3      1         1         1       97 
  8     3      1         1         2       97 
  9     3      1         1         3       94 
 10     4      1         1         1       80 
 11     4      1         1         2       82 
 12     4      1         1         3       83 
 13     5      1         1         1       91 
 14     5      1         1         2       92 
 15     5      1         1         3       91 
 16     6      2         1         1       83 
 17     6      2         1         2       83 
 18     6      2         1         3       84 
 19     7      2         1         1       87 
 20     7      2         1         2       88 

Compound Symmetry 

The first model we will look at is one using compound symmetry for the variance-covariance structure. 
This model should confirm the results of the univariate tests that we obtained through proc glm and 
we will be able to obtain fit statistics that we will use for comparisons with our models that assume 
other variance-covariance structures. 

proc mixed data=long; 
  class exertype time; 
  model pulse = exertype time exertype*time; 
  repeated time / subject=id type=cs; 
run; 
 
           Fit Statistics 
-2 Res Log Likelihood           590.8 
AIC (smaller is better)         594.8 
AICC (smaller is better)        595.0 
BIC (smaller is better)         597.6 
 
 
  Null Model Likelihood Ratio Test 
    DF    Chi-Square      Pr > ChiSq 
     1         15.36          <.0001 
 
          Type 3 Tests of Fixed Effects 
 
                  Num     Den 
Effect             DF      DF    F Value    Pr > F 
exertype            2      27      27.00    <.0001 
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time                2      54      23.54    <.0001 
exertype*time       4      54      15.51    <.0001 

Unstructured 

We now try an unstructured covariance matrix. 

proc mixed data=long; 
  class exertype time; 
  model pulse = exertype time exertype*time; 
  repeated time / subject=id type=un; 
run; 
 
Covariance Parameter Estimates 
 
Cov Parm    Subject    Estimate 
UN(1,1)     id          34.2000 
UN(2,1)     id          23.6852 
UN(2,2)     id          87.1926 
UN(3,1)     id          26.7889 
UN(3,2)     id          59.8148 
UN(3,3)     id           120.57 
 
 
           Fit Statistics 
-2 Res Log Likelihood           577.7 
AIC (smaller is better)         589.7 
AICC (smaller is better)        590.9 
BIC (smaller is better)         598.1 
 
 
  Null Model Likelihood Ratio Test 
 
    DF    Chi-Square      Pr > ChiSq 
     5         28.46          <.0001 
 
 
          Type 3 Tests of Fixed Effects 
 
                  Num     Den 
Effect             DF      DF    F Value    Pr > F 
exertype            2      27      27.00    <.0001 
time                2      27      22.32    <.0001 
exertype*time       4      27      14.39    <.0001 

Autoregressive 

From previous studies we suspect that our data might actually have an auto-regressive variance-
covariance structure so this is the model we will look at next. The auto-regressive variance-covariance 
structure does fit our data slightly better than the compound symmetry does (AIC of 594.1 vs. 594.8). 

proc mixed data=long; 
  class exertype time; 
  model pulse = exertype time exertype*time; 
  repeated time / subject=id type=ar(1); 
run; 
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-2 Res Log Likelihood           590.1 
AIC (smaller is better)         594.1 
AICC (smaller is better)        594.3 
BIC (smaller is better)         596.9 
 
 
  Null Model Likelihood Ratio Test 
 
    DF    Chi-Square      Pr > ChiSq 
     1         16.08          <.0001 
 
 
          Type 3 Tests of Fixed Effects 
 
                  Num     Den 
Effect             DF      DF    F Value    Pr > F 
exertype            2      27      28.39    <.0001 
time                2      54      18.20    <.0001 
exertype*time       4      54      11.73    <.0001 

Autoregressive with heterogeneous variances 

Now we suspect that what is actually going on is that the we have auto-regressive covariances and 
heterogeneous variances. The fit statistics indicate that our suspicions were correct (see table in Model 
Comparisons section) and that the model with heterogeneous variances fits the data better than the 
model with autoregressive covariance and homogeneous variances (AIC 587.8 versus 594.1). Our 
suspicions arose when we were looking at the raw covariance structure obtained from the proc corr. 
When looking at the output we see that the variances (the numbers along the diagonal) are clearly 
unequal indicating heterogeneous variances. 

proc mixed data=long; 
  class exertype time; 
  model pulse = exertype time exertype*time; 
  repeated time / subject=id type=arh(1); 
run; 
 
 
Covariance Parameter Estimates 
 
Cov 
Parm       Subject    Estimate 
Var(1)     id          35.7683 
Var(2)     id          87.1927 
Var(3)     id           115.50 
ARH(1)     id           0.5101 
 
 
           Fit Statistics 
-2 Res Log Likelihood           579.8 
AIC (smaller is better)         587.8 
AICC (smaller is better)        588.3 
BIC (smaller is better)         593.4 
 
 
  Null Model Likelihood Ratio Test 
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    DF    Chi-Square      Pr > ChiSq 
     3         26.42          <.0001 
 
 
          Type 3 Tests of Fixed Effects 
 
                  Num     Den 
Effect             DF      DF    F Value    Pr > F 
exertype            2      27      28.96    <.0001 
time                2      54      21.92    <.0001 
exertype*time       4      54      13.81    <.0001 
 

It is very important to explore different variance-covariance structures when using proc mixed because 
the output contains fit statistics indicating which clearly indicate how well each model fits the data 
compared to other models. 

Model comparison (comparing to Compound Symmetry) 

Model AIC -2RLL Parms 
(df + 1) 

Diff -
2RLL 
(vs. CS) 

Diff in df  
(vs. CS) 

p value for Diff  
(from a chi square dist)

Compound 
Symmetry 594.8 590.8 2       

Unstructured 589.7 577.7 6 13.1 4 .01 
Autoregressive 594.1 590.1 2 .7 0 na 
Autoregressive 
Heterogenous 
Variances 

587.8 579.8 4 11 2 0.027 

The two most promising structures are Autoregressive Heterogeneous Variances and Unstructured 
since these two models have the smallest AIC values and the -2 Log Likelihood scores are significantly 
smaller than the -2 Log Likehood scores of other models. 

Creating Graphs of the Means for Proc Mixed, model 2 (time and exertype) 

Just as in the case of proc glm it is often very useful to look at the graph of the means in order to really 
understand the data. So, here is the code for creating the graphs in proc mixed that we were able to 
obtain when using proc glm.  

/* Proc Mixed does not have an out option in the lsmeans statement.  Instead we use  
ODS to create the data set containing all the means. */  
ods output LSMeans=means1; 
proc mixed data=long; 
  class exertype time; 
  model pulse = exertype time exertype*time; 
  repeated time / subject=id type=ar(1); 
  lsmeans time*exertype; 
run;  
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/* We print the dataset just to make sure that we have created the correct dataset. 
*/  
proc print data=means1; 
run; 
 
/* First we reset all the plot options to avoid any carry over from previous 
plotting procedures.  We use  
a format statement in the proc gplot because the values for estimate have been 
assigned many decimal places that do not look  
very nice when used as tick marks on the y-axis.  The format 8. means that we will 
allow there to be 8 digits for the  
whole number and no decimal places.  This statement is included purely for cosmetic 
purposes and can easily be removed. 
To understand all the plotting options used please refer to our webpage  
on using proc gplot. */  
goptions reset=all; 
symbol1 c=blue v=star h=.8 i=j; 
symbol2 c=red v=dot h=.8 i=j; 
symbol3 c=green v=square h=.8 i=j; 
axis1 order=(60 to 150 by 30) label=(a=90 'Means'); 
proc gplot data=means1; 
  format estimate 8.; 
  plot estimate*time=exertype / vaxis=axis1; 
run;  
quit; 

Here is the graph. 

 

Exercise example, model 3 (time, diet and exertype)--Proc Glm 

Looking at models including only diet or exertype separately does not answer all our questions. We 
would also like to know if the people on the low-fat diet who engage in running have lower pulse rates 
than the people participating in the not low-fat diet who are not running. In order to address these types 
of questions we need to look at a model that includes the interaction of diet and exertype. After all the 
analysis involving the variance-covariance structures we will look at this model using both proc glm 
and proc mixed. 

http://www.ats.ucla.edu/stat/sas/code/proc_gplot_stuff.htm
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In the graph of exertype by diet we see that for the low-fat diet (diet=1) group the pulse rate for the 
two exercise types: at rest and walking, are very close together, indeed they are almost flat, whereas the 
running group has a higher pulse rate that increases over time. For the not low-fat diet (diet=2) group 
the same two exercise types: at rest and walking, are also very close together and almost flat. For this 
group, however, the pulse rate for the running group increases greatly over time and the rate of increase 
is much steeper than the increase of the running group in the low-fat diet group. 
The within subject tests indicate that there is a three-way interaction between diet, exertype and time. 
In other words, the pulse rate will depend on which diet you follow, the exercise type you engage in and 
at what time during the the exercise that you measure the pulse. The interactions of time and exertype 
and diet and exertype are also significant as are the main effects of diet and exertype.  

 
proc glm data=exercise; 
 class diet exertype; 
 model time1 time2 time3 = diet|exertype; 
 repeated time 3 ; 
run; 
quit; 

Looking at the graphs of exertype by diet.  
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Tests of Hypotheses for Between Subjects Effects 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
DIET                        1    1261.877778    1261.877778     14.52   0.0008 
EXERTYPE                    2    8326.066667    4163.033333     47.92   <.0001 
DIET*EXERTYPE               2     815.755556     407.877778      4.69   0.0190 
Error                      24    2085.200000      86.883333 
 
Univariate Tests of Hypotheses for Within Subject Effects 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
time                        2    2066.600000    1033.300000     31.72   <.0001 
time*DIET                   2     192.822222      96.411111      2.96   0.0614 
time*EXERTYPE               4    2723.333333     680.833333     20.90   <.0001 
time*DIET*EXERTYPE          4     613.644444     153.411111      4.71   0.0028 
Error(time)                48    1563.600000      32.575000 
 

Creating Graphs for model 3 Using Proc Glm 

proc glm data=exercise; 
 class diet exertype; 
 model time1 time2 time3 = diet|exertype; 
 repeated time 3; 
 lsmeans diet*exertype / out=means; 
run; 
quit; 
 
proc print data=means; 
run; 
 
proc sort data=means out=sortdiet; 
 by diet; 
run; 
 
goptions reset=all; 
symbol1 c=blue v=star h=.8 i=j; 
symbol2 c=red v=dot h=.8 i=j; 
symbol3 c=green v=square h=.8 i=j; 
axis1 order=(60 to 150 by 30) label=(a=90 'Means'); 
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axis2 label=('Time') value=('1' '2' '3'); 
proc gplot data=sortdiet; 
 by diet; 
 plot lsmean*_name_ = exertype / vaxis=axis1 haxis=axis2; 
run; 
quit; 

Exercise example, model 3 (time, diet and exertype)--Proc Mixed 

For the mixed model we will use the autoregressive heterogeneous variances variance-covariance 
structure since we previously observed that this is the structure that appears to fit the data the best (see 
discussion of variance-covariance structures). We do not expect to find a great change in which factors 
will be significant but we do expect to have a model that has a better fit than the glm model. 
The graphs are exactly the same as the glm model and we find that the same factors are significant. 
However, since the model has a better fit we can be more confident in the estimate of the standard 
errors and therefore we can be more confident in the tests and in the findings of significant factors. The 
model has a better fit than the model only including exertype and time because both the -2Log 
Likelihood and the AIC has decrease dramatically. The -2 Log Likelihood decreased from 579.8 for the 
model including only exertype and time to 505.3 for the current model; the AIC decreased from 587.8 
for the model including only exertype and time to 513.3 for the current model.  

The code for the mixed model 
 
proc mixed data=long; 
  class exertype diet time; 
  model pulse = exertype|diet|time; 
  repeated time / subject=id type=arh(1) ; 
run; 

Looking at the graphs of exertype by diet.  
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Covariance Parameter Estimates 
 
Cov 
Parm       Subject    Estimate 
Var(1)     id          33.0864 
Var(2)     id          73.5148 
Var(3)     id          45.3847 
ARH(1)     id           0.3610 
 
 
           Fit Statistics 
-2 Res Log Likelihood           505.3 
AIC (smaller is better)         513.3 
AICC (smaller is better)        513.9 
BIC (smaller is better)         518.9 
 
 
  Null Model Likelihood Ratio Test 
 
    DF    Chi-Square      Pr > ChiSq 
     3         10.65          0.0138 
 
 
             Type 3 Tests of Fixed Effects 
 
                       Num     Den 
Effect                  DF      DF    F Value    Pr > F 
exertype                 2      24      52.17    <.0001 
diet                     1      24      15.81    0.0006 
exertype*diet            2      24       5.11    0.0142 
time                     2      48      30.82    <.0001 
exertype*time            4      48      20.25    <.0001 
diet*time                2      48       2.80    0.0709 
exertype*diet*time       4      48       4.45    0.0039 

Creating Graphs for model 3 Using Proc Mixed 
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/* Proc Mixed does not have an out option in the lsmeans statement.  Instead we use  
ODS to create the data set containing all the means. */  
ods output LSMeans = means; 
proc mixed data=long; 
  class exertype diet time; 
  model pulse = exertype|diet|time; 
  repeated time / subject=id type=arh(1) ; 
  lsmeans time*diet*exertype; 
run; 
/* We print the dataset just to make sure that we have created the correct dataset. 
*/  
proc print data=means; 
run; 
proc sort data=means; 
  by diet; 
run; 
 
/* First we reset all the plot options to avoid any carry over from previous 
plotting procedures.   
We use a format statement in the proc gplot because the values for estimate have 
been assigned  
many decimal places that do not look very nice when used as tick marks on the y-
axis.  The format 8.  
means that we will allow there to be 8 digits for the whole number and no decimal 
places.  This  
statement is included purely for cosmetic purposes and can easily be removed.  To 
understand all  
the plotting options used please refer to our webpage on using proc gplot. */  
 
goptions reset=all; 
symbol1 c=black v=dot i=j; 
symbol2 c=blue v=circle i=j; 
symbol3 c=red v=square i=j; 
axis1 order=(60 to 150 by 30) label=(a=90 'Means'); 
proc gplot data=means; 
  by diet; 
  format estimate 8.; 
  plot estimate*time=exertype / vaxis=axis1; 
run; 
quit; 

Contrasts and interaction contrasts for model 3 

From the graphs in the above analysis we see that the runners (exertype level 3) have a pulse rate that is 
increases much quicker than the pulse rates of the two other groups. We would like to know if there is a 
statistically significant difference between the changes over time in the pulse rate of the runners versus 
the change over time in the pulse rate of the walkers and the "rest-ers" (the people at rest) across diet 
groups and across time. Furthermore, we suspect that there might be a difference in pulse rate over time 
and across exercise type between the two diet groups. But to make matters even more complicated we 
would like to test if the runners in the low fat diet group are statistically significantly different from all 
the other groups (i.e. the runners in the non-low fat diet, the walkers and the "rest-ers" in both diet 
groups). Since we are being ambitious we also want to test if the runners in the low fat diet group 
(diet=1) are different from the runners in the non-low fat diet group (diet=2). These contrasts are all 
tested using the estimate statement in proc mixed. 
 
If we would like to look at the differences among groups at each level of another variable we have to 

http://www.ats.ucla.edu/stat/sas/code/proc_gplot_stuff.htm
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utilize the lsmeans statement with the slice option. For example, we could test for differences among 
the exertype groups at each level of diet across all levels of time; or we could test for differences in 
groups of exertype for each time point across both levels of diet; we could also test for differences in 
groups of exertype for each combination of time and diet levels.  

proc mixed data=long; 
  class diet exertype  time; 
  model pulse = exertype|diet|time; 
  repeated time / subject=id type=cs ; 
  estimate 'exer 12 v 3' exertype  -.5 -.5 1; /* across time and across diet groups 
*/ 
  estimate 'exer 1 v 2' exertype  -1 1 0; /* across time and across diet groups */ 
  estimate 'diet' diet  -1 1; /* across time and across exercise types */ 
  estimate 'diet 1v2 & exertype 12v3'  
           diet*exertype -.5 -.5  1 
                          .5  .5 -1;   /* across time only */   
  estimate 'runners only, diet 1 v 2'  diet 1 -1  
                            diet*exertype 0 0  1 
                     0 0 -1; 
lsmeans diet*exertype / slice=diet;  
  /*testing for differences among exertype for each level of diet across time*/  
  lsmeans exertype*time / slice=time;  
  /*testing for differences in exertype at each time point across diets*/ 
  lsmeans exertype*diet*time / slice=time*diet; 
  /*testing for differences in exertype at all combinations of diet and time 
levels*/ 
run; 
quit; 
 
Covariance Parameter Estimates 
 
Cov 
Parm       Subject    Estimate 
Var(1)     id          33.0864 
Var(2)     id          73.5148 
Var(3)     id          45.3847 
ARH(1)     id           0.3610 
 
 
           Fit Statistics 
-2 Res Log Likelihood           505.3 
AIC (smaller is better)         513.3 
AICC (smaller is better)        513.9 
BIC (smaller is better)         518.9 
 
 
  Null Model Likelihood Ratio Test 
 
    DF    Chi-Square      Pr > ChiSq 
     3         10.65          0.0138 
 
 
             Type 3 Tests of Fixed Effects 
 
                       Num     Den 
Effect                  DF      DF    F Value    Pr > F 
exertype                 2      24      52.17    <.0001 
diet                     1      24      15.81    0.0006 
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diet*exertype            2      24       5.11    0.0142 
time                     2      48      30.82    <.0001 
exertype*time            4      48      20.25    <.0001 
diet*time                2      48       2.80    0.0709 
diet*exertype*time       4      48       4.45    0.0039 
 
 
                                   Estimates 
 
                                        Standard 
Label                       Estimate       Error      DF    t Value    Pr > |t| 
exer 12 v 3                  20.0500      1.9975      24      10.04      <.0001 
exer 1 v 2                    4.3667      2.3066      24       1.89      0.0705 
diet                          7.4889      1.8833      24       3.98      0.0006 
diet 1v2 & exertype 12v3    -12.7667      3.9951      24      -3.20      0.0039 
runners only, diet 1 v 2    -16.0000      3.2620      24      -4.91      <.0001 
 
                        Tests of Effect Slices 
 
                                       Num     Den 
Effect                diet    time      DF      DF    F Value    Pr > F 
diet*exertype         1                  2      24      12.51    0.0002 
diet*exertype         2                  2      24      44.77    <.0001 
exertype*time                 1          2      48       2.63    0.0824 
exertype*time                 2          2      48      25.83    <.0001 
exertype*time                 3          2      48      77.98    <.0001 
diet*exertype*time    1       1          2      48       1.13    0.3326 
diet*exertype*time    1       2          2      48       7.53    0.0014 
diet*exertype*time    1       3          2      48      13.92    <.0001 
diet*exertype*time    2       1          2      48       1.57    0.2194 
diet*exertype*time    2       2          2      48      19.76    <.0001 
diet*exertype*time    2       3          2      48      77.39    <.0001 

From the tests we see that there is a significant difference between the pulse rate over time of the 
runners of the low fat diet and the runners of the non-low fat diet. The runners of the low fat diet also 
have significantly different pulse rate from the pulse rate of all the other groups (the runners of the non-
low fat diet, the walkers and "rest-ers" of both diet groups). The runners have a different pulse rate over 
time from the walkers and "rest-ers" combined. The only time we do not have a significant results is 
when we look at the pulse rate of the walkers and "rest-ers" over time. Here the test has a p-value of 
0.0705 which exceeds 0.05 and thus it is not significant. 
 
When looking at diet=1 and diet=2 separately across all time points we find that there is significant 
differences in the exertype groups. At time=2 and time=3 there is also a significant difference between 
exertype groups across both diets. There is not a significant differences between the exertype groups 
when looking at time=1 and diet=1 nor is there a significant differences among the groups when 
looking at time=1 and diet=2. For all other combinations of diet and time levels there is a significant 
difference among the exertype groups. 

It might be tempting to try and use the same type of estimate statements in proc glm in order to 
perform similar types of contrasts. Unfortunately, the results of the estimate statement will be for each 
of the dependent variable rather than across the repeated measure. Thus, it is not possible to test any of 
the contrasts that we performed in proc mixed in the above analysis in proc glm using an estimate 
statement since these contrasts are all done across time. In proc glm these contrasts would be 
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performed separately for each time point which is very different from the results we obtained in proc 
mixed. 

Unequally Spaced Time Points 

Modeling Time as a Linear Predictor of Pulse  

We have another study which is very similar to the one previously discussed except that in this new 
study the pulse measurements were not taken at regular time points.  In this study a baseline pulse 
measurement was obtained at time = 0 for every individual in the study. However, subsequent pulse 
measurements were taken at less regular time intervals.  The second pulse measurements were taken at 
approximately 2 minutes (time = 120 seconds); the pulse measurement was obtained at approximately 5 
minutes (time = 300 seconds); and the fourth and final pulse measurement was obtained at 
approximately 10 minutes (time = 600 seconds). The data for this study is displayed below and it is 
available in the study2 data file. 

data study2; 
  input id exertype diet pulse time; 
cards; 
1 1 1 90 0 
1 1 1 92 228 
1 1 1 93 296 
1 1 1 93 639 
2 1 1 90 0 
2 1 1 92 56 
2 1 1 93 434 
2 1 1 93 538 
3 1 1 97 0 
3 1 1 97 150 
3 1 1 94 295 
3 1 1 94 541 
4 1 1 80 0 
4 1 1 82 121 
4 1 1 83 256 
4 1 1 83 575 
5 1 1 91 0 
5 1 1 92 161 
5 1 1 91 252 
5 1 1 91 526 
6 1 2 83 0 
6 1 2 83 73 
6 1 2 84 320 
6 1 2 84 570 
7 1 2 87 0 
7 1 2 88 40 
7 1 2 90 325 
7 1 2 90 730 
8 1 2 92 0 
8 1 2 94 205 
8 1 2 95 276 
8 1 2 95 761 
9 1 2 97 0 
9 1 2 99 57 
9 1 2 96 244 
9 1 2 96 695 
10 1 2 100 0 

http://www.ats.ucla.edu/stat/sas/seminars/sas_repeatedmeasures/study2.sas7bdat
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10 1 2 97 143 
10 1 2 100 296 
10 1 2 100 722 
11 2 1 86 0 
11 2 1 86 83 
11 2 1 84 262 
11 2 1 84 566 
12 2 1 93 0 
12 2 1 103 116 
12 2 1 104 357 
12 2 1 104 479 
13 2 1 90 0 
13 2 1 92 191 
13 2 1 93 280 
13 2 1 93 709 
14 2 1 95 0 
14 2 1 96 112 
14 2 1 100 219 
14 2 1 100 367 
15 2 1 89 0 
15 2 1 96 96 
15 2 1 95 339 
15 2 1 95 639 
16 2 2 84 0 
16 2 2 86 92 
16 2 2 89 351 
16 2 2 89 508 
17 2 2 103 0 
17 2 2 109 196 
17 2 2 114 213 
17 2 2 120 634 
18 2 2 92 0 
18 2 2 96 117 
18 2 2 101 227 
18 2 2 101 614 
19 2 2 97 0 
19 2 2 98 70 
19 2 2 100 295 
19 2 2 100 515 
20 2 2 102 0 
20 2 2 104 165 
20 2 2 103 302 
20 2 2 103 792 
21 3 1 93 0 
21 3 1 98 100 
21 3 1 110 396 
21 3 1 115 498 
22 3 1 98 0 
22 3 1 104 104 
22 3 1 112 310 
22 3 1 117 518 
23 3 1 98 0 
23 3 1 105 148 
23 3 1 118 208 
23 3 1 121 677 
24 3 1 87 0 
24 3 1 122 171 
24 3 1 127 320 
24 3 1 133 633 
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25 3 1 94 0 
25 3 1 110 57 
25 3 1 116 268 
25 3 1 119 657 
26 3 2 95 0 
26 3 2 126 163 
26 3 2 143 382 
26 3 2 147 501 
27 3 2 100 0 
27 3 2 126 70 
27 3 2 140 347 
27 3 2 148 737 
28 3 2 103 0 
28 3 2 124 61 
28 3 2 140 263 
28 3 2 143 588 
29 3 2 94 0 
29 3 2 135 164 
29 3 2 130 353 
29 3 2 137 560 
30 3 2 99 0 
30 3 2 111 114 
30 3 2 140 362 
30 3 2 148 501 
; 
run; 

In order to get a better understanding of the data we will look at a scatter plot of the data with lines 
connecting the points for each individual. 

proc sort data=study2; 
  by id time; 
run; 
goptions reset=all; 
symbol1 c=blue v=star h=.8 i=j r=10; 
symbol2 c=red v=dot h=.8 i=j r=10; 
symbol3 c=green v=square h=.8 i=j r=10; 
axis1 order=(60 to 150 by 30) label=(a=90 'Pulse'); 
proc gplot data=study2; 
  plot pulse*time=id  / vaxis=axis1; 
run; 
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This is a situation where multilevel modeling excels for the analysis of data with irregularly spaced time 
points.  The multilevel model with time as a linear effect is illustrated in the following equations. 

Level 1 (time): Pulse = β0j + β1j (Time) + rij    
Level 2 (person): β0j =  γ00  + γ01(Exertype) + u0j 
Level 2 (person): β1j =  γ10  + γ11(Exertype) + u1j 

Substituting the level 2 model into the level 1 model we get the following single equations. Note: The 
random components have been placed in square brackets. 

Pulse = γ00 + γ01(Exertype) + γ10(Time) + γ11(Exertype*time) + [ u0j + u1j(Time) + rij ] 

Since this model contains both fixed and random components, it can be analyzed in proc mixed as 
shown below. 

*the linear model ; 
proc mixed data=study2 covtest noclprint; 
  class id exertype ; 
  model pulse = time exertype time*exertype / solution outp=pred1r outpm = pred1f; 
  random intercept time / subject = id; 
run; 
                  Covariance Parameter Estimates 
 
                                     Standard         Z 
Cov Parm      Subject    Estimate       Error     Value        Pr Z 
Intercept     id          33.8894     13.3635      2.54      0.0056 
time          id         0.000133    0.000080      1.66      0.0482 
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Residual                  32.4052      5.4327      5.96      <.0001 
 
                           Solution for Fixed Effects 
 
                                         Standard 
Effect           exertype    Estimate       Error      DF    t Value    Pr > |t| 
Intercept                      103.70      2.2884      27      45.31      <.0001 
time                          0.05635    0.005405      27      10.43      <.0001 
exertype         1           -12.6252      3.2262      60      -3.91      0.0002 
exertype         2            -9.1144      3.2309      60      -2.82      0.0065 
exertype         3                  0           .       .        .         . 
time*exertype    1           -0.05477    0.007531      60      -7.27      <.0001 
time*exertype    2           -0.04760    0.007711      60      -6.17      <.0001 
time*exertype    3                  0           .       .        .         . 
 
          Type 3 Tests of Fixed Effects 
 
                  Num     Den 
Effect             DF      DF    F Value    Pr > F 
time                1      27      51.13    <.0001 
exertype            2      60       8.15    0.0007 
time*exertype       2      60      30.68    <.0001 

The output file pred1f contains the predicted values based on the fixed part of the model.  We can 
illustrate what the predicted values of pulse look like using this model below. 

goptions reset=all; 
symbol1 c=blue v=star h=.8 i=j; 
symbol2 c=red v=dot h=.8 i=j; 
symbol3 c=green v=square h=.8 i=j; 
axis1 order=(60 to 150 by 30) label=(a=90 'Predicted Pulse'); 
proc gplot data=pred1f; 
  plot pred*time=exertype  /vaxis=axis1; 
run; 
quit; 
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We can include the observed pulse as well and see that this model is not fitting very well at all.  The 
green line is fitting curved data with a straight line. 

proc sort data=pred1f; 
  by time; 
run; 
goptions reset=all; 
symbol1 c=blue  v=star   h=.8 i=j      w=10; 
symbol2 c=red   v=dot    h=.8 i=j      w=10; 
symbol3 c=green v=square h=.8 i=j      w=10; 
symbol4 c=blue  v=star   h=.8 i=j      r=10; 
symbol5 c=red   v=dot    h=.8 i=j      r=10; 
symbol6 c=green v=square h=.8 i=j      r=10; 
axis1 order=(60 to 150 by 30) label=(a=90 'Predicted and Observed Pulse'); 
proc gplot data=pred1f; 
  plot pred*time=exertype / vaxis=axis1 ; 
  plot2 pulse*time = id   / vaxis=axis1 ;; 
run; 
quit; 
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Modeling Time as a Quadratic Predictor of Pulse 

To model the quadratic effect of time, we add time*time to the model.  We see that term is significant. 

*the quadratic model ; 
proc mixed data=study2 covtest noclprint; 
  class id exertype; 
  model pulse = time exertype time*exertype time*time / solution outp=pred2r 
outpm=pred2f ; 
  random intercept time / subject = id; 
run; 
 
                Covariance Parameter Estimates 
 
                                     Standard         Z 
Cov Parm      Subject    Estimate       Error     Value        Pr Z 
Intercept     id          33.2228     12.3961      2.68      0.0037 
time          id         0.000151    0.000075      2.00      0.0226 
Residual                  24.8148      4.2003      5.91      <.0001 
 
                           Solution for Fixed Effects 
 
                                         Standard 
Effect           exertype    Estimate       Error      DF    t Value    Pr > |t| 
Intercept                      101.68      2.2145      27      45.91      <.0001 
time                          0.08777    0.008310      27      10.56      <.0001 
exertype         1           -12.9233      3.0723      59      -4.21      <.0001 
exertype         2            -9.3558      3.0757      59      -3.04      0.0035 
exertype         3                  0           .       .        .         . 
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time*exertype    1           -0.05253    0.007332      59      -7.16      <.0001 
time*exertype    2           -0.04690    0.007464      59      -6.28      <.0001 
time*exertype    3                  0           .       .        .         . 
time*time                    -0.00005    0.000011      27      -4.83      <.0001 
 
          Type 3 Tests of Fixed Effects 
 
                  Num     Den 
Effect             DF      DF    F Value    Pr > F 
time                1      27      55.38    <.0001 
exertype            2      59       9.42    0.0003 
time*exertype       2      59      30.48    <.0001 
time*time           1      27      23.28    <.0001 

Below we see the predicted values from this model with the quadratic effect of time. 

* just predicted, fixed ; 
proc sort data=pred2f; 
  by time; 
run; 
goptions reset=all; 
symbol1 c=blue v=star h=.8 i=j ; 
symbol2 c=red v=dot h=.8 i=j ; 
symbol3 c=green v=square h=.8 i=j ; 
axis1 order=(60 to 150 by 30) label=(a=90 'Predicted Pulse'); 
proc gplot data=pred2f; 
  plot pred*time=exertype      /vaxis=axis1 ; 
run; 
quit; 
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Again, we can plot the predicted values against the actual values of pulse.  We see that this model fits 
better, but it appears that the predicted values for the green group have too little curvature and the red 
and blue group have too much curvature. 

* predicted vs. actual , fixed ; 
proc sort data=pred2f; 
  by time; 
run; 
goptions reset=all; 
symbol1 c=blue  v=star   h=.8 i=j      w=10; 
symbol2 c=red   v=dot    h=.8 i=j      w=10; 
symbol3 c=green v=square h=.8 i=j      w=10; 
symbol4 c=blue  v=star   h=.8 i=j      r=10; 
symbol5 c=red   v=dot    h=.8 i=j      r=10; 
symbol6 c=green v=square h=.8 i=j      r=10; 
axis1 order=(60 to 150 by 30) label=(a=90 'Predicted and Observed Pulse'); 
proc gplot data=pred2f; 
  plot pred*time=exertype / vaxis=axis1 ; 
  plot2 pulse*time = id   / vaxis=axis1 ;; 
run; 
quit; 

 

Modeling Time as a Quadratic Predictor of Pulse, Interacting by Exertype 

We can include an interaction of time*time*exertype to indicate that the different exercises not only 
show different linear trends over time, but that they also show different quadratic trends over time, as 
shown below.  The time*time*exertype term is significant. 

* quadratic model , model 3 ; 
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proc mixed data=study2 covtest noclprint; 
  class id exertype; 
  model pulse = time exertype time*exertype time*time time*time*exertype / solution 
outp=pred3r outpm=pred3f ; 
  random intercept time / subject = id; 
run; 
                             Solution for Fixed Effects 
 
                                              Standard 
Effect                exertype    Estimate       Error      DF    t Value    Pr > 
|t| 
Intercept                          98.0958      2.1923      27      44.75      
<.0001 
time                                0.1448     0.01065      27      13.60      
<.0001 
exertype              1            -7.2807      3.0989      57      -2.35      
0.0223 
exertype              2            -4.6201      3.1042      57      -1.49      
0.1422 
exertype              3                  0           .       .        .         . 
time*exertype         1            -0.1393     0.01461      57      -9.53      
<.0001 
time*exertype         2            -0.1204     0.01472      57      -8.18      
<.0001 
time*exertype         3                  0           .       .        .         . 
time*time                         -0.00014    0.000016      27      -9.17      
<.0001 
time*time*exertype    1           0.000139    0.000021      57       6.67      
<.0001 
time*time*exertype    2           0.000120    0.000021      57       5.60      
<.0001 
time*time*exertype    3                  0           .       .        .         . 
 
             Type 3 Tests of Fixed Effects 
 
                       Num     Den 
Effect                  DF      DF    F Value    Pr > F 
time                     1      27      96.49    <.0001 
exertype                 2      57       2.83    0.0676 
time*exertype            2      57      52.32    <.0001 
time*time                1      27      84.11    <.0001 
time*time*exertype       2      57      24.77    <.0001 
 
* predicted vs. actual , fixed ; 
proc sort data=pred3f; 
  by time; 
run; 
goptions reset=all; 
symbol1 c=blue  v=star   h=.8 i=j      w=10; 
symbol2 c=red   v=dot    h=.8 i=j      w=10; 
symbol3 c=green v=square h=.8 i=j      w=10; 
symbol4 c=blue  v=star   h=.8 i=j      r=10; 
symbol5 c=red   v=dot    h=.8 i=j      r=10; 
symbol6 c=green v=square h=.8 i=j      r=10; 
axis1 order=(60 to 150 by 30) label=(a=90 'Predicted and Observed Pulse'); 
proc gplot data=pred3f; 
  plot pred*time=exertype / vaxis=axis1 ; 
  plot2 pulse*time = id   / vaxis=axis1 ;; 
run; 
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quit; 

Below we see the predicted and actual values and see that this model fits much better.  The green curve 
hugs the data from the green group much better and the blue and red groups are much flatter, fitting 
their data much better as well. 

 

 

 

Statistical Computing Seminar 
Proc Logistic and Logistic Regression Models 

• Introduction  
• Binary Logistic Regression  
• Exact Logistic Regression  
• Generalized Logits Model - Multinomial Logistic Regression  
• Proportional Odds Model - Ordinal Logistic Regression  

Introduction 

Logistic regression describes the relationship between a categorical response variable and a set of 
predictor variables. A categorical response variable can be a binary variable, an ordinal variable or a 
nominal variable. Each type of categorical variables requires different techniques to model its 
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relationship with the predictor variables. In this seminar, we illustrate how to perform different types of 
analyses using SAS proc logistic. For a binary response variable, such as a response to a yes-no 
question, a commonly used model is the logistic regression model. We also touch the surface of exact 
logistic regression, which is very useful when the sample size is too small or the events are too sparse. 
For a nominal response variable, such as Democrats, Republicans and Independents, we can fit a 
generalized logits model. For an ordinal response variable, such as low, medium and high, we can fit it 
to a proportional odds model.  

 

Logistic Regression Models 

In this section, we will use the High School and Beyond data set, hsb2.sas7bdat to describe what a 
logistic model is, how to perform a logistic regression model analysis and how to interpret the model. 
Our dependent variable is created as a dichotomous variable indicating if a student's writing score is 
higher than or equal to 52. We call it hiwrite. The predictor variables will include prog, female and 
other test scores. Our data set has 200 observations.  

data hsb2; 
  set hsb2; 
  hiwrite = write >=52; 
run; 
proc means data = hsb2 mean std; 
run; 
Variable            Mean         Std Dev 
---------------------------------------- 
ID           100.5000000      57.8791845 
FEMALE         0.5450000       0.4992205 
RACE           3.4300000       1.0394722 
SES            2.0550000       0.7242914 
SCHTYP         1.1600000       0.3675260 
PROG           2.0250000       0.6904772 
READ          52.2300000      10.2529368 
WRITE         52.7750000       9.4785860 
MATH          52.6450000       9.3684478 
SCIENCE       51.8500000       9.9008908 
SOCST         52.4050000      10.7357935 
hiwrite        0.6300000       0.4840159 
---------------------------------------- 

Let π be the probability of scoring higher than 51 in writing test. The odds is π/(1-π). For example, the 
overall probability of scoring higher than 51 is .63. The odds will be .63/(1-.63) = 1.703. A logistic 
regression model describes a linear relationship between the logit, which is the log of odds, and a set of 
predictors.  

logit(π) = log(π/(1-π)) = α + β1*x1 + β2*x2 + ... + βk*xk = α + x β 

We can either interpret the model using the logit scale, or we can convert the log of odds back to the 
probability such that  

π = exp(α + x β) /(1 + exp(α + x β)).  

http://www.ats.ucla.edu/stat/sas/notes2/hsb2.sas7bdat
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The advantage of using the logit scale for interpretation is that the relationship between the logit and the 
predictors is a linear relationship. But sometimes it is easier to interpret the model in terms of 
probabilities. Then we have to keep in mind that the relationship between the probabilities and the 
predictors is not a linear relationship. For more details on odds ratio, please see our FAQ page on how 
to interpret odds ratios in logistic regression. 

A Simple Model 

Let's consider the model where female is the only predictor. We will use this example to understand the 
concepts of odds and odds ratios and to understand how they are related to the parameter estimates. 

proc logistic data = hsb2 ; 
  model hiwrite (event='1') = female ; 
  ods output ParameterEstimates = model_female; 
run; 
             Analysis of Maximum Likelihood Estimates 
                               Standard          Wald 
Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
Intercept     1      0.0220      0.2097        0.0110        0.9165 
FEMALE        1      0.9928      0.3016       10.8369        0.0010 

Notice that we can specify which event to model using the event = option in the model statement. This 
is new in SAS 8.2. The other way of specifying that we want to model 1 as event instead of 0 is to use 
the descending option in the proc logistic statement.  One thing that is worth noticing is the use of 
quotes in the option event = '1'. Even though, the variable hiwrite is a numeric variable, it is still 
necessary to surround 1 with a pair of quotes. It comes handy when the outcome variable is coded as a 
character variable. Using the ODS output statement, we created a data set called model_female 
containing the parameter estimates shown above. We can then use the data set to create the odds and 
odds ratio. 

data model_fem; 
  set model_female; 
  o = exp(estimate); 
run; 
proc print data = model_fem; 
  var variable estimate o; 
run; 
Obs    Variable     Estimate        o 
 1     Intercept      0.0220    1.02222 
 2     FEMALE         0.9928    2.69865 

The intercept has a parameter estimate of .022. This is the estimated logit when female = 0, that is when 
the student is a male student. Therefore, the odds = exp(logit) = exp(.0220) = 1.02222 is the estimated 
odds for a male student to score 52 or higher in writing test. The coefficient for variable female is .9928. 
That means that for a one unit increase in female (that is changing from male to female) the expected 
change in log of odds is .9928.  We can also interpret it in the scale of odds ratio. The odds for a male 
student is exp(α) = exp(.022) and the odds for a female student is exp(.022 + .9928*1). Therefore, 
taking the ratio of these two odds, we get the odds ratio for female versus male is exp(.9928)  = 2.699. 
In terms of probabilities, the probability for females to score 52 or higher on the writing test is exp(.022 
+ .9928) / (1 + exp(.022 + .9928)) = .734. The probability for males is exp(.022 )/(1 + exp(.022)) = .505. 

With this simple example, we can actually compute the odds ratio from the 2x2 table of hiwrite*female.  

http://www.ats.ucla.edu/stat/SAS/faq/oratio.htm
http://www.ats.ucla.edu/stat/SAS/faq/oratio.htm
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proc freq data = hsb2; 
  tables hiwrite*female /nocum nopercent; 
run; 
hiwrite     FEMALE 
Frequency| 
Row Pct  | 
Col Pct  |       0|       1|  Total 
---------+--------+--------+ 
       0 |     45 |     29 |     74 
         |  60.81 |  39.19 | 
         |  49.45 |  26.61 | 
---------+--------+--------+ 
       1 |     46 |     80 |    126 
         |  36.51 |  63.49 | 
         |  50.55 |  73.39 | 
---------+--------+--------+ 
Total          91      109      200 

For example, for males, the odds is 46/45 = 1.022, which is the exponentiated value of the intercept 
from the model. The odds ratio for females versus males is (80/29)/(46/45) = 2.699. It is usually written 
as a cross-product (45*80)/(29*46) = 2.699. This is the exponentiated value of the parameter estimate 
for variable female.  

A Model with a Continuous Predictor and a Categorical Predictor 

Let's now take a look at a model with both a continuous variable math and a categorical variable 
female as predictors. We will focus on how to interpret the parameter estimate for the continuous 
variable.  

proc logistic data = hsb2; 
  model hiwrite (event='1') = female math; 
  output out = m2 p = prob xbeta = logit; 
run; 
             Analysis of Maximum Likelihood Estimates 
                               Standard          Wald 
Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
Intercept     1    -10.3651      1.5535       44.5153        <.0001 
FEMALE        1      1.6304      0.4052       16.1922        <.0001 
MATH          1      0.1979      0.0293       45.5559        <.0001 
           Odds Ratio Estimates 
             Point          95% Wald 
Effect    Estimate      Confidence Limits 
FEMALE       5.106       2.308      11.298 
MATH         1.219       1.151       1.291 

The interpretation for the parameter estimate of  math is very similar to that for the categorical variable 
female. In terms of logit scale, we can say that for every unit increase in the math score, the logit will 
increase by .198, holding everything else constant. We can also say that for a one unit increase in math 
score, the odds of scoring 51 or higher in writing test increases by (1.219-1)*100% = 22%.  

We used an output statement to create a data set containing the predicted probabilities based on the 
model. We can compare the linear predictions and the probabilities in terms of the math scores for the 
males and females.  
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proc sort data = m2; 
  by math; 
run; 
symbol1 i = join v=star l=32  c = black; 
symbol2 i = join v=circle l = 1 c=black; 
proc gplot data = m2; 
  plot logit*math = female; 
  plot prob*math = female; 
run; 
quit; 
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Sometimes, a one unit change may not be a desirable scale to use. We can ask SAS to give us odds ratio 
for different units of change. For example, it may make more sense to talk about change of every 5 units 
in math score. This can be done using unit statement. We also include the option clodds = wald to the 
model statement so that the confidence interval will also be calculated for the odds ratio calculated in 
the unit statement. Of course, you can always manually compute the odds ratio for every 5 units change 
in math score as 1.219^5 = 2.69.  
proc logistic data = hsb2 ; 
  model hiwrite (event='1') = female math /clodds=wald; 
  unit math = 5; 
run; 
 
       Odds Ratio Estimates 
             Point          95% Wald 
Effect    Estimate      Confidence Limits 
FEMALE       5.106       2.308      11.298 
MATH         1.219       1.151       1.291 
    Wald Confidence Interval for Adjusted Odds Ratios 
Effect         Unit     Estimate     95% Confidence Limits 
MATH         5.0000        2.689        2.018        3.584 

Other Features of Proc Logistic  

We will illustrate other features of proc logistic by using a model with more predictors. We will include 
categorical variables prog and female, continuous variables math and read. This model is merely for 
the purpose of demonstrating proc logistic, not really a model developed based on any theory.  

proc logistic data = hsb2 ; 
  class prog (ref='1') /param = ref; 
  model hiwrite (event='1') = female read math prog ; 
run; 
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      Response Profile 
 Ordered                      Total 
   Value      hiwrite     Frequency 
       1            0            74 
       2            1           126 
Probability modeled is hiwrite=1. 
   Class Level Information 
                      Design 
Class     Value     Variables 
PROG      1          0      0 
          2          1      0 
          3          0      1 
              Analysis of Maximum Likelihood Estimates 
                                 Standard          Wald 
Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
Intercept       1    -12.3140      2.0374       36.5311        <.0001 
FEMALE          1      1.9576      0.4533       18.6541        <.0001 
READ            1      0.1037      0.0298       12.1453        0.0005 
MATH            1      0.1310      0.0329       15.8738        <.0001 
PROG      2     1      0.2721      0.4889        0.3098        0.5778 
PROG      3     1     -0.5776      0.5478        1.1116        0.2917 

CLASS statement 
 
Notice that we have used the class statement for variable prog. SAS will create dummy variables for a 
categorical variable on-the-fly. There are various coding schemes from which to choose. The default 
coding for all the categorical variables in proc logistic is the effect coding. Here we changed it to 
dummy coding by using the param = ref option. We can specify the comparison group by using ref = 
option after the variable name. There are other coding schemes available, such as orthogonal 
polynomial coding scheme and reference cell coding. We can double check what coding scheme is used 
and which group is the reference group by looking at the Class Level Information part of the output. 

CONTRAST statement 

In the parameter estimates, we only see the comparison of level 2 vs. 1 and level 3 vs. 1 for variable 
prog. If we want to compare level 2 vs. level 3, we can use the contrast statement. Usually, contrast is 
done using less than full rank, reference cell coding as used in proc glm. We chose this type of coding 
by using param = glm option in the class statement. We also used estimate option at the end of 
contrast statement to get the estimate of the difference between group 1 and group 2. It is always a 
good idea to check the Class Level Information to see how the variable is coded so we know that the 
contrast statement gives us the expected contrast among groups. 
proc logistic data = hsb2 ; 
  class prog /param = glm ; 
  model hiwrite (event='1') = female read math prog; 
  contrast '1 vs 2 of prog' prog 1 -1 0 / estimate; 
run; 
      Class Level Information 
Class     Value     Design Variables 
PROG      1          1      0      0 
          2          0      1      0 
          3          0      0      1 
              Contrast Test Results 
                                Wald 
Contrast            DF    Chi-Square    Pr > ChiSq 
1 vs 2 of prog       1        0.3098        0.5778 
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                 Contrast Rows Estimation and Testing Results 
                                          Standard 
Contrast        Type       Row  Estimate     Error   Alpha   Confidence Limits 
1 vs 2 of prog  PARM         1   -0.2721    0.4889    0.05   -1.2303    0.6861 
      Contrast Rows Estimation and Testing Results 
                                      Wald 
Contrast        Type       Row  Chi-Square    Pr > ChiSq 
1 vs 2 of prog  PARM         1      0.3098        0.5778 

TEST Statement 

The parameter estimates offers all the one degree of freedom test on each of the parameters. We can 
also test the combined effect of multiple parameters using the test statement. In the example below, we 
first tested on the joint effect of read and math. Next we tested on the hypothesis that the effect of read 
and math are the same.     

proc logistic data = hsb2 ; 
  class prog(ref='1') /param = ref; 
  model hiwrite (event='1') = prog female read math 
  test_read_math: test read, math; 
  test_equal: test read = math; 
run; 
 
  Linear Hypotheses Testing Results 
                         Wald 
 Label             Chi-Square      DF    Pr > ChiSq 
 test_read_math       37.2236       2        <.0001 
 test_equal            0.3041       1        0.5813 

LACKFIT and RSQUARE Option 

The Hosmer-Lemeshow test of goodness-of-fit can be performed by using the lackfit option after the 
model statement. This test divides subjects into deciles based on predicted probabilities, then computes 
a chi-square from observed and expected frequencies. It tests the null hypothesis that there is no 
difference between the observed and predicted values of the response variable. Therefore, when the test 
is not significant, as in this example, we can not reject the null hypothesis and say that the model fits the 
data well. We can also request the generalized R-square measure for the model by using rsquare option 
after the model statement. SAS gives the likelihood-based pseudo R-square measure and its rescaled 
measure. Categorical Data Analysis Using The SAS System, by M. Stokes, C. Davis and G. Koch offers 
more details on how the generalized R-square measures that you can request are constructed and how to 
interpret them. 
proc logistic data = hsb2; 
  class prog(ref='1') /param = ref; 
  model hiwrite(event='1') = female prog read math / rsq lackfit; 
run; 
 
     Model Fit Statistics 
                             Intercept 
              Intercept            and 
Criterion          Only     Covariates 
AIC             265.582        167.035 
SC              268.881        186.825 
-2 Log L        263.582        155.035 
R-Square    0.4188    Max-rescaled R-Square    0.5720 
             Partition for the Hosmer and Lemeshow Test 

http://support.sas.com/publishing/bbu/companion_site/57998.html
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                             hiwrite = 1             hiwrite = 0 
   Group       Total    Observed    Expected    Observed    Expected 
       1          20           0        1.08          20       18.92 
       2          20           4        3.45          16       16.55 
       3          20           9        6.54          11       13.46 
       4          21          10       10.86          11       10.14 
       5          20          13       13.64           7        6.36 
       6          20          17       15.70           3        4.30 
       7          20          16       17.44           4        2.56 
       8          20          18       18.76           2        1.24 
       9          20          20       19.61           0        0.39 
      10          19          19       18.90           0        0.10 
Hosmer and Lemeshow Goodness-of-Fit Test 
Chi-Square       DF     Pr > ChiSq 
    5.2766        8         0.7276 

Influence Statistics 

One important topic in logistic regression is regression diagnostics. Proc logistic can generate a lot of 
diagnostic measures for detecting outliers and influential data points for a binary outcome variable. 
These diagnostic measures can be requested by using the output statement. For example, we can 
request for residual deviance, the hat matrix diagonal and residual chi-squared deviance and the 
difference between chi-square goodness-of-fit  when an observation is deleted. We can then plot these 
variables against the predicted values to investigate the influence of each point on the model. By using 
the pointlabel option in the symbol statement, we can see that the observation with id = 187 has the 
highest influence on the chi-square goodness-of-fit. 

proc logistic data = hsb2 ; 
  class prog(ref='1') /param = ref; 
  model hiwrite(event='1') = female prog read math ; 
  output out=dinf prob=p resdev=dr h=pii reschi=pr difchisq=difchi; 
run; 
 
goptions reset = all; 
symbol1 pointlabel = ("#id" h=1 )  value=none; 
proc gplot data = dinf; 
  plot difchi*p; 
run; 
quit; 
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Scoring a New Data Set 

There are situations where we want to produce predicted probabilities for a specific combination of the 
values of the predictors. For example, we may want to know the predicted probabilities for groups 
defined by female and prog when math and read are held at their grand means. Let's first create a data 
set with the groups and grand means for math and read. 

proc sql; 
  create table gdata as 
  select distinct female, (prog=2) as prog2,(prog=3) as prog3,  
                  mean(read) as read, mean(math) as math 
  from hsb2; 
quit; 
proc print data = gdata; 
run; 
Obs    FEMALE    prog2    prog3     read     math 
 1        0        0        0      52.23    52.645 
 2        0        0        1      52.23    52.645 
 3        0        1        0      52.23    52.645 
 4        1        0        0      52.23    52.645 
 5        1        0        1      52.23    52.645 
 6        1        1        0      52.23    52.645 

We can use SAS proc score to generate the linear predicted values and then compute the odds or 
probabilities afterwards. Notice that the score procedure does not care what model we have run. It uses 
the estimated parameters to generate linear predictions. In our logistic regression case, the predicted 
values are therefore in the logit scale. In the output data set created by proc score, we have a variable 
called hiwrite.  This is the new variable that proc score created for predicted values.  

proc logistic data = hsb2 outest=mg; 
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  class prog(ref='1') /param = ref; 
  model hiwrite(event='1') = female prog read math ; 
run; 
*Scoring the data set to get the linear predictions; 
proc score data=gdata score=mg out=gpred type=parms; 
  var female prog2 prog3 read math; 
run; 
data gpred; 
  set gpred; 
  odds = exp(hiwrite); 
  p_1 = odds /(1+odds); 
  p_0 = 1 - p_1; 
run; 
proc print data = gpred; 
run; 
Obs  FEMALE  prog2  prog3   read   math    hiwrite    odds     p_1      p_0 
 1      0      0      0    52.23  52.645   0.00012  1.00012  0.50003  0.49997 
 2      0      0      1    52.23  52.645  -0.57747  0.56132  0.35952  0.64048 
 3      0      1      0    52.23  52.645   0.27223  1.31289  0.56764  0.43236 
 4      1      0      0    52.23  52.645   1.95774  7.08332  0.87629  0.12371 
 5      1      0      1    52.23  52.645   1.38016  3.97552  0.79902  0.20098 
 6      1      1      0    52.23  52.645   2.22986  9.29856  0.90290  0.09710 

Remarks: This process will be simplified with SAS 9.0 and above with the new statement score in 
proc logistic. The syntax one will use looks like the the following: 

proc sql; 
  create table gdata1 as 
  select distinct female, ses, 
          mean(read) as read, mean(math) as math 
  from hsb2; 
quit; 
proc logistic data = hsb2 outmodel=mg1; 
  class prog(ref='1') /param = ref; 
  model hiwrite(event='1') = female prog read math  ; 
run; 
proc logistic inmodel=mg1; 
  score data = gdata1 out=gpred1; 
run; 
proc print data = gpred1; 
run; 

 

Exact Logistic Regression 

All of the models we have inspected so far require large sample sizes. When the data sets are too small 
or when the event occurs very infrequently,  the maximum likelihood method may not work or may not 
provide reliable estimates. Exact logistic regression provides a way to get around these difficulties. 
What it does is to enumerate the exact distributions of the parameters of interest, conditional on the 
remaining parameters. Here is a simple example from Performing Exact Logistic Regression with the 
SAS System. The data set has very small cells, with each cell having only 3 observations. Let's run the 
exact logistic regression on this data set. 

data dose; 
  input dose deaths total; 
  datalines; 

http://www.ats.ucla.edu/stat/sas/library/exactlogistic.pdf
http://www.ats.ucla.edu/stat/sas/library/exactlogistic.pdf
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0 0 3 
1 0 3 
2 0 3 
3 0 3 
4 1 3 
5 2 3 
; 
run; 
proc logistic data = dose desc; 
  model deaths/total = dose; 
  exact dose /estimate = both; 
run; 
 
         Model Fit Statistics 
                             Intercept 
              Intercept            and 
Criterion          Only     Covariates 
AIC              18.220         12.072 
SC               19.111         13.853 
-2 Log L         16.220          8.072 
        Testing Global Null Hypothesis: BETA=0 
Test                 Chi-Square       DF     Pr > ChiSq 
Likelihood Ratio         8.1478        1         0.0043 
Score                    5.7943        1         0.0161 
Wald                     2.7249        1         0.0988 
             Analysis of Maximum Likelihood Estimates 
                               Standard          Wald 
Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
Intercept     1     -9.4745      5.5677        2.8958        0.0888 
dose          1      2.0804      1.2603        2.7249        0.0988 
           Odds Ratio Estimates 
             Point          95% Wald 
Effect    Estimate      Confidence Limits 
dose         8.007       0.677      94.679 
Exact Conditional Analysis 
             Conditional Exact Tests 
                                   --- p-Value --- 
Effect   Test          Statistic    Exact      Mid 
dose     Score            5.4724   0.0245   0.0190 
         Probability      0.0110   0.0245   0.0190 
               Exact Parameter Estimates 
                            95% Confidence 
Parameter    Estimate           Limits           p-Value 
dose           1.8000      0.1157      5.8665     0.0245 
                  Exact Odds Ratios 
                          95% Confidence 
Parameter   Estimate          Limits          p-Value 
dose           6.049      1.123    353.000     0.0245 

Notice first of all that the syntax for model statement is slight different than we have seen so far. This is 
the syntax used for grouped data. That is we have frequencies of the events for each of the cells. This 
type of syntax works for both the maximum likelihood logistic regression and exact logistic regression. 
With estimate = both, we request that both the parameters and the odds ratios are being estimated.  

 

Generalized Logits Model for Multinomial Logistic Models 
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Proc logistic also perform analysis on nominal response variables. Since the response variable no 
longer has the ordering, we can no longer fit a proportional odds model to our data. But we can fit a 
generalized logits model. This analysis can be done using proc catmod and that is how it is used to be 
done. SAS 8.2 added some new features to its proc logistic and now proc logistic does analysis on 
nominal responses with ease. In this section, we are going to use a data file called school used in 
Categorical Data Analysis Using The SAS System, by M. Stokes, C. Davis and G. Koch. We will 
illustrate what a generalized logits model is and how to perform an analysis using proc logistic.  

data school; 
  input school program  style $ count; 
cards; 
1 1 self  10 
1 1 team  17 
1 1 class 26 
1 2 self   5 
1 2 team  12 
1 2 class 50 
2 1 self  21 
2 1 team  17 
2 1 class 26 
2 2 self  16 
2 2 team  12 
2 2 class 36 
3 1 self  15 
3 1 team  15 
3 1 class 16 
3 2 self  12 
3 2 team  12 
3 2 class 20 
; 
run; 

In this data set, three different teaching styles have been implemented in teaching third grade math. 
School children in experimental learning settings were surveyed to determine which teaching styles 
they preferred. The response variable style takes three values: class, self and team. We want to 
determine the preference of students by their schools and programs. The programs are regular and after-
school programs with 1 being regular and 2 being after-school.  

In a generalized logit model, we will pick a particular category of responses as the baseline reference 
and compare every other category with the baseline response. In our example, we will choose team as 
the baseline category. Consider the probabilities: 

π1 = probability of 'Preferring class', 
π2 = probability of 'Preferring self', 
π3 = probability of 'Preferring team'.  

The generalized logits are defined as  

logit(θ1) = log(π1/π3), 
logit(θ2) = log(π2/π3).  

The generalized logits model for our example is then defined as  

http://support.sas.com/publishing/bbu/companion_site/57998.html


 366

logit(θi) = αi + x βi, 

where i = 1 and 2 indicating the two logits. This means that we allow two different sets of regression 
parameters, one for each logit.  

A Simple Example 

We can calculate the generalized odds from the frequency table, similar to what we have done in the 
case of proportional odds model.  

proc freq data = school; 
  weight count; 
  tables style /list chisq relrisk; 
  ods output OneWayFreqs = test; 
run; 
data test1; 
   set test; 
   godds = frequency/85; 
run; 
proc print data = test1; 
  var style frequency godds; 
run; 
Obs    style    Frequency     godds 
 1     class         174     2.04706 
 2     self           79     0.92941 
 3     team           85     1.00000 

The other way of getting the same results is to run the generalized logits model. In SAS, we can simply 
use proc logistic with the link = glogit option.  

proc logistic data = school order = internal; 
  freq count; 
  model style = /link = glogit ; 
  ods output parameterestimates= odds; 
run; 
data odds1; 
  set odds; 
  odds = exp(estimate); 
run; 
 
proc print data = odds1; 
  var response estimate odds;  
run; 
Obs    Response    Estimate      odds 
 1      class        0.7164    2.04706 
 2      self        -0.0732    0.92941 

Saturated Model Example 

In this data set, there are three schools and two types of programs. That is, for each of the preference 
choices there are possible six cell counts. If we use both school and program and also include their 
interaction, we will use up all the degrees of freedom. That is we have a saturated model. This is the 
best model we can get, fitting each cell with its own parameter.  
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proc logistic data=school order = internal; 
  freq count; 
  class school program / order = data; 
  model style = school program school*program /link = glogit scale = none aggregate; 
run; 
The LOGISTIC Procedure 
               Model Information 
Data Set                      WORK.SCHOOL 
Response Variable             style 
Number of Response Levels     3 
Number of Observations        18 
Frequency Variable            count 
Sum of Frequencies            338 
Model                         generalized logit 
Optimization Technique        Fisher's scoring 
          Response Profile 
 Ordered                      Total 
   Value     style        Frequency 
       1     class              174 
       2     self                79 
       3     team                85 
Logits modeled use style='team' as the reference category. 
    Class Level Information 
                        Design 
Class       Value     Variables 
school      1          1      0 
            2          0      1 
            3         -1     -1 
program     1          1 
            2         -1 
                    Model Convergence Status 
         Convergence criterion (GCONV=1E-8) satisfied. 
       Deviance and Pearson Goodness-of-Fit Statistics 
Criterion          Value       DF     Value/DF     Pr > ChiSq 
Deviance          0.0000        0        .              . 
Pearson           0.0000        0        .              . 
Number of unique profiles: 6 
         Model Fit Statistics 
                             Intercept 
              Intercept            and 
Criterion          Only     Covariates 
AIC             699.404        689.156 
SC              707.050        735.033 
-2 Log L        695.404        665.156 
        Testing Global Null Hypothesis: BETA=0 
Test                 Chi-Square       DF     Pr > ChiSq 
Likelihood Ratio        30.2480       10         0.0008 
Score                   28.3738       10         0.0016 
Wald                    25.6828       10         0.0042 
            Type 3 Analysis of Effects 
                                Wald 
Effect              DF    Chi-Square    Pr > ChiSq 
school               4       14.5522        0.0057 
program              2       10.4815        0.0053 
school*program       4        1.7439        0.7827 

We have included most parts of the output from SAS, excluding the parameter estimates. The Deviance 
and Pearson Goodness-of-Fit Statistics output is new here. They were requested by using option scale = 
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none aggregate. Because our model is saturated, the goodness-of-fit statistics are zero with zero degree 
of freedom. We also see that the default type of coding scheme, e.g. effect coding, that proc logistic has 
for categorical variables. We also see that the overall effect of the interaction of school and program is 
not significant. This leads us to a simpler model with only the main effect.  

Model With Only Main Effect 

proc logistic data=school order = internal; 
  freq count; 
  class school program /order = data; 
  model style = school program  /link = glogit scale = none aggregate; 
run; 
 Odds Ratio Estimates 
                              Point          95% Wald 
Effect            style    Estimate      Confidence Limits 
school  1 vs 3    class       1.926       0.990       3.747 
school  1 vs 3    self        0.517       0.228       1.175 
school  2 vs 3    class       1.609       0.820       3.155 
school  2 vs 3    self        1.276       0.620       2.626 
program 1 vs 2    class       0.476       0.280       0.809 
program 1 vs 2    self        1.005       0.538       1.877 

We will focus on the interpretation of parameters. For example the odds ratio of class to team for 
program1 versus program 2 is .476. We can say that the odds for students in program 1 to choose class 
over team is .476 times the odds for students in program 2. Or we can say that the odds for students in 
program 1 to choose class over team is .524 times less than the odds for students in program 2. 
Similarly, we can say that the odds for students in school 1 to choose class over team  is 1.926 times 
the odds for students in school 3. Or we can say that the odds for students in school 1 to choose class 
over team is .926 times more than the odds for students in school 3. It is oftentimes easier to describe in 
terms of probabilities. We can use the output statement to generate these probabilities as shown below.   

proc logistic data=school order = internal; 
  freq count; 
  class school program ; 
  model style = school program  / link = glogit; 
  output out = smodel p=prob; 
run; 
proc freq data = smodel; 
  where school = 1 or school = 2; 
  format prob 5.4; 
  tables school*program*_level_*prob /list nopercent nocum; 
run; 
school    program    _LEVEL_     prob    Frequency 
-------------------------------------------------- 
     1          1    class      .5371           3 
     1          1    self       .1580           3 
     1          1    team       .3049           3 
     1          2    class      .7095           3 
     1          2    self       .0989           3 
     1          2    team       .1917           3 
     2          1    class      .3924           3 
     2          1    self       .3409           3 
     2          1    team       .2667           3 
     2          2    class      .5764           3 
     2          2    self       .2372           3 
     2          2    team       .1864           3 
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Proportional Odds Model for Ordinal Logistic Models 

The proportional odds model is also referred as the logit version of an ordinal regression model. It 
extends logistic regression to handle ordinal response variables. In this section, we are going to use SAS 
data set ordwarm2.sas7bdat to illustrate what a proportional odds model is and how to perform a 
proportional odds model analysis.  

Let's first take a look at the data set. This data set is taken from Regression Models For Categorical 
Dependent Variables Using Stata by Long and Freese. Each subject in the data set was asked to 
evaluate the following statement: "A working mother can establish just as warm and secure of a 
relationship with her child as a mother who does not work". The response is recoded in a variable called 
warm. It has four levels: 1 = Strongly Disagree (SD), 2 = Disagree (D), 3 = Agree (A) and 4 = Strongly 
Agree (SA). This will be the response variable in our analysis. Other variables in the data set include 
age, education level, gender of the subject, and other subject related variables.  

options nocenter nodate label; 
proc contents data = ordwarm2; 
run; 
The CONTENTS Procedure 
Data Set Name: WORK.ORDWARM2                          Observations:         2293 
Member Type:   DATA                                   Variables:            10 
 
             -----Alphabetic List of Variables and Attributes----- 
 #    Variable    Type    Len    Pos    Label 
------------------------------------------------------------------------------ 
 2    age         Num       3      8    Age in years 
 3    ed          Num       3     11    Years of education 
 5    male        Num       3     17    Gender: 1=male 0=female 
 4    prst        Num       3     14    Occupational prestige 
 1    warm        Num       8      0    Mom can have warm relations with child 
 8    warmlt2     Num       3     26    1=SD; 0=D,A,SA 
 9    warmlt3     Num       3     29    1=SD,D; 0=A,SA 
10    warmlt4     Num       3     32    1=SD,D,A; 0=SA 
 7    white       Num       3     23    Race: 1=white  0=not white 
 6    yr89        Num       3     20    Survey year: 1=1989 0=1977 

We are interested in building up a model to describe the relationship between the response variable 
warm and some of the explanatory variables, such as the age, level of education and race. Let's consider 
the probabilities 
 
θ1 = π1, probability of  'Strongly Disagree', 
θ2 = π1 + π2,  probability of 'Strongly Disagree' or 'Disagree', 
θ3 = π1 + π2 + π3, probability of 'Not Strongly Agree', 
 
where  
π1 = probability of 'Strongly Disagree', 
π2 = probability of 'Disagree', 
π3 = probability of 'Agree', 
π4 = probability of 'Strongly Agree'. 

http://www.ats.ucla.edu/stat/sas/seminars/sas_logistic/ordwarm2.sas7bdat
http://www.stata.com/bookstore/rmcdvs.html
http://www.stata.com/bookstore/rmcdvs.html
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Then we can construct the cumulative logits: 

logit(θ1)  =  log( θ1/(1 - θ1)) =   log(π1/(π2 + π3 + π4)), 
logit(θ2)  =  log( θ2/(1 - θ2)) =  log((π1 + π2)/(π3 + π4)), 
logit(θ3)  =  log( θ3/(1 - θ3)) =  log((π1 + π2 + π3))/π4). 

The proportional odds model is the following: 

logit(θi) = αi + xβ. 

Thus we allow the intercept to be different for different cumulative logit functions, but the effect of the 
explanatory variables will be the same across different logit functions. That is, we allow different α's for 
each of the cumulative odds, but only one set of β's for all the cumulative odds. This is the 
proportionality assumption and this is why this type model is called proportional odds model. Also 
notice that although this is a model in terms of cumulative odds, we can always recover the probabilities 
of each response category as follows. 

π1 =  θ1 
π2 = θ2 - θ1 
π3 = θ3 - θ2 
π4 = 1 - θ3 

A Simple Example 

We can calculate the cumulative odds from the frequency table.    

proc freq data = ordwarm2; 
  table warm ; 
  ods output onewayfreqs = test (keep = warm frequency cumfrequency); 
run; 
data test1; 
  set test; 
  if _n_ <=3 then  
  odds = cumfrequency /(2293-cumfrequency); 
run; 
proc print data= test1; 
run;  
                               Cum 
Obs    warm    Frequency    Frequency      odds 
 1       1          297          297     0.14880 
 2       2          723         1020     0.80126 
 3       3          856         1876     4.49880 
 4       4          417         2293      . 

The other way of getting the same result is to run a proportional odds model with only the intercept as a 
predictor. 

proc logistic data = ordwarm2 ; 
  model warm =  /link = clogit; 
  ods output  ParameterEstimates = model_based; 
run; 
data test2; 
  set model_based; 
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  odds = exp(estimate); 
run; 
proc print data = test2 noobs; 
  var variable estimate odds; 
run; 
Variable     Estimate      odds 
Intercept     -1.9052    0.14880 
Intercept     -0.2216    0.80126 
Intercept      1.5038    4.49880 

An Example With Only Categorical Predictors 

In SAS, a proportional odds model analysis can be performed using proc logistic with the option link = 
clogit. Here clogit stands for cumulative logit. In this example, we are going to use only categorical 
predictors, white (1=white  0=not white) and male (1=male 0=female), and we will focus more on the 
interpretation of the regression coefficients. Our model can be written as logit(θi) = αi + β1*white + 
β2*male, i = 1, 2, 3. The formula for the odds is shown in the table below. For example, we can see that 
the odds ratio for males versus females is exp(β2) and the odds ratio for the whites versus non-whites is 
exp(β1). 

Race             Gender SD vs. all other 
choices 

SD and D vs. all other 
choices SD, D and A vs. SA 

White             Male exp(α1+ β1+ β2) exp(α2 + β1+ β2) exp(α3 + β1 + β2) 
White             Female exp(α1 + β1) exp(α2 + β1) exp(α3 + β1) 
Non-White     Male exp(α1 + β2) exp(α2 + β2) exp(α3 + β2) 
None-White   Female exp(α1 ) exp(α2) exp(α3) 
proc logistic data = ordwarm2 ; 
  model warm =  white male /link = clogit; 
run; 
          Response Profile 
 Ordered                      Total 
   Value         warm     Frequency 
       1            1           297 
       2            2           723 
       3            3           856 
       4            4           417 
Probabilities modeled are cumulated over the lower Ordered Values. 
              Analysis of Maximum Likelihood Estimates 
                                 Standard          Wald 
Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
Intercept 1     1     -2.5550      0.1277      400.0337        <.0001 
Intercept 2     1     -0.8417      0.1159       52.7347        <.0001 
Intercept 3     1      0.9326      0.1167       63.8455        <.0001 
white           1      0.3422      0.1163        8.6594        0.0033 
male            1      0.6450      0.0774       69.5178        <.0001 
           Odds Ratio Estimates 
             Point          95% Wald 
Effect    Estimate      Confidence Limits 
white        1.408       1.121       1.769 
male         1.906       1.638       2.218 

From the output above, we can say that males have 1.906 times greater odds of somewhat disagreeing 
with the statement as females, no matter at what level.  
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A Example with a Continuous Predictor 

In this example, we are going to use a continuous predictor, age and show how to output the predicted 
values and how to graph them. The output statement below requests that SAS output predicted 
probabilities and the linear predictions and save them to a data set. Based on the proportionality 
assumption, we should expect that the lines for the linear predictions will be parallel to each other.  

proc logistic data = ordwarm2 ; 
   model warm =  age /link = clogit; 
   output out = pred p=p xbeta=linp;  
run; 
proc sort data = pred; 
  by age; 
run; 
 
goptions reset = all ; 
symbol i = join w=.4 ; 
proc gplot data = pred; 
   plot p*age=_level_; 
   plot linp*age=_level_; 
run; 
quit; 
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Another Example -- Proportional Odds Assumption Test and Goodness of Fit 

• Proportionality Assumption  

In general, we can model the cumulative odds model in such as a way that each of the cumulative odds 
has its own regression model:  
logit(θi) = αi + xβi. 

A proportional odds model simplifies the model so that the effects of the predictors are the same across 
different levels. This is the main assumption of the model. We need to test this assumption. That is, we 
need  test the hypothesis that  β1 = β2 = β3. SAS proc logistic performs a score test to test this hypothesis. 
Let's look at the model with male and white as predictors again. 

proc logistic data = ordwarm2 ; 
  model warm =  white male /link = clogit; 
run; 
Score Test for the Proportional Odds Assumption 
Chi-Square       DF     Pr > ChiSq 
  21.6592        4         0.0002 

The p-value is really small, so we have to reject the null hypothesis of proportionality. The degrees of 
freedom is calculated as k*(r-2), where k is the number of predictors and r is the number of levels of 
response variables. In our example, we have two predictors and four levels of responses. It is not 
uncommon for a model not to satisfy the proportionality assumption (which is also called parallel 
regression assumption). When the test fails, other alternative models should be considered, such as 
multinomial logistic models.  

• A Model with More Predictors  
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Now let's take a look at a model where we use white, age and ed as our predictors. We also add options 
scale = none aggregate to get the goodness of fit tests. The deviance and Pearson tests compare the 
current model with the saturated model. This test being not significant tells us our model fits the data 
well.   

proc logistic data = ordwarm2 ; 
  model warm =  white age ed /link = clogit scale=none aggregate; 
run; 
          Response Profile 
 Ordered                      Total 
   Value         warm     Frequency 
       1            1           297 
       2            2           723 
       3            3           856 
       4            4           417 
Probabilities modeled are cumulated over the lower Ordered Values. 
Score Test for the Proportional Odds Assumption 
 
Chi-Square       DF     Pr > ChiSq 
   10.3962        6         0.1089 
       Deviance and Pearson Goodness-of-Fit Statistics 
Criterion        DF          Value     Value/DF     Pr > ChiSq 
Deviance       2628      2523.3191       0.9602         0.9271 
Pearson        2628      2588.2232       0.9849         0.7062 
Number of unique profiles: 878 
         Model Fit Statistics 
                              Intercept 
               Intercept         and 
Criterion        Only        Covariates 
AIC             5997.541       5841.101 
SC              6014.754       5875.526 
-2 Log L        5991.541       5829.101 
        Testing Global Null Hypothesis: BETA=0 
Test                 Chi-Square       DF     Pr > ChiSq 
Likelihood Ratio       162.4403        3         <.0001 
Score                  157.6156        3         <.0001 
Wald                   157.7599        3         <.0001 
 
              Analysis of Maximum Likelihood Estimates 
                                 Standard          Wald 
Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
Intercept 1     1     -2.0393      0.2342       75.8321        <.0001 
Intercept 2     1     -0.2698      0.2294        1.3829        0.2396 
Intercept 3     1      1.5397      0.2318       44.1185        <.0001 
white           1      0.4376      0.1176       13.8470        0.0002 
age             1      0.0179     0.00241       54.8182        <.0001 
ed              1     -0.0933      0.0129       52.6988        <.0001 
           Odds Ratio Estimates 
             Point          95% Wald 
Effect    Estimate      Confidence Limits 
white        1.549       1.230       1.951 
age          1.018       1.013       1.023 
ed           0.911       0.888       0.934 

 

Summary 



 375

This seminar illustrate how to perform binary logistic, exact logistic, multinomial logistic (generalized 
logits model) and ordinal logistic (proportional odds model) regression analysis using SAS proc 
logistic. It focus on some new features of proc logistic available since SAS 8.1. 

 

Survival Analysis with SAS 

• Background for Survival Analysis  
• The UIS data  
• Exploring the data: Univariate Analyses  
• Model Building  
• Interactions  
• Proportionality Assumption  
• Graphing Survival Functions from Proc phreg  

Background for Survival Analysis 

The goal of this seminar is to give a brief introduction to the topic of survival analysis. We will be using 
a smaller and slightly modified  version of the UIS data set from the book "Applied Survival Analysis" 
by Hosmer and Lemeshow. We strongly encourage everyone who is interested in learning survival 
analysis to read this text as it is a very good and thorough introduction to the topic. 

Survival analysis is just another name for time to event analysis. The term survival analysis is used 
predominately in biomedical sciences where the interest is in observing time to death either of patients 
or of laboratory animals. Time to event analysis has also been used widely in the social sciences where 
interest is on analyzing time to events such as job changes, marriage, birth of children and so forth. The 
engineering sciences have also contributed to the development of survival analysis which is called 
"reliability analysis" or "failure time analysis" in this field, since the main focus is in modeling the time 
it takes for machines or electronic components to break down. The developments from these diverse 
fields have for the most part been consolidated into the field of "survival analysis". For more 
background please refer to the excellent discussion in Chapter 1 of Event History Analysis by Paul 
Allison. 

There are certain aspects of survival analysis data, such as censoring and non-normality, that generate 
great difficulty when trying to analyze the data using traditional statistical models such as multiple 
linear regression. The non-normality aspect of the data violates the normality assumption of most 
commonly used statistical model such as regression or ANOVA, etc.  A censored observation is defined 
as an observation with incomplete information.  There are four different types of censoring possible: 
right truncation, left truncation, right censoring and left censoring.  We will focus exclusively on right 
censoring for a number of reasons.  Most data used in analyses have only right censoring.  Furthermore, 
right censoring is the most easily understood of all the four types of censoring and if a researcher can 
understand the concept of right censoring thoroughly it becomes much easier to understand the other 
three types.  When an observation is right censored it means that the information is incomplete because 
the subject did not have an event during the time that the subject was part of the study.  The point of 
survival analysis is to follow subjects over time and observe at which point in time they experience the 
event of interest. It often happens that the study does not span enough time in order to observe the event 
for all the subjects in the study. This could be due to a number of reasons. Perhaps subjects drop out of 

http://www.ats.ucla.edu/stat/sas/seminars/sas_survival/default.htm#Background#Background
http://www.ats.ucla.edu/stat/sas/seminars/sas_survival/default.htm#data#data
http://www.ats.ucla.edu/stat/sas/seminars/sas_survival/default.htm#exploring#exploring
http://www.ats.ucla.edu/stat/sas/seminars/sas_survival/default.htm#building#building
http://www.ats.ucla.edu/stat/sas/seminars/sas_survival/default.htm#interactions#interactions
http://www.ats.ucla.edu/stat/sas/seminars/sas_survival/default.htm#proportionality#proportionality
http://www.ats.ucla.edu/stat/sas/seminars/sas_survival/default.htm#graphs#graphs
http://www.ats.ucla.edu/stat/sas/seminars/sas_survival/uis_small.sas7bdat
http://www.ats.ucla.edu/stat/sas/examples/asa/default.htm
http://www.ats.ucla.edu/stat/books/default.htm


 376

the study for reasons unrelated to the study (i.e. patients moving to another area and leaving no 
forwarding address). The common feature of all of these examples is that if the subject had been able to 
stay in the study then it would have been possible to observe the time of the event eventually.   
 
It is important to understand the difference between calendar time and time in the study. It is very 
common for subjects to enter the study continuously throughout the length of the study. This situation is 
reflected in the first graph where we can see the staggered entry of four subjects. The subjects in red 
were censored and the subjects in blue experienced an event. It would appear that subject 3 dropped out 
after only a short time (hit by a bus, very tragic) and that subject 4 did not experience an event by the 
time the study ended but if the study had gone on longer (had more funding) we would have know the 
time when this subject would have experienced an event.  Thus, in calendar time both the entry and the 
exit time of the subjects are staggered and can occur at any time throughout the course of the 
study.  Study time as the term would imply deals only with the length of time that the subjects were a 
part of the study.  Thus, every subject start at study time zero and have ending points corresponding to 
the entire length of time that they participated in the study, in other words, until they experienced an 
event or were censored.  
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The other important concept in survival analysis is the hazard rate.  From looking at data with discrete 
time (time measured in large intervals such as month, years or even decades) we can get an intuitive 
idea of the hazard rate.  For discrete time the hazard rate is the probability that an individual will 
experience an event at time t while that individual is at risk for having an event. Thus, the hazard rate is 
really just the unobserved rate at which events occur.  If the hazard rate is constant over time and it was 
equal to 1.5, for example, this would mean that one would expect 1.5 events to occur in a time interval 
that is one unit long.  Furthermore, if a person had a hazard rate of 1.2 at time t and a second person had 
a hazard rate of 2.4 at time t then it would be correct to say that the second person's risk of an event 
would be two times greater at time t.  It is important to realize that the hazard rate is an un-observed 
variable yet it controls both the occurrence and the timing of the events.  It is the fundamental 
dependent variable in survival analysis.  
 
Another important aspect of the hazard function is to understand how the shape of the hazard function 
will influence the other variables of interest such as the survival function. The first graph below 
illustrates a hazard function with a 'bathtub shape'. This graph is depicting the hazard function for the 
survival of organ transplant patients. At time equal to zero they are having the transplant and since this 
is a very dangerous operation they have a very high hazard (a great chance of dying). The first 10 days 
after the operation are also very dangerous with a high chance of the patient dying but the danger is less 
than during the actual operation and hence the hazard is decrease during this period. If the patient has 
survived past day 10 then they are in very good shape and have a very little chance of dying in the 
following 6 months. After 6 months the patients begin to experience deterioration and the chances of 
dying increase again and therefore the hazard function starts to increase.  After one year almost all 
patients are dead and hence the very high hazard function which will continue to increase.  

The hazard function may not seem like an exciting variable to model but other indicators of interest, 
such as the survival function, are derived from the hazard rate.  Once we have modeled the hazard rate 
we can easily obtain these other functions of interest.  To summarize, it is important to understand the 
concept of the hazard function and to understand the shape of the hazard function. 
 
An example of a hazard function for heart transplant patients. 
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We are generally unable to generate the hazard function instead we usually look at the cumulative 
hazard curve. 

 

      

The UIS data 

The goal of the UIS  data, and of the smaller version called uis_small that we are using here, is to model 
time until return to drug use for patients enrolled in two different residential treatment programs that 
differed in length (treat=0 is the short program and treat=1 is the long program).  The patients were 
randomly assigned to two different sites (site=0 is site A and site=1 is site B).  The variable age 
indicates age at enrollment, herco indicates heroine or cocaine use in the past three months (herco=1 
indicates heroine and cocaine use, herco=2 indicates either heroine or cocaine use and herco=3 
indicates neither heroine nor cocaine use) and ndrugtx indicates the number of previous drug 
treatments.  The variables time contains the time until return to drug use and the censor variable 
indicates whether the subject returned to drug use (censor=1 indicates return to drug use and censor=0 
otherwise). 
  
Let's look at the first 10 observations of the UIS data set.  Note that subject 5 is censored and did not 
experience an event while in the study.  Also note that the coding for censor is rather counter-intuitive 
since the value 1 indicates an event and 0 indicates censoring.  It would perhaps be more appropriate to 
call this variable "event". 

proc print data=uis (obs=10); 
run; 
 
Obs    ID    age    ndrugtx    treat    site    time    censor    herco 
  1     1     39        1        1        0      188       1        3 
  2     2     33        8        1        0       26       1        3 
  3     3     33        3        1        0      207       1        2 
  4     4     32        1        0        0      144       1        3 
  5     5     24        5        1        0      551       0        2 
  6     6     30        1        1        0       32       1        1 
  7     7     39       34        1        0      459       1        3 
  8     8     27        2        1        0       22       1        3 
  9     9     40        3        1        0      210       1        2 
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 10    10     36        7        1        0      184       1        2 

Exploring the data: Univariate Analyses 

In any data analysis it is always a great idea to do some univariate analysis before proceeding to more 
complicated models. In survival analysis it is highly recommended to look at the Kaplan-Meier curves 
for all the categorical predictors. This will provide insight into the shape of the survival function for 
each group and give an idea of whether or not the groups are proportional (i.e. the survival functions are 
approximately parallel). We also consider the tests of equality across strata to explore whether or not to 
include the predictor in the final model. For the categorical variables we will use the log-rank test of 
equality across strata which is a non-parametric test.  For the continuous variables we will use a 
univariate Cox proportional hazard regression which is a semi-parametric model.  We will consider 
including the predictor if the test has a p-value of 0.2 - 0.25 or less.  We are using this elimination 
scheme because all the predictors in the data set are variables that could be relevant to the model.  If the 
predictor has a p-value greater than 0.25 in a univariate analysis it is highly unlikely that it will 
contribute anything to a model which includes other predictors. 

The log-rank test of equality across strata has a p-value of 0.0091 for the predictor treat, thus treat will 
be included a potential candidate for the final model.  From the graph we see that the survival function 
for each group of treat are not perfectly parallel but that they are separate except at the very beginning 
and at the very end of the study time.  The overlap at the very end should not cause too much concern 
because it is determined by only a very few number of censored subjects out of a sample with 628 
subjects.  In general, the log-rank test places more emphasis on the differences in the curves at larger 
time values. This is why we get such a small p-value even though the two survival curves appear to be 
very close together for time less than 100 days. 

proc lifetest data=uis plots=(s); 
  time time*censor(0); 
  strata treat; 
run; 
 
<output omitted> 
 
       Test of Equality over Strata 
 
                                   Pr > 
Test      Chi-Square      DF    Chi-Square 
Log-Rank      6.7979       1      0.0091 
Wilcoxon      9.4608       1      0.0021 
-2Log(LR)     7.8267       1      0.0051 
 



 380

      

The log-rank test of equality across strata for the predictor site has a p-value of 0.1240, thus site will be 
included as a potential candidate for the final model because this p-value is still less than our cut-off of 
0.2. From the graph we see that the survival curves are not really parallel and that there are two periods 
( [0, 100] and [200, 300] ) where the curves are very close together.  This would explain the rather high 
p-value from the log-rank test. 

proc lifetest data=uis plots=(s); 
  time time*censor(0); 
  strata site; 
run; 
 
<output omitted> 
 
Test of Equality over Strata 
 
                                   Pr > 
Test      Chi-Square      DF    Chi-Square 
Log-Rank      2.3658       1      0.1240 
Wilcoxon      3.1073       1      0.0779 
-2Log(LR)     2.0784       1      0.1494 
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The log-rank test of equality across strata for the predictor herco has a p-value of 0.1473, thus herco 
will be included as potential candidate for the final model. From the graph we see that the three groups 
are not parallel and that especially the groups herco=1 and herco=3 overlap for most of the graph.  This 
lack of parallelism could pose a problem when we include this predictor in the Cox proportional hazard 
model since one of the assumptions is proportionality of all the predictors. 

proc lifetest data=uis plots=(s); 
  time time*censor(0); 
  strata herco; 
run; 
 
<output omitted> 
 
Test      Chi-Square      DF    Chi-Square 
Log-Rank      3.8300       2      0.1473 
Wilcoxon      2.4629       2      0.2919 
-2Log(LR)     4.4300       2      0.1092 
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It is not feasible to calculate a Kaplan-Meier curve for the continuous predictors since there would be a 
curve for each level of the predictor and a continuous predictor simply has too many different levels. 
Instead we consider the Cox proportional hazard model with a single continuous predictor. 
Unfortunately it is not possibly to produce a plot from proc phreg. Instead we consider the Chi-squared 
test for ndrugtx which has a p-value of 0.0735 and therefore ndrugtx is a potential candidate for the 
final model since the p-value is less than our cut-off value of 0.2. 

proc phreg data=uis; 
  model time*censor(0) = ndrugtx; 
run; 
 
<output omitted> 
 
                            Analysis of Maximum Likelihood Estimates 
 
                 Parameter     Standard                               Hazard 
Variable   DF     Estimate        Error   Chi-Square   Pr > ChiSq      Ratio   
Variable Label 
ndrugtx     1      0.02937      0.00750      15.3470       <.0001      1.030   
Number of Prior Drug Treatments 

In univariate Chi-squared test of age the p-value is less than 0.0001 and therefore it is a potential 
candidate for the final model. 

proc phreg data=uis; 
  model time*censor(0) = age; 
run; 
 
<output omitted> 
 
                            Analysis of Maximum Likelihood Estimates 
 
               Parameter   Standard                          Hazard 
Variable   DF   Estimate      Error Chi-Square Pr > ChiSq    Ratio    Variable 
Label 
age         1   -0.01286    0.00719     3.2022     0.0735    0.987    Age at 
Enrollment 

Model Building 

For our model building, we will first consider the model which will include all the predictors that had a 
p-value of less than 0.2 - 0.25 in the univariate analyses, which in this particular analysis means that we 
will include every predictor in our model. The categorical predictor herco has three levels and therefore 
we will include this predictor using dummy variables with the group herco=1 as the reference group. 
Proc phreg is a very powerful procedure and it is one of the few procedures where it is possible to 
program data steps inside the procedure and so, we create the dummy variables inside the proc phreg.  

In the model statement we have to specify which variable contains the information about time, which 
variable contains the information about censoring and which value of the censoring variable indicates 
that the observation is censored. In the UIS data set the variable time and censor contain the 
information about time and censoring respectively. The number in the parenthesis next to censor has to 
be the number which corresponds to a subject being censored.  In this model we therefore specify zero 
since the coding for censor is that censor = 0 indicates that the subject has been censored and censor = 
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1 indicates that the subject experienced an event.  We can test the dummy variables for herco 
collectively in the test statement. 

proc phreg data=uis; 
  model time*censor(0) = age ndrugtx treat site herco2 herco3; 
  herco2 = (herco=2); 
  herco3 = (herco=3); 
  herco: test herco2, herco3; 
run; 
 
<output omitted> 
 
The PHREG Procedure 
 
               Analysis of Maximum Likelihood Estimates 
 
                   Parameter      Standard 
Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq 
age          1      -0.02375       0.00756        9.8702        0.0017 
ndrugtx      1       0.03475       0.00775       20.0824        <.0001 
treat        1      -0.25402       0.09100        7.7910        0.0053 
site         1      -0.17239       0.10210        2.8509        0.0913 
herco2       1       0.24677       0.12276        4.0409        0.0444 
herco3       1       0.12567       0.10307        1.4865        0.2228 
 
 
 
    Linear Hypotheses Testing Results 
 
                Wald 
 Label    Chi-Square      DF    Pr > ChiSq 
 herco        4.3607       2        0.1130 

The predictor herco is clearly not significant and we will drop it from the final model. The predictor 
site is also not significant but from prior research we know that this is a very important variable to have 
in the final model and therefore we will not eliminate site from the model. So, the final model of main 
effects include: age, ndrugtx, treat and site. 

proc phreg data=uis; 
  model time*censor(0) = age ndrugtx  treat site; 
run; 
 
<output omitted> 
 
               Analysis of Maximum Likelihood Estimates 
 
                   Parameter      Standard 
Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq 
age          1      -0.02213       0.00751        8.6807        0.0032 
ndrugtx      1       0.03503       0.00767       20.8689        <.0001 
treat        1      -0.24368       0.09054        7.2433        0.0071 
site         1      -0.16833       0.10041        2.8103        0.0937 

Interactions 
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Next we need to consider interactions. We do not have any prior knowledge of specific interactions that 
we must include so we will consider all the possible interactions. Since our model is rather small this is 
manageable but the ideal situation is when all model building, including finding interactions, is theory 
driven.  Note that we do not need to use a data step in order to create our interaction terms because we 
can create all the interactions inside the proc phreg. 

The interaction ndrugtx*age is not significant and will not be included in the model. 

proc phreg data=uis; 
  model time*censor(0) = age ndrugtx treat site drugage; 
  drugage = ndrugtx*age; 
run; 
 
<output omitted> 
 
               Analysis of Maximum Likelihood Estimates 
 
                   Parameter      Standard 
Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq 
age          1      -0.01102       0.01001        1.2121        0.2709 
ndrugtx      1       0.10541       0.04195        6.3135        0.0120 
treat        1      -0.23528       0.09064        6.7373        0.0094 
site         1      -0.17462       0.10045        3.0219        0.0821 
drugage      1      -0.00210       0.00125        2.8274        0.0927 

The interaction ndrugtx*treat is not significant and will not be included in the model. 

proc phreg data=uis; 
  model time*censor(0) = age ndrugtx treat site drugtreat; 
  drugtreat = ndrugtx*treat; 
run; 
 
<output omitted> 
 
               Analysis of Maximum Likelihood Estimates 
 
                    Parameter      Standard 
Variable     DF      Estimate         Error    Chi-Square    Pr > ChiSq 
age           1      -0.02202       0.00750        8.6113        0.0033 
ndrugtx       1       0.04050       0.01106       13.3959        0.0003 
treat         1      -0.19488       0.11667        2.7899        0.0949 
site          1      -0.17084       0.10046        2.8919        0.0890 
drugtreat     1      -0.00992       0.01494        0.4412        0.5066 

The interaction ndrugtx*site is not significant and will not be included in the model. 

proc phreg data=uis; 
  model time*censor(0) = age ndrugtx treat site drugsite; 
  drugsite = ndrugtx*site; 
run; 
 
<output omitted> 
 
               Analysis of Maximum Likelihood Estimates 
 
                   Parameter      Standard 



 385

Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq 
age          1      -0.02227       0.00753        8.7578        0.0031 
ndrugtx      1       0.03665       0.00887       17.0869        <.0001 
treat        1      -0.24542       0.09068        7.3243        0.0068 
site         1      -0.14170       0.12534        1.2781        0.2583 
drugsite     1      -0.00598       0.01699        0.1236        0.7251 

The interaction age*treat is not significant and will not be included in the model. 

proc phreg data=uis; 
  model time*censor(0) = age ndrugtx treat site agetreat; 
  agetreat = age*treat; 
run; 
 
<output omitted> 
 
               Analysis of Maximum Likelihood Estimates 
 
                   Parameter      Standard 
Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq 
age          1      -0.01146       0.01040        1.2149        0.2704 
ndrugtx      1       0.03577       0.00772       21.4917        <.0001 
treat        1       0.44833       0.48092        0.8691        0.3512 
site         1      -0.14927       0.10108        2.1809        0.1397 
agetreat     1      -0.02147       0.01466        2.1450        0.1430 

The interaction age*site is significant and will be included in the model. 

proc phreg data=uis; 
  model time*censor(0) = age ndrugtx treat site agesite; 
  agesite = age*site; 
run; 
 
<output omitted> 
 
               Analysis of Maximum Likelihood Estimates 
 
                   Parameter      Standard 
Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq 
age          1      -0.03369       0.00929       13.1512        0.0003 
ndrugtx      1       0.03646       0.00770       22.4092        <.0001 
treat        1      -0.26741       0.09123        8.5921        0.0034 
site         1      -1.24593       0.50873        5.9979        0.0143 
agesite      1       0.03377       0.01551        4.7423        0.0294 

The interaction treat*site is not significant and will not be included in the model. 

proc phreg data=uis; 
  model time*censor(0) = age ndrugtx treat site treatsite; 
  treatsite = treat*site; 
run; 
 
<output omitted> 
 
               Analysis of Maximum Likelihood Estimates 
 
                    Parameter      Standard 
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Variable     DF      Estimate         Error    Chi-Square    Pr > ChiSq 
age           1      -0.02386       0.00764        9.7584        0.0018 
ndrugtx       1       0.03615       0.00775       21.7849        <.0001 
treat         1      -0.34041       0.10768        9.9934        0.0016 
site          1      -0.32385       0.13942        5.3959        0.0202 
treatsite     1       0.33351       0.20093        2.7550        0.0969 

The final model including interaction. 

proc phreg data=uis; 
  model time*censor(0) = age ndrugtx treat site agesite; 
  agesite = age*site; 
run; 
 
<output omitted> 
 
                     Analysis of Maximum Likelihood Estimates 
 
                   Parameter      Standard                                  Hazard 
Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq       Ratio 
age          1      -0.03369       0.00929       13.1512        0.0003       0.967 
ndrugtx      1       0.03646       0.00770       22.4092        <.0001       1.037 
treat        1      -0.26741       0.09123        8.5921        0.0034       0.765 
site         1      -1.24593       0.50873        5.9979        0.0143       0.288 
agesite      1       0.03377       0.01551        4.7423        0.0294       1.034 

From looking at the hazard ratios (also called relative risks) the model indicates that as the number of 
previous drug treatment (ndrugtx) increases by one unit, and all other variables are held constant, the 
rate of relapse increases by 3.7%. If the treatment length is altered from short to long, while holding all 
other variables constant, the rate of relapse decreases by (100% - 76.5%) = 23.5%. As treatment is 
moved from site A to site B and age is equal to zero, and all other variables are held constant, the rate of 
relapse decreases by (100% - 28.8%) = 71.2%. If age is increased by 5 years and subject is at site A 
(site=0) and all other variables are held constant the hazard ratio is equal to exp(-0.3369*5) 
= .18553718. Thus, the rate of relapse is decreased by (100% - 18.5%) = 81.5% with an increase of 5 
years in age. If age is increased by 5 years and the subject is at site B, while holding all other variables 
constant, then the hazard ratio is equal to exp(-0.3369*5 + 0.03377*5) = .21966536.  Thus, the rate of 
relapse decreases by (100% - 21.97%) =  78.03% with an increase of 5 years of age for subjects at site 
B. 

Proportionality Assumption 

One of the main assumptions of the Cox proportional hazard model is proportionality. There are several 
methods for verifying that a model satisfies the assumption of proportionality and for more information 
on this topic please refer to our FAQ Tests of proportionality in SAS, STATA, SPLUS and R.  We will 
check proportionality by including time-dependent covariates in the model because in proc phreg it is 
very easy and convenient to include data step programming inside the procedure. Time dependent 
covariates are interactions of the predictors with time. In this analysis we choose to use the interactions 
with log(time) because this is the most common function of time used in time-dependent covariates but 
any function of time could be used. If a time-dependent covariate is significant this indicates a violation 
of the proportionality assumption for that specific predictor. We use a test statement to test all the time-
dependent covariates together in one collective test.   

http://www.ats.ucla.edu/stat/sas/faq/test_proportionality.htm
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The conclusion is that all of the time-dependent variables are not significant either collectively or 
individually thus supporting the assumption of proportional hazard.  Our faith in these results are 
bolstered by the Kaplan-Meier curves we created during our univariate analyses.  The curves for all the 
variables in the model were indeed separate and approximately parallel.  Looking at the Kaplan-Meier 
curves is not enough to be certain of proportionality since they are univariate analysis and do not show 
whether a predictor will still be proportional when included in a model with many other predictors but 
they support our argument for proportionality.   

proc phreg data=uis; 
model time*censor(0) = age ndrugtx treat site agesite aget drugt treatt sitet; 
  agesite = age*site; 
  aget = age*log(time); 
  drugt = ndrugtx*log(time); 
  treatt = treat*log(time); 
  sitet = site*log(time); 
  test_proportionality: test aget, drugt, treatt, sitet; 
run; 
 
<output omitted> 
 
               Analysis of Maximum Likelihood Estimates 
 
                   Parameter      Standard 
Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq 
age          1      -0.03228       0.03408        0.8968        0.3436 
ndrugtx      1       0.01738       0.03216        0.2920        0.5889 
treat        1      -0.66710       0.41149        2.6282        0.1050 
site         1      -1.63720       0.68019        5.7936        0.0161 
agesite      1       0.03372       0.01555        4.7044        0.0301 
aget         1    -0.0004057       0.00712        0.0032        0.9546 
drugt        1       0.00428       0.00696        0.3784        0.5385 
treatt       1       0.08605       0.08632        0.9937        0.3188 
sitet        1       0.08435       0.09744        0.7493        0.3867 
 
 
            Linear Hypotheses Testing Results 
 
                               Wald 
 Label                   Chi-Square      DF    Pr > ChiSq 
 test_proportionality        2.0264       4        0.7309 

The tests of all the time-dependent variables were not significant either individually or collectively so 
we do not have enough evidence to reject proportionality and will assume that we have satisfied the 
assumption of proportionality for this model. 
 
If one of the predictors were not proportional there are various solutions to consider. We can change 
from using a semi-parametric Cox regression model to using a parametric regression model. Another 
solution is to include the time-dependent variable for the non-proportional predictors. Finally, we can 
use a model where we stratify on the non-proportional predictors. The only change to the model is the 
addition of the strata statement. The assumption is that we are fitting separate models for each level of 
treat under the constraint that that the coefficients are equal but the baseline hazard functions are not 
equal. The following is an example of stratification on the predictor treat. Note that treat is no longer 
included in the model statement instead it is specified in the strata statement. 
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proc phreg data=sorted; 
  model time*censor(0) = age ndrugtx site agesite;  
  agesite = age*site; 
  strata treat; 
run;  
 
<output omitted> 
 
         Summary of the Number of Event and Censored Values 
                                                            Percent 
Stratum    treat          Total       Event    Censored    Censored 
 
      1    0                310         257          53       17.10 
      2    1                300         238          62       20.67 
------------------------------------------------------------------- 
  Total                     610         495         115       18.85 
 
                     Analysis of Maximum Likelihood Estimates 
 
                   Parameter      Standard                                  Hazard 
Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq       Ratio 
age          1      -0.03475       0.00929       13.9940        0.0002       0.966 
ndrugtx      1       0.03638       0.00770       22.3401        <.0001       1.037 
site         1      -1.25130       0.50855        6.0541        0.0139       0.286 
agesite      1       0.03399       0.01551        4.8041        0.0284       1.035 

The parameter estimates are almost exactly the same as the parameter estimates in the model where 
treat was included as a proportional predictor. This leads us to believe that treat actually is 
proportional and that we do not need to stratify on treat. If treat truly violated the assumption of 
proportionality then we would expect the estimates of the stratified model to differ from the non-
stratified model. 

proc phreg data=uis; 
  model time*censor(0) = age ndrugtx treat site agesite;  
  agesite = age*site; 
run;  
 
<output omitted> 
 
                     Analysis of Maximum Likelihood Estimates 
 
                   Parameter      Standard                                  Hazard 
Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq       Ratio 
age          1      -0.03369       0.00929       13.1512        0.0003       0.967 
ndrugtx      1       0.03646       0.00770       22.4092        <.0001       1.037 
treat        1      -0.26741       0.09123        8.5921        0.0034       0.765 
site         1      -1.24593       0.50873        5.9979        0.0143       0.288 
agesite      1       0.03377       0.01551        4.7423        0.0294       1.034 

Graphing Survival Functions from Proc phreg 

It is useful to look at the survival function but unfortunately it is not possibly to obtain a graph through 
proc phreg. Instead we output a data set which includes the survival function using the baseline 
statement with an out option and then we will be able to produce a survival function for specific 
covariate patterns. Each covariate pattern will have a different survival function.  The default survival 
function is for the covariate pattern where each predictor is set equal to its mean. However, for many 
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predictors the mean value is not meaningful. Consider the predictor site where the value 0 indicates site 
A and the value 1 indicates site B. The mean value for site is 0.292. What would it mean for a person to 
have the value 0.292 for site?  We are not interested in looking at the survival function for a subject 
with site = 0.292. It would be much more useful to specify a covariate pattern of interest and generate a 
survival function for subjects with this specific covariate pattern. 
 
In the following example we want to graph the survival function for a subject who is 30 years old 
(age=30), has had 5 prior drug treatments (ndrugtx=5), and is currently getting the long treatment 
(treat=0) at site A (site=0 and agesite=30*0 = 0). We first create a covariate data set which must 
include all the covariates listed as predictor in the model statement of the proc phreg. The survival 
option indicates that we want to obtain the survival function and the covariates option indicates for 
which covariate pattern we want to generate the survival function.  

data cov_treat1; 
  age = 30; 
  ndrugtx = 5; 
  treat = 1; 
  site = 0; 
  agesite = 0; 
run; 
proc phreg data=uis noprint; 
  model time*censor(0) = age ndrugtx treat site agesite;  
  agesite = age*site; 
  baseline out=surv1 covariates=cov_treat1 survival=surv / nomean; 
run; 
goptions reset=all; 
symbol1 c=red v=triangle h=.8 i=stepjll; 
symbol2 c=blue v=circle h=.8 i=stepjll; 
axis1 label=(a=90 'Survivorship function'); 
proc gplot data=surv1; 
 plot surv*time / vaxis=axis1; 
run; 
quit; 

      

Looking at the survival function for one covariate pattern is sometimes not sufficient. It is often very 
useful to have a graph where we can compare the survival functions of different groups. In the 
following example we generate a graph with the survival functions for the two treatment groups where 
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all the subjects are 30 years old (age=30), have had 5 prior drug treatments (ndrugtx=5) and are 
currently being treated at site A (site=0 and agesite=30*0=0). Thus, the two covariate patterns differ 
only in their values for treat. 

data cov_treat0; 
  age = 30; 
  ndrugtx = 5; 
  treat = 0; 
  site = 0; 
  agesite = 0; 
run; 
proc phreg data=uis noprint; 
  model time*censor(0) = age ndrugtx treat site agesite;  
  agesite = age*site; 
  baseline out=surv0 covariates=cov_treat0 survival=surv / nomean; 
run; 
data combo; 
  set surv1 surv0; 
run; 
goptions reset=all; 
symbol1 c=red v=triangle h=.8 i=stepjll; 
symbol2 c=blue v=circle h=.8 i=stepjll; 
axis1 label=(a=90 'Survivorship function'); 
proc gplot data=combo; 
 plot surv*time=treat / vaxis=axis1; 
run; 
quit; 

      

Another short coming of the graphic output in SAS is that the survival function that is obtained through 
the baseline statement does not include the last censored observation. Both of the preceding graphs have 
survival functions for time < 700. But in fact as the following proc means shows we have subjects who 
have survived until time = 1172 when treat=1 and subjects who survived until time =805 when 
treat=0.  We also know this from looking at the Kaplan-Meier curves in the univariate analysis section. 

proc sort data=uis out=sorted; 
  by treat; 
run; 
proc means data=sorted max; 
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  by treat; 
  var time; 
run; 
treat=0 
 
The MEANS Procedure 
 
Analysis Variable : time 
 
     Maximum 
------------ 
 805.0000000 
------------ 
 
 
treat=1 
 
Analysis Variable : time 
 
     Maximum 
------------ 
     1172.00 
------------ 

Since this last observation at time = 1172 is censored the value of the survival function for this 
observation will be equal to the value of the survival function for the time just prior (time=659). 

proc print data=combo ; 
  where time > 600; 
run; 
 
Obs    age    ndrugtx    treat    site    agesite    time      surv 
275     30       5         1        0        0        659    0.15060 
550     30       5         0        0        0        659    0.08429 

To make the graph include all the observations, even the last censored observation, all we have to do is 
include two extra data points, one for each treatment group, where time is equal to the maximum value 
of time (obtained from the proc means) and the survival function is equal to last survival function value 
generated by the baseline output (obtained from the proc print). 

data combo1; 
  set combo; 
  if _n_ = 1 then do; 
  treat=0; 
  time = 805; 
  surv =  0.08429; 
  treat = 0;  
  output; 
  treat=1; 
  time = 1172; 
  surv = 0.15060; 
  output; 
  end; 
  output; 
run; 

We verify that the data step accomplished what we set out to do. 
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proc print data=combo1 ; 
  where time > 600; 
run; 
 
Obs    treat    time      surv     age    ndrugtx    site    agesite 
  1      0       805    0.08429      .       .         .        . 
  2      1      1172    0.15060      .       .         .        . 
277      1       659    0.15060     30       5         0        0 
552      0       659    0.08429     30       5         0        0 

We need to sort on the variable that will be the on the x-axis of our graph. In this case the variable is 
time. 

proc sort data=combo1; 
  by time; 
run; 
goptions reset=all; 
symbol1 c=red v=triangle h=.8 i=stepjll; 
symbol2 c=blue v=circle h=.8 i=stepjll; 
axis1 label=(a=90 'Survivorship function'); 
proc gplot data=combo; 
 plot surv*time=treat / vaxis=axis1; 
run; 
quit; 

      

 

Statistical Computing Seminar 
Introduction to Multilevel Modeling Using SAS 

This seminar is based on the paper Using SAS Proc Mixed to Fit Multilevel Models, Hierarchical 
Models, and Individual Growth Models 
by Judith Singer and can be downloaded from Professor Singer's web site at 
http://gseweb.harvard.edu/~faculty/singer/sasprocmixed.pdf . 

SAS data files, hsb12.sas7bdat and willett.sas7bdat and the SAS program code is here. 

http://gseweb.harvard.edu/~faculty/singer/sasprocmixed.pdf
http://www.ats.ucla.edu/stat/paperexamples/singer/hsb12.sas7bdat
http://www.ats.ucla.edu/stat/paperexamples/singer/willett.sas7bdat
http://www.ats.ucla.edu/stat/sas/seminars/sas_mlm/demo_code.sas.txt
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Outline 

"The purpose of this paper is to show educational and behavioral statisticians and researchers how they 
can use PROC MIXED to fit many common types of multilevel models."  

There are two types of models that this paper has focused on: (a) school effects models and (b) 
individual growth models. 

• A school effect model using data file hsb12.sas7bdat  
o  modeling organizational research;  
o  students nested within classes, children nested within families, patients nested within 

hospitals;  

• Model 1: Unconditional Means Model  
• Model 2: Including Effects of School Level (level 2) Predictors  
• Model 3: Including Effects of Student-Level Predictors  
• Model 4: Including Both Level-1 and Level-2 Predictors  

• Growth model using data file willett.sas7bdat  
o  modeling individual change  
o multiple observations on each individual as nested within the person;   

• Model 1 :Unconditional Linear Growth Model  
• Model 2: A Linear Growth Model with a Person-Level Covariance  
• Model 3: Exploring the Structure of Variance Covariance Matrix Within Persons  

 

School Effect Model  

A segment of the data file:  

SCHOOL    MATHACH      SES     MEANSES    SECTOR 
 1296       6.588    -0.178     -0.420       0 
 1296      11.026     0.392     -0.420       0 
 1296       7.095    -0.358     -0.420       0 
 1296      12.721    -0.628     -0.420       0 
 1296       5.520    -0.038     -0.420       0 
 1296       7.353     0.972     -0.420       0 
 1296       7.095     0.252     -0.420       0 
 1296       9.999     0.332     -0.420       0 
 1296      10.715    -0.308     -0.420       0 
 1308      13.233     0.422      0.534       1 
 1308      13.952     0.562      0.534       1 
 1308      13.757    -0.058      0.534       1 
 1308      13.970     0.952      0.534       1 
 1308      23.434     0.622      0.534       1 
 1308       9.162     0.832      0.534       1 
 1308      23.818     1.512      0.534       1 
 1308      15.998     0.622      0.534       1 
 1308      16.039     0.332      0.534       1 
 1308      24.993     0.442      0.534       1 

http://www.ats.ucla.edu/stat/paperexamples/singer/hsb12.sas7bdat
http://www.ats.ucla.edu/stat/paperexamples/singer/willett.sas7bdat
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 1308      15.657     0.582      0.534       1 
 1308      16.258     1.102      0.534       1 

The data file is a subsample from the 1982 High School and Beyond Survey and is used extensively in 
Hierarchical Linear Models by Raudenbush and Bryk. The data file consists of 7185 students nested in 
160 schools. The outcome variable of interest is student-level math achievement score (MATHACH). 
Variable SES is social-economic-status of a student and therefore is a student-level variable. Variable 
MEANSES is the group mean of SES and therefore is a school-level variable. Both SES and 
MEANSES are centered at the grand mean (they both have means of 0). Variable  SECTOR is an 
indicator variable indicating if a school is public or catholic and is therefore a school-level variable. 
There are 90 public schools (SECTOR=0) and 70 catholic schools (SECTOR=1) in the sample. 

 

Model 1: Unconditional Means Model  

This model is referred as a one-way ANOVA with random effects and is the simplest possible random 
effect linear model and is discussed in detail by Raudenbush and Bryk. The motivation for this model is 
the question on  how much schools vary in their mean mathematics achievement. In terms of regression 
equations, we have the following, where rij ~ N(0, σ2) and u0j ~ N(0, τ2), 
 
MATHACHij =  β0j + rij    
β0j =  γ00 + u0j 

Combining the two equations into one by substituting the level-2 equation to level-1 equation, we have  

MATHACHij =  γ00 + u0j + rij    

proc mixed data = in.hsb12 covtest noclprint; 
   class school; 
   model mathach = / solution; 
   random intercept / subject = school; 
run;    
                  Covariance Parameter Estimates 
                                     Standard         Z 
Cov Parm      Subject    Estimate       Error     Value        Pr Z 
Intercept     SCHOOL       8.6097      1.0778      7.99      <.0001 
Residual                  39.1487      0.6607     59.26      <.0001 
           Fit Statistics 
-2 Res Log Likelihood         47116.8 
AIC (smaller is better)       47120.8 
AICC (smaller is better)      47120.8 
BIC (smaller is better)       47126.9 
                   Solution for Fixed Effects 
                         Standard 
Effect       Estimate       Error      DF    t Value    Pr > |t| 
Intercept     12.6370      0.2443     159      51.72      <.0001 

Comments:  

1. In proc mixed, the statement MODEL includes intercept as default. Therefore, we can further 
request that intercept be random in the random statement.  
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2. There are different estimation methods that proc mixed can use. The default is residual 
(restricted) maximum likelihood and is the method that we use here. This is also the default for 
HLM program.  

3. The option solution in the model statement gives the parameter estimates for the fixed effect.     
4. The option covtest requests for the standard error for the covariance-variance parameter 

estimates and the corresponding z-test.  
5. The option noclprint requests that SAS not print the class information.  
6. The estimated between variance,  τ2 corresponds to the term INTERCEPT in the output of 

Covariance Parameter Estimates and the estimated within variance, σ2, corresponds to the term 
RESIDUAL in the same output section.  

7. Based on the covariance estimates, we can compute the intraclass 
correlation:  8.6097/(8.6097+39.1487) = .18027614. This tells us the portion of the total 
variance that occurs between schools.  

8. To measure the magnitude of the variation among schools in their mean achievement levels, we 
can calculate the plausible values range for these means, based on the between variance we 
obtained from the model: 12.637 ?1.96*(8.61)1/2 = (6.89, 18.39).  

 

Model 2: Including Effects of School Level (level 2) Predictors -- predicting mathach from meanses 

This model is referred as regression with Means-as-Outcomes by Raudenbush and Bryk. The 
motivation of this model is the question on if the schools with high MEANSES also have high math 
achievement. In other words, we want to understand why there is a school difference on mathematics 
achievement. In terms of regression equations, we have the following. 
 
MATHACHij =  β0j + rij    
β0j =  γ00 + γ01(MEANSES) + u0j 

Combining the two equations into one by substituting the level-2 equation to level-1 equation, we have  

MATHACHij =   γ00 + γ01(MEANSES) + u0j + rij    

proc mixed data = in.hsb12 covtest noclprint; 
   class school; 
   model mathach = meanses / solution ddfm = bw; 
   random intercept / subject = school; 
run; 
                  Covariance Parameter Estimates 
                                     Standard         Z 
Cov Parm      Subject    Estimate       Error     Value        Pr Z 
Intercept     SCHOOL       2.6357      0.4036      6.53      <.0001 
Residual                  39.1578      0.6608     59.26      <.0001 
           Fit Statistics 
-2 Res Log Likelihood         46961.3 
AIC (smaller is better)       46965.3 
AICC (smaller is better)      46965.3 
BIC (smaller is better)       46971.4 
                   Solution for Fixed Effects 
                         Standard 
Effect       Estimate       Error      DF    t Value    Pr > |t| 
Intercept     12.6495      0.1492     158      84.77      <.0001 
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MEANSES        5.8635      0.3613     158      16.23      <.0001 
        Type 3 Tests of Fixed Effects 
              Num     Den 
Effect         DF      DF    F Value    Pr > F 
MEANSES         1     158     263.37    <.0001 

Comments: 

1. The coefficient for the constant is the predicted math achievement when all predictors are 0, so 
when the average school SES is 0, the students math achievement is predicted to be 12.65.   

2. The variance component representing variation between schools decreases greatly (from  8.6097 
to 2.6357). This means that the level-2 variable meanses explains a large portion of the school-
to-school variation in mean math achievement. More precisely, the proportion of variance 
explained by meanses is (8.6097 - 2.6357)/8.6097 = .694, that is about 69% of the explainable 
variation in school mean math achievement scores is explained by meanses.  

3. A range of plausible values for school means, given that all schools have MEANSES of zero, is 
12.65 ?1.96 *(2.64)1/2 = (9.47, 15.83).  

4. We can also calculate the conditional intraclass correlation conditional on the values of 
MEANSES. 2.64/(2.64 + 39.16) = .06 measures the degree of dependence among observations 
within schools that are of the same MEANSES.  

5. Do school achievement means still vary significantly once MEANSES is controlled? From the 
output of Covariance Parameter Estimates, we see that the test that between variance is zero is 
highly significant. Therefore, we conclude that after controlling for MEANSES, significant 
variation among school mean math achievement still remains to be explained.  

6. Notice though, the standard error used to perform the above hypothesis test is based on large-
sample theory of the maximum likelihood estimates and in many cases the normality 
approximation will be extremely poor. We will only use these results as guidance for further 
analysis, rather than definitive results. In SAS version 8 and later, SAS uses one-tailed z-test on 
variance and two-tailed z-test on covariance, trying to avoid misleading results by previously 
used two-tailed test for both.  

7. The option ddfm = bw (between and within method) used in the model statement is to request 
SAS to use between and within method for computing the denominator degrees of freedom for 
the tests of fixed effects, instead of the default, containment method. This option is especially 
useful when there are large number of random effects in the model and the design is severely 
unbalanced. The default, on the other hand, matches the tests performed for balanced split-plot 
designs and should be adequate for moderately unbalanced designs.  

 

Model 3: Including Effects of Student-Level Predictors--predicting mathach from centered student-
level ses, cses 

This model is referred as a random-coefficient model by Raudenbush and Bryk. Pretend that we run 
regression of mathach on centered ses on each school, that is we are going to run 160 regressions.  

1. What would be the average of the 160 regression equations (both intercept and slope)?  
2. How much do the regression equations vary from school to school?  
3. What is the correlation between the intercepts and slopes?  
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These are some of the questions that motivates the following model. 
 
MATHACHij =  β0j + β1j (SES - MEANSES) + rij    
β0j =  γ00  + u0j 
β1j =  γ10  + u1j 

Combining the two equations into one by substituting the level-2 equation to level-1 equation, we have  

MATHACHij =  γ00  + γ10(SES - MEANSES) + u0j +  u1j(SES - MEANSES) + rij    

data hsbc; 
  set in.hsb12; 
    cses = ses - meanses; 
run; 
proc mixed data = hsbc noclprint covtest noitprint; 
  class school; 
  model mathach = cses / solution ddfm = bw notest; 
  random intercept cses / subject = school type = un gcorr; 
run; 
           Estimated G Correlation Matrix 
 Row    Effect       SCHOOL        Col1        Col2 
   1    Intercept    1224        1.0000     0.02068 
   2    cses         1224       0.02068      1.0000 
                  Covariance Parameter Estimates 
                                    Standard         Z 
Cov Parm     Subject    Estimate       Error     Value        Pr Z 
UN(1,1)      SCHOOL       8.6769      1.0786      8.04      <.0001 
UN(2,1)      SCHOOL      0.05075      0.4062      0.12      0.9006 
UN(2,2)      SCHOOL       0.6940      0.2808      2.47      0.0067 
Residual                 36.7006      0.6258     58.65      <.0001 
 
           Fit Statistics 
-2 Res Log Likelihood         46714.2 
AIC (smaller is better)       46722.2 
AICC (smaller is better)      46722.2 
BIC (smaller is better)       46734.5 
  Null Model Likelihood Ratio Test 
    DF    Chi-Square      Pr > ChiSq 
     3       1065.70          <.0001 
                   Solution for Fixed Effects 
                         Standard 
Effect       Estimate       Error      DF    t Value    Pr > |t| 
Intercept     12.6493      0.2445     159      51.75      <.0001 
cses           2.1932      0.1283    7024      17.10      <.0001 

Comments: 

1. Specifying level-1 predictor cses as random effect, we formulate that effect of cses can vary 
across schools.  

2. The option type = un in the random statement allows us to estimate the three parameters (the 
variance of intercept and the variance of slopes for cses and the covariance between them) from 
the data.  

3. Option gcorr displays the correlation matrix corresponding to the estimated variance-covariance 
matrix, called G matrix.  
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4. The covariance estimate is 0.05075  with standard error 0.4062. That yields a p-vlaue of 0.9006. 
This is saying that there is no evidence that the effect of cses depending upon the average math 
achievement in the school.  

5. In the output of Covariance Parameter Estimates,  the parameter corresponding to UN(2,2) is the 
variability in slopes of cses. The estimate is  0.6940 with standard error  0.2808. That yields a p-
value of 0.0067 for 1-tailed test. The test being significant tells us that we can not accept the 
hypothesis that there is no difference in slopes among schools.  

6. The 95% plausible value range for the school means is 12.65 ?1.96 *(8.68)1/2 = (6.87, 18.41).  
7. The 95% plausible value range for the SES-achievement slope is 2.19 ?1.96 *(.69)1/2 = (.56, 

3.82).  
8. Notice that the residual variance is now 36.70, comparing with the residual variance of 39.15 in 

the one-way ANOVA with random effects model. We can compute the proportion variance 
explained at level 1 by (39.15 - 36.70) / 39.15 = .063. This means using student-level SES as a 
predictor of math achievement reduced the within-school variance by 6.3%.  

 

Model 4: Including Both Level-1 and Level-2 Predictors --predicting mathach from meanses, sector, 
cses and the cross level interaction of  meanses and sector with cses 

This model is referred as an intercepts and slopes-as-outcomes model by Raudenbush and Bryk. We 
have examined the variability of the regression equations across schools. Now we will build an 
explanatory model to account for the variability. That is we want to model the following: 

MATHACHij =  β0j + β1j (SES - MEANSES) + rij    
β0j =  γ00  + γ01(MEANSES) + γ02(SECTOR) + u0j 
β1j =  γ10  + γ11(MEANSES) + γ12(SECTOR) + u1j 

Combining the two equations into one by substituting the level-2 equation to level-1 equation, we have  

MATHACHij =   γ00  + γ01(MEANSES) + γ02(SECTOR) + γ10 (SES - MEANSES) +  
                           γ11(MEANSES)* (SES - MEANSES) +  γ12(SECTOR)* (SES - MEANSES) +  
                          u0j  +u1j(SES-MEANSES) +  rij    

The questions that we are interested in are:  

1. Do MEANSES and SECTOR significantly predict the intercept?  
2. Do MEANSES and SECTOR significantly predict the within-school slopes?  
3. How much variation in the intercepts and the slopes is explained by MEANSES and SECTOR?  

proc mixed data = hsbc noclprint covtest noitprint; 
  class school; 
  model mathach = meanses sector cses meanses*cses sector*cses  
                  / solution ddfm = bw notest; 
  random intercept cses / subject = school type = un; 
run; 
                  Covariance Parameter Estimates 
                                    Standard         Z 
Cov Parm     Subject    Estimate       Error     Value        Pr Z 
UN(1,1)      SCHOOL       2.3817      0.3717      6.41      <.0001 
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UN(2,1)      SCHOOL       0.1926      0.2045      0.94      0.3464 
UN(2,2)      SCHOOL       0.1014      0.2138      0.47      0.3177 
Residual                 36.7212      0.6261     58.65      <.0001 
 
           Fit Statistics 
-2 Res Log Likelihood         46503.7 
AIC (smaller is better)       46511.7 
AICC (smaller is better)      46511.7 
BIC (smaller is better)       46524.0 
  Null Model Likelihood Ratio Test 
    DF    Chi-Square      Pr > ChiSq 
     3        220.57          <.0001 
                    Solution for Fixed Effects 
                            Standard 
Effect          Estimate       Error      DF    t Value    Pr > |t| 
Intercept        12.1136      0.1988     157      60.93      <.0001 
MEANSES           5.3391      0.3693     157      14.46      <.0001 
SECTOR            1.2167      0.3064     157       3.97      0.0001 
cses              2.9388      0.1551    7022      18.95      <.0001 
MEANSES*cses      1.0389      0.2989    7022       3.48      0.0005 
SECTOR*cses      -1.6426      0.2398    7022      -6.85      <.0001 

Comments:  

1. First take a look at the output of Solutions for Fixed Effects. The first three parameters are about 
the intercept, or more precisely about the mean math achievement across schools. We see that 
MEANSES is positively related to math achievement and catholic schools have significantly 
higher mean math achievement than public schools, controlling for other effects.  

2. The last three parameters in the output are about the slopes. Schools of high MEANSES tend to 
have larger slopes and catholic schools have significantly weaker slopes, on the average, than 
public schools.  

3. Variable sector and its interaction with cses are significant in the model, indicating that the 
intercepts and the slopes for cses are different for Catholic and public schools. This can also be 
shown by plotting the predicted math achievement scores constraining the meanses to low, 
medium and high. We use 25th/50th/75th percentiles to define the strata of low, medium and 
high. 

4. proc univariate data = hsbc; 
5.   var meanses; 
6. run; 
7. /* 
8. 90%              0.523 
9. 75% Q3           0.333 
10. 50% Median       0.038 
11. 25% Q1          -0.317 
12. 10%             -0.579 
13. 5%              -0.696 
14. 1%              -1.043 
15. 0% Min          -1.188 

*/ 
data toplot; 
  set hsbc; 
  if meanses <= -0.317 then do; 
  ms = -0.317; 
   strata = "Low";   end; 
  else if meanses >= 0.333 then do; 
  ms = 0.333; 
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  strata = "Hig";   end; 
  else do; ms = 0.038; strata = "Med" ; end; 
  predicted = 12.1136 + 5.3391*ms * 1.2167*sector + 2.9388*cses + 
              1.0389*ms*cses - 1.6426*sector*cses; 
run; 
proc sort data = toplot; 
   by strata; 
run; 
goptions reset = all; 
symbol1 v = none i = join c = red ; 
symbol2 v = none i = join c = blue  ; 
axis1 order = (-4 to 3 by 1) minor = none label=("Group Centered SES"); 
axis2 order = (0 to 22 by 2) minor = none label=(a = 90 "Math Achievement 
Score"); 
proc gplot data = toplot; 
   by strata; 
   plot predicted*cses = sector / vaxis = axis2 haxis = axis1;  
run; 
quit;  
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16. Possibly there would be two-way interaction between meanses and sector and a three way 
interaction between meanses, cses and sector. We can test it by adding the interaction into the 
model. For example,  

17. proc mixed data = hsbc noclprint covtest noitprint; 
18.   class school; 
19.   model mathach = meanses sector cses meanses*sector  
20.                   meanses*cses sector*cses meanses*sector*cses  
21.                   / solution ddfm = bw notest; 
22.   random intercept cses / subject = school type = un; 

run; 
                        Solution for Fixed Effects 
                                   Standard 
Effect                 Estimate       Error      DF    t Value    Pr > |t| 
Intercept               12.1842      0.2030     156      60.01      <.0001 
MEANSES                  5.8732      0.5065     156      11.60      <.0001 
SECTOR                   1.2430      0.3052     156       4.07      <.0001 
cses                     2.9513      0.1616    7021      18.26      <.0001 
MEANSES*SECTOR          -1.1276      0.7355     156      -1.53      0.1273 
MEANSES*SECTOR*cses     -0.1888      0.5997    7021      -0.31      0.7528 
MEANSES*cses             1.1289      0.4232    7021       2.67      0.0077 
SECTOR*cses             -1.6407      0.2406    7021      -6.82      <.0001 

23. Since the variance component for slopes is very small and its corresponding p-value is 0.3177. 
We cannot reject the hypothesis that the slopes do not differ across schools. Similarly, we can 
not reject the hypothesis that the covariance between intercepts and slopes is zero. Therefore, a 
simpler model can be used: 

24. proc mixed data = hsbc noclprint covtest noitprint; 
25.   class school; 
26.   model mathach = meanses sector cses meanses*cses sector*cses / solution 

ddfm = bw notest; 
27.   random intercept / subject = school; 

run; 
                  Covariance Parameter Estimates 
                                     Standard         Z 
Cov Parm      Subject    Estimate       Error     Value        Pr Z 
Intercept     SCHOOL       2.3752      0.3709      6.40      <.0001 
Residual                  36.7661      0.6207     59.24      <.0001 
           Fit Statistics 
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-2 Res Log Likelihood         46504.8 
AIC (smaller is better)       46508.8 
AICC (smaller is better)      46508.8 
BIC (smaller is better)       46514.9 
                    Solution for Fixed Effects 
                            Standard 
Effect          Estimate       Error      DF    t Value    Pr > |t| 
Intercept        12.1138      0.1986     157      60.98      <.0001 
MEANSES           5.3429      0.3690     157      14.48      <.0001 
SECTOR            1.2146      0.3061     157       3.97      0.0001 
cses              2.9358      0.1507    7022      19.48      <.0001 
MEANSES*cses      1.0441      0.2910    7022       3.59      0.0003 
SECTOR*cses      -1.6421      0.2331    7022      -7.04      <.0001 

To compare the original model with this simplified one, we can compare their -2LL's, since the 
fixed portion of these two models are the same. 

Model Number of 
parameters -2 LL 

restricted 2 46504.8 
Unrestricted 4 46503.7 

Approximately, the difference in -2LL's is a χ2 distribution with two degrees of freedom 
(corresponding to the difference in the number of parameters). The p-value is .577. This justifies 
the use of the simpler model. The SAS program is shown below. 

data pvalue; 
  df = 2; chisq = 46504.8 - 46503.7; 
  pvalue = 1 - probchi(chisq, df); 
run; 
proc print data = pvalue noobs; 
run; 
df    chisq     pvalue 
 2     1.1     0.57695 

 

Linear Growth Model 

A segment of the data file:  

id    time    cons    covar     y 
 1      0       1      137     205 
 1      1       1      137     217 
 1      2       1      137     268 
 1      3       1      137     302 
 2      0       1      123     219 
 2      1       1      123     243 
 2      2       1      123     279 
 2      3       1      123     302 
 3      0       1      129     142 
 3      1       1      129     212 
 3      2       1      129     250 
 3      3       1      129     289 
 4      0       1      125     206 
 4      1       1      125     230 
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 4      2       1      125     248 
 4      3       1      125     273 
 5      0       1       81     190 
 5      1       1       81     220 
 5      2       1       81     229 
 5      3       1       81     220 

 

Model 1: Unconditional Linear Growth Model -- page 340 

proc mixed data = willett noclprint covtest; 
  class id; 
  model y = time /solution ddfm = bw notest; 
  random intercept time / subject = id type = un; 
run; 
                  Covariance Parameter Estimates 
                                    Standard         Z 
Cov Parm     Subject    Estimate       Error     Value        Pr Z 
UN(1,1)      id          1198.78      318.38      3.77      <.0001 
UN(2,1)      id          -179.26     88.9634     -2.01      0.0439 
UN(2,2)      id           132.40     40.2107      3.29      0.0005 
Residual                  159.48     26.9566      5.92      <.0001 
           Fit Statistics 
-2 Res Log Likelihood          1266.8 
AIC (smaller is better)        1274.8 
AICC (smaller is better)       1275.1 
BIC (smaller is better)        1281.0 
  Null Model Likelihood Ratio Test 
    DF    Chi-Square      Pr > ChiSq 
     3        120.90          <.0001 
                   Solution for Fixed Effects 
                         Standard 
Effect       Estimate       Error      DF    t Value    Pr > |t| 
Intercept      164.37      6.1188      34      26.86      <.0001 
time          26.9600      2.1666     104      12.44      <.0001 

Comments: 

1. Notice that variable time is coded 0, 1, 2 and 3. Therefore, the intercept is the estimate of the 
initial value and the slope is the estimate of the rate of change across occasions.  

2. We may want to visually see the relationship between the dependent variable and time by 
subject. This gives us a good sense if the the linear relationship holds across all the subjects and 
if the slopes vary across all the subjects.  

3. proc gplot data = willett;  
4.   plot y*time = id; 
5.   where id <=20; 
6. run; 

quit; 



 404

  

 

Model 2: A Linear Growth Model with a Person-Level Covariance -- predicting y by time and centered 
covar -- page 344 

data willett; 
  set in.willett; 
  wave = time; 
  ccovar = covar -  113.4571429; 
run; 
proc mixed data = willett noclprint covtest; 
  class id; 
  model y = time ccovar time*ccovar /solution ddfm = bw notest; 
  random intercept time / subject = id type = un gcorr; 
run; 
         Estimated G Correlation Matrix 
 Row    Effect       id        Col1        Col2 
   1    Intercept     1      1.0000     -0.4895 
   2    time          1     -0.4895      1.0000 
                  Covariance Parameter Estimates 
                                    Standard         Z 
Cov Parm     Subject    Estimate       Error     Value        Pr Z 
UN(1,1)      id          1236.41      332.40      3.72      <.0001 
UN(2,1)      id          -178.23     85.4298     -2.09      0.0370 
UN(2,2)      id           107.25     34.6767      3.09      0.0010 
Residual                  159.48     26.9566      5.92      <.0001 
           Fit Statistics 
-2 Res Log Likelihood          1260.3 
AIC (smaller is better)        1268.3 
AICC (smaller is better)       1268.6 
BIC (smaller is better)        1274.5 
  Null Model Likelihood Ratio Test 
    DF    Chi-Square      Pr > ChiSq 
     3        120.72          <.0001 
                    Solution for Fixed Effects 
                           Standard 
Effect         Estimate       Error      DF    t Value    Pr > |t| 
Intercept        164.37      6.2061      33      26.49      <.0001 
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time            26.9600      1.9939     103      13.52      <.0001 
ccovar          -0.1136      0.5040      33      -0.23      0.8231 
time*ccovar      0.4329      0.1619     103       2.67      0.0087 

Comments: 

1. Variable wave created in the data step will be used in our next model.  
2. Estimated correlation matrix among the random effect is requested by using the option gcorr.  
3. Comparing with the model of unconditional growth, this model  

 

Model 3: Exploring the Structure of Variance Covariance Matrix Within Persons 

A. Compound Symmetry 

proc mixed data = willett covtest noitprint; 
  class id wave; 
  model y = time / s notest; 
  repeated wave /type = cs subject = id r; 
run; 
             Estimated R Matrix for id 1 
 Row        Col1        Col2        Col3        Col4 
   1     1280.71      904.81      904.81      904.81 
   2      904.81     1280.71      904.81      904.81 
   3      904.81      904.81     1280.71      904.81 
   4      904.81      904.81      904.81     1280.71 
                  Covariance Parameter Estimates 
                                    Standard         Z 
Cov Parm     Subject    Estimate       Error     Value        Pr Z 
CS           id           904.81      242.59      3.73      0.0002 
Residual                  375.90     52.1281      7.21      <.0001 
           Fit Statistics 
-2 Res Log Likelihood          1300.3 
AIC (smaller is better)        1304.3 
AICC (smaller is better)       1304.4 
BIC (smaller is better)        1307.5 
  Null Model Likelihood Ratio Test 
    DF    Chi-Square      Pr > ChiSq 
     1         87.39          <.0001 
                   Solution for Fixed Effects 
                         Standard 
Effect       Estimate       Error      DF    t Value    Pr > |t| 
Intercept      164.37      5.7766      34      28.45      <.0001 
time          26.9600      1.4656     104      18.40      <.0001 

B.Unstructured 

proc mixed data = willett covtest noitprint; 
  class id wave; 
  model y = time / s notest; 
  repeated wave /type = un subject = id r; 
run; 
             Estimated R Matrix for id 1 
 Row        Col1        Col2        Col3        Col4 
   1     1307.96      977.17      921.87      563.54 
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   2      977.17     1120.32     1018.97      855.53 
   3      921.87     1018.97     1289.47     1081.77 
   4      563.54      855.53     1081.77     1415.03 
                 Covariance Parameter Estimates 
                                   Standard         Z 
Cov Parm    Subject    Estimate       Error     Value        Pr Z 
UN(1,1)     id          1307.96      316.95      4.13      <.0001 
UN(2,1)     id           977.17      266.55      3.67      0.0002 
UN(2,2)     id          1120.32      270.69      4.14      <.0001 
UN(3,1)     id           921.87      272.81      3.38      0.0007 
UN(3,2)     id          1018.97      269.55      3.78      0.0002 
UN(3,3)     id          1289.47      312.07      4.13      <.0001 
UN(4,1)     id           563.54      252.45      2.23      0.0256 
UN(4,2)     id           855.53      260.70      3.28      0.0010 
UN(4,3)     id          1081.77      296.64      3.65      0.0003 
UN(4,4)     id          1415.03      343.17      4.12      <.0001 
           Fit Statistics 
-2 Res Log Likelihood          1263.4 
AIC (smaller is better)        1283.4 
AICC (smaller is better)       1285.2 
BIC (smaller is better)        1299.0 
  Null Model Likelihood Ratio Test 
    DF    Chi-Square      Pr > ChiSq 
     9        124.30          <.0001 
                   Solution for Fixed Effects 
                         Standard 
Effect       Estimate       Error      DF    t Value    Pr > |t| 
Intercept      165.83      5.8668      34      28.27      <.0001 
time          26.5846      2.1215      34      12.53      <.0001 

C. AR(1) 

proc mixed data = willett covtest noitprint; 
  class id wave; 
  model y = time / s notest; 
  repeated wave /type = ar(1) subject = id r; 
run; 
             Estimated R Matrix for id 1 
 Row        Col1        Col2        Col3        Col4 
   1     1323.77     1092.07      900.93      743.24 
   2     1092.07     1323.77     1092.07      900.93 
   3      900.93     1092.07     1323.77     1092.07 
   4      743.24      900.93     1092.07     1323.77 
                  Covariance Parameter Estimates 
                                    Standard         Z 
Cov Parm     Subject    Estimate       Error     Value        Pr Z 
AR(1)        id           0.8250     0.03937     20.96      <.0001 
Residual                 1323.77      258.56      5.12      <.0001 
           Fit Statistics 
 
-2 Res Log Likelihood          1273.5 
AIC (smaller is better)        1277.5 
AICC (smaller is better)       1277.6 
BIC (smaller is better)        1280.6 
  Null Model Likelihood Ratio Test 
    DF    Chi-Square      Pr > ChiSq 
     1        114.26          <.0001 
                   Solution for Fixed Effects 
                         Standard 
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Effect       Estimate       Error      DF    t Value    Pr > |t| 
Intercept      164.34      6.1371      34      26.78      <.0001 
time          27.1979      1.9198     104      14.17      <.0001 
 

Arrays in SAS 

Recoding variables 
Applying math computations to many variables simultaneously 
Computing new variables 
Collapsing over variables 
Identify patterns across variables using arrays 
Reshaping wide to long 
Understanding the functions first., last. and the retain statement 
Reshaping long to wide using arrays 
Comparisons across observations using arrays 

First we run the SAS options so that we can get rid of the date, page number, centering and page break 
in the output. 

options nodate nonumber nocenter formdlim="-"; 

Recoding variables 

Inputting the faminc data set. 

data faminc; 
  input famid faminc1-faminc12 ; 
cards; 
1 3281 3413 3114 2500 2700 3500 3114 3319 3514 1282 2434 2818 
2 4042 3084 3108 3150 3800 3100 1531 2914 3819 4124 4274 4471 
3 6015 6123 6113 6100 6100 6200 6186 6132 3123 4231 6039 6215 
; 
run; 

Recoding manually using if-then. 

data recode_manual; 
  set faminc; 
  if faminc1 < 3000 then faminc1=.; 
  if faminc2 < 3000 then faminc2=.; 
  if faminc3 < 3000 then faminc3=.; 
  if faminc4 < 3000 then faminc4=.; 
  if faminc5 < 3000 then faminc5=.; 
  if faminc6 < 3000 then faminc6=.; 
  if faminc7 < 3000 then faminc7=.; 
  if faminc8 < 3000 then faminc8=.; 
  if faminc9 < 3000 then faminc9=.; 
  if faminc10 < 3000 then faminc10=.; 
  if faminc11 < 3000 then faminc11=.; 
  if faminc12 < 3000 then faminc12=.; 
run; 
/*heading option specifies horizontal (H) column headings/* 
proc print data=recode_manual noobs heading=H;  

http://www.ats.ucla.edu/stat/sas/seminars/SAS_arrays/default.htm#recode#recode
http://www.ats.ucla.edu/stat/sas/seminars/SAS_arrays/default.htm#same#same
http://www.ats.ucla.edu/stat/sas/seminars/SAS_arrays/default.htm#new_vars#new_vars
http://www.ats.ucla.edu/stat/sas/seminars/SAS_arrays/default.htm#collapse#collapse
http://www.ats.ucla.edu/stat/sas/seminars/SAS_arrays/default.htm#patterns#patterns
http://www.ats.ucla.edu/stat/sas/seminars/SAS_arrays/default.htm#wide_to_long#wide_to_long
http://www.ats.ucla.edu/stat/sas/seminars/SAS_arrays/default.htm#functions#functions
http://www.ats.ucla.edu/stat/sas/seminars/SAS_arrays/default.htm#long_to_wide#long_to_wide
http://www.ats.ucla.edu/stat/sas/seminars/SAS_arrays/default.htm#across_obs#across_obs
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  var famid faminc1-faminc6; 
run; 
 
famid    faminc1    faminc2    faminc3    faminc4    faminc5    faminc6 
  1        3281       3413       3114          .          .       3500 
  2        4042       3084       3108       3150       3800       3100 
  3        6015       6123       6113       6100       6100       6200 

Recoding with arrays using if-then. 
Note: In the code we use the square brackets around the subscript variable i. The choice between square 
brackets, curly brackets or parenthesis is completely arbitrary. We have decided to use the square 
brackets as a visual reminder that i is a subscript and not a part of a mathematical computation. 

data recode_array; 
  set faminc; 
  array Afaminc(12) faminc1-faminc12; 
  do i = 1 to 12;  
    if Afaminc[i] < 3000 then Afaminc[i] = . ; 
  end; 
  drop i; 
run; 
proc print data=recode_array noobs heading=H; 
  var famid faminc1-faminc6; 
run; 
 
famid    faminc1    faminc2    faminc3    faminc4    faminc5    faminc6 
  1        3281       3413       3114          .          .       3500 
  2        4042       3084       3108       3150       3800       3100 
  3        6015       6123       6113       6100       6100       6200 

Applying the same math computation to many variables at a time 

Reverse items on a -3 to +3 scale using array. 

data score; 
  input item1 item2 item3 item4; 
cards; 
-2   1   -3   0 
-1   2   -2   1 
 0  -1   -3  -1 
; 
run; 
data score_array1; 
  set score; 
  array item(4) item1-item4; 
  do i=1 to 4; 
   item[i] = -1*item[i]; 
  end; 
run; 
proc print data=score_array1; 
run; 
 
Obs    item1    item2    item3    item4    i 
 1       2        -1       3         0     5 
 2       1        -2       2        -1     5 
 3       0         1       3         1     5 
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Computing new variables 

Computing the tax income variables manually. 

data tax_manual; 
 set faminc; 
  taxinc1 = faminc1 * .10 ; 
  taxinc2 = faminc2 * .10 ; 
  taxinc3 = faminc3 * .10 ; 
  taxinc4 = faminc4 * .10 ; 
  taxinc5 = faminc5 * .10 ;  
  taxinc6 = faminc6 * .10 ; 
  taxinc7 = faminc7 * .10 ; 
  taxinc8 = faminc8 * .10 ; 
  taxinc9 = faminc9 * .10 ; 
  taxinc10= faminc10 * .10 ; 
  taxinc11= faminc11 * .10 ; 
  taxinc12= faminc12 * .10 ; 
run; 
proc print data=tax_manual noobs; 
  var famid faminc1-faminc3 taxinc1-taxinc3; 
run; 
 
famid    faminc1    faminc2    faminc3    taxinc1    taxinc2    taxinc3 
  1        3281       3413       3114      328.1      341.3      311.4 
  2        4042       3084       3108      404.2      308.4      310.8 
  3        6015       6123       6113      601.5      612.3      611. 

Computing the same tax income variables using an array. We have to use two arrays because the first 
array, Afaminc, is the array for the existing variables (faminc1-faminc12); the second array, Ataxinc, 
is created as a "placeholder" where we will store the new variables (taxinc1-taxinc12). 

data tax_array; 
  set faminc; 
  array Afaminc(12) faminc1-faminc12; /* existing variables */ 
  array Ataxinc(12) taxinc1-taxinc12; /* new variables */ 
  do month = 1 to 12; 
   Ataxinc[month] = Afaminc[month]*0.1; 
  end; 
run; 
proc print data=tax_array noobs; 
  var famid faminc1-faminc3 taxinc1-taxinc3; 
run; 
 
famid    faminc1    faminc2    faminc3    taxinc1    taxinc2    taxinc3 
  1        3281       3413       3114      328.1      341.3      311.4 
  2        4042       3084       3108      404.2      308.4      310.8 
  3        6015       6123       6113      601.5      612.3      611. 

Collapsing over variables 

Creating the total income per quarter variables manually. 

data quarter_manual; 
  set faminc; 
  incq1 = faminc1 + faminc2 + faminc3; 
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  incq2 = faminc4 + faminc5 + faminc6; 
  incq3 = faminc7 + faminc8 + faminc9; 
  incq4 = faminc10 + faminc11 + faminc12;  
run; 
proc print data=quarter_manual; 
  var incq1 faminc1-faminc3; 
run;  
 
Obs    incq1    faminc1    faminc2    faminc3 
 1      9808      3281       3413       3114 
 2     10234      4042       3084       3108 
 3     18251      6015       6123       6113 

Creating the total income per quarter variables using arrays. 

data quarter_array; 
  set faminc; 
  array Afaminc(12) faminc1-faminc12; /*existing vars*/ 
  array Aquarter(4) incq1-incq4; /* new vars */ 
  do q = 1 to 4; 
   Aquarter[q] = Afaminc[3*q-2] + Afaminc[3*q-1] + Afaminc[3*q]; 
  end; 
run; 
/* For q=1:  Aquarter[1] = Afaminc[3*1-2] + Afaminc[3*1-1] + Afaminc[3*1] 
                         = Afaminc[1] + Afaminc[2] + Afaminc[3]  
   For q=2:  Aquarter[2] = Afaminc[3*2-2] + Afaminc[3*2-1] + Afaminc[3*2] 
                         = Afaminc[4] + Afaminc[5] + Afaminc[6] */   
proc print data=quarter_array nobs; 
  var famid incq1 faminc1-faminc3; 
run; 
 
famid    incq1    faminc1    faminc2    faminc3 
  1      9808      3281       3413       3114 
  2     10234      4042       3084       3108 
  3     18251      6015       6123       6113 

Identify patterns across variables using arrays 

In this section the objective is to identify the months in which income was less than half of previous 
month and store information in the dummy variables lowinc2-lowinc12 looping over months 2-12. Note 
that month 1 has no previous month! The variable ever indicates if income has ever been less than half 
of a previous month for any month. 
Note: The array "size" specified in the parenthesis is usually one number and it is understood by SAS 
that it is supposed to create an array where the index ranges from one to the number in the parenthesis. 
But we can specify any range for the index which suits our program. We are only interested in 
lowincome variables corresponding to months 2-12 and thus we indicate that the range for the index of 
array Alowinc should be 2 to 12. 

data pattern; 
  set faminc; 
  length ever $ 4; 
  array Afaminc(12) faminc1-faminc12; /* existing vars */ 
  array Alowinc(2:12) lowinc2-lowinc12; /* new vars */ 
  do m = 2 to 12; 
   if Afaminc[m] < (Afaminc[m-1] / 2) then Alowinc[m] = 1; 
   else Alowinc[m] = 0; 
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  end; 
  sum_low = sum(of lowinc:); /*sums over all vars with lowinc as part of name*/ 
  if sum_low > 0 then ever='Yes'; 
  if sum_low = 0 then ever='No'; 
  drop m sum_low; 
run; 
proc print data=pattern noobs heading=H; 
  var famid famininc1-faminc6 lowinc2-lowinc6 ever; 
run; 
 
famid    faminc1    faminc2    faminc3    faminc4    faminc5    faminc6 
  1        3281       3413       3114       2500       2700       3500 
  2        4042       3084       3108       3150       3800       3100 
  3        6015       6123       6113       6100       6100       6200 
 
lowinc2    lowinc3    lowinc4    lowinc5    lowinc6    ever 
   0          0          0          0          0       Yes 
   0          0          0          0          0       Yes 
   0          0          0          0          0       No 

Reshaping wide to long 

Reshaping wide to long creating only one variable--manually. 
In the problem data set we show what happens when we forget to include the appropriate output 
statements in the data step. 

data wide;  
  input famid faminc96 faminc97 faminc98 ;  
cards;  
1 40000 40500 41000  
2 45000 45400 45800  
3 75000 76000 77000  
;  
run; 
data long_manual; 
  set wide; 
  year=96; 
  faminc=faminc96; 
  output; 
  year=97; 
  faminc=faminc97; 
  output; 
  year=98; 
  faminc=faminc98; 
  output; 
run; 
proc print data=long_manual; 
  var famid year faminc; 
run; 
 
Obs    famid    year    faminc 
 1       1       96      40000 
 2       1       97      40500 
 3       1       98      41000 
 4       2       96      45000 
 5       2       97      45400 
 6       2       98      45800 
 7       3       96      75000 
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 8       3       97      76000 
 9       3       98      77000 
 
data problem; 
  set wide; 
  year=96; 
  faminc=faminc96; 
  *output; 
  year=97; 
  faminc=faminc97; 
  *output; 
  year=98; 
  faminc=faminc98; 
  output; 
run; 
proc print data=problem; 
  var famid year faminc; 
run;  
  
 Obs    famid    year    faminc 
 1       1       98      41000 
 2       2       98      45800 
 3       3       98      77000 

Reshaping wide to long creating only one variable using arrays. 

data long_array; 
  set wide; 
  array Afaminc(96:98) faminc96 - faminc98; 
  do year = 96 to 98; 
   faminc = Afaminc[year]; 
   output; 
  end; 
  drop faminc96-faminc98; 
run; 
proc print data=long_array; 
run; 
 
Obs    famid    year    faminc 
 1       1       96      40000 
 2       1       97      40500 
 3       1       98      41000 
 4       2       96      45000 
 5       2       97      45400 
 6       2       98      45800 
 7       3       96      75000 
 8       3       97      76000 
 9       3       98      77000 

Reshaping wide to long creating multiple variables (including string variables) using arrays. 

data multi_wide;  
  input famid faminc96 faminc97 faminc98 spend96 spend97 spend98  
        debt96 $ debt97 $ debt98 $ ;  
cards;  
1 40000 40500 41000 38000 39000 40000 yes yes no  
2 45000 45400 45800 42000 43000 44000 yes no  no  
3 75000 76000 77000 70000 71000 72000 no  no  no  
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;  
run; 
data multi_long; 
  set multi_wide; 
  length debt $ 3; 
  array Afaminc(96:98) faminc96-faminc98; 
  array Aspend(96:98) spend96-spend98; 
  array Adebt(96:98) debt96-debt98; 
  do year = 96 to 98; 
   faminc = Afaminc[year]; 
   spend = Aspend[year]; 
   debt = Adebt[year]; 
   output; 
  end; 
  drop faminc96-faminc98 spend96-spend98; 
run; 
proc print data=multi_long; 
  var famid year faminc spend debt; 
run; 
 
Obs    famid    year    faminc    spend    debt 
 1       1       96      40000    38000    yes 
 2       1       97      40500    39000    yes 
 3       1       98      41000    40000    no 
 4       2       96      45000    42000    yes 
 5       2       97      45400    43000    no 
 6       2       98      45800    44000    no 
 7       3       96      75000    70000    no 
 8       3       97      76000    71000    no 
 9       3       98      77000    72000    no 

Reshaping wide to long in presence of character suffixes. In the above example we had numeric 
suffixes (96, 97 and 98). We can reshape even if we have character suffixes such as old, now and 
future. 

data character; 
  length name_old $ 24 name_now $ 24 name_future $ 24; 
  input id name_old $ name_now $ name_future $ inc_old inc_now inc_future; 
cards; 
1  Ramon  Martin  Martin_Sheen  23000  50000  700000 
2  John  Johnnie  J_boy  10000 20000 600000 
3  Mary_Cathleen  Bo  Bo_Derek  15000 40000 250000 
; 
run; 
proc print data=character; 
run; 
data character_array; 
  set character; 
  length name $ 24; 
  array Aname(3) $ name_old name_now name_future; 
  array Aincome(3) inc_old inc_now inc_future; 
  do time = 1 to 3; 
   name = Aname[time]; 
   income = Aincome[time]; 
   output; 
  end; 
run; 
proc format; 
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  value t_format 1='old' 2='now' 3='future'; 
run; 
proc print data=character_array ; 
  format time t_format.; 
  var id time name income;  
run; 
 
Obs    id    time      name             income 
 1      1    old       Ramon             23000 
 2      1    now       Martin            50000 
 3      1    future    Martin_Sheen     700000 
 4      2    old       John              10000 
 5      2    now       Johnnie           20000 
 6      2    future    J_boy            600000 
 7      3    old       Mary_Cathleen     15000 
 8      3    now       Bo                40000 
 9      3    future    Bo_Derek         250000 

Understanding the functions first., last. and the retain statement 

The previous section demonstrated how to reshape data sets from wide to long. Unfortunately, 
reshaping data sets from long to wide is more complex. In order to better understand how to use arrays 
to reshape from long to wide we will need to understand how the first. and last. functions work as well 
as understand how the retain statement works. The following are examples of the retain statement. 

We would like to create a new variable called new_meas which contains the same values as 
measurement but with the missing values filled in. The new_meas variable should have a starting 
value of 0 and then change values every time measurement has a non-missing value. 

data missings; 
  input id measurement; 
cards; 
1  . 
1  2 
3  . 
2  3 
3  4 
2  . 
3  . 
1  . 
3  5 
3  6 
; 
run; 
data ex_retain; 
  set missings; 
  retain new_meas 0;  
  if measurement ne . then new_meas = measurement; 
run; 
proc print data=ex_retain; 
run; 
 
Obs    id    measurement    new_meas 
  1     1         .             0 
  2     1         2             2 
  3     3         .             2 
  4     2         3             3 
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  5     3         4             4 
  6     2         .             4 
  7     3         .             4 
  8     1         .             4 
  9     3         5             5 
 10     3         6             6 

Omitting the retain statement gives us the wrong new_meas, now it is just a copy of measurement. 

data ex_retain; 
  set missings; 
  *retain new_meas 0;  
  if measurement ne . then new_meas = measurement; 
run; 
proc print data=ex_retain; 
run; 
 
Obs    id    measurement    new_meas 
  1     1         .             . 
  2     1         2             2 
  3     3         .             . 
  4     2         3             3 
  5     3         4             4 
  6     2         .             . 
  7     3         .             . 
  8     1         .             . 
  9     3         5             5 
 10     3         6             6 

In the next example we want to create a variable called new1 which contains the cumulative sum of the 
values in the variable measurement. Note that when measurement is missing the sum should remain 
unchanged. 

data ex2_retain; 
  set missings; 
  retain new1 0;  
  if measurement ne . then new1 = new1 + measurement; 
run; 
proc print data=ex2_retain; 
run; 
 
Obs    id    measurement    new1 
  1     1         .           0 
  2     1         2           2 
  3     3         .           2 
  4     2         3           5 
  5     3         4           9 
  6     2         .           9 
  7     3         .           9 
  8     1         .           9 
  9     3         5          14 
 10     3         6          20 

Omitting the retain statement gives us the wrong new1. 

data ex2_retain; 
  set missings; 
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  *retain new1 0;  
  if measurement ne . then new1 = new1 + measurement; 
run; 
proc print data=ex2_retain; 
run; 
 
Obs    id    measurement    new1 
  1     1         .           . 
  2     1         2           . 
  3     3         .           . 
  4     2         3           . 
  5     3         4           . 
  6     2         .           . 
  7     3         .           . 
  8     1         .           . 
  9     3         5           . 
 10     3         6           . 

Looking at the first. and last. functions. 
In the first example we create indicator variables, first and last. The variable first indicates the first 
observation for each person as indicated by id; the variable last indicates the last observation for each 
person. 
Note: When using first.var_name or last.var_name we must first sort the data set on the variable 
var_name. Moreover, in the data step we must always precede first.var_name or last.var_name with 
a by var_name statement. 

proc sort data=missings out=sort_miss; 
  by id; 
run; 
data ex1; 
  set sort_miss; 
  by id; 
  if first.id then first=1; 
   else first=0; 
  if last.id then last=1; 
   else last=0; 
run; 
proc print data=ex1; 
run; 
 
Obs    id    measurement    first    last 
  1     1         .           1        0 
  2     1         2           0        0 
  3     1         .           0        1 
  4     2         3           1        0 
  5     2         .           0        1 
  6     3         .           1        0 
  7     3         4           0        0 
  8     3         .           0        0 
  9     3         5           0        0 
 10     3         6           0        1 

Combining the first. function with a retain statement to get a cumulative sum and count. 

data kids; 
  length kidname $ 4; 
  input famid kidname birth_order wt; 
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cards; 
1 Beth 1  60 
1 Barb 3  20 
4 Sam  1 100 
4 Stu  2  90 
1 Bob  2  40 
3 Pete 1  60 
3 Phil 3  20 
2 Andy 1  80 
3 Pam  2  40 
2 Al   2  50 
2 Ann  3  20 
; 
run; 

We will be using first.famid so we must sort the data set on famid. 

proc sort data=kids out=sort_kids; 
  by famid; 
run; 
data retain1; 
  set sort_kids; 
  retain sumwt count; /*carry over the value from previous obs to next obs*/ 
  by famid; 
  if first.famid then do; /*at 1st obs of each family set sumwt and count = 0*/ 
    sumwt=0; 
    count=0; 
  end; 
  sumwt = sumwt + wt; 
  count = count + 1; 
  meanwt = sumwt/count; 
run; 
proc print data=retain1; 
  var famid kidname wt sumwt count meanwt; 
run; 
 
famid    kidname     wt    sumwt    count    meanwt 
  1       Beth       60      60       1         60 
  1       Barb       20      80       2         40 
  1       Bob        40     120       3         40 
  2       Andy       80      80       1         80 
  2       Al         50     130       2         65 
  2       Ann        20     150       3         50 
  3       Pete       60      60       1         60 
  3       Phil       20      80       2         40 
  3       Pam        40     120       3         40 
  4       Sam       100     100       1        100 
  4       Stu        90     190       2         95 

By adding an if last.famid statement to the program we output only the last observation per family 
which shows the final sumwt, count and meanwt for each family. 
Note: We do not need to resort the data since it is already sorted on famid. 

data retain2; 
  set retain1; 
  by famid; 
  if last.famid then output; /*output only the last obs for each family*/ 
run; 
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proc print data=retain2; 
  var famid sumwt meanwt; 
run; 
 
famid    sumwt    count    meanwt 
  1       120       3        40 
  2       150       3        50 
  3       120       3        40 
  4       190       2        95 

Reshaping long to wide using arrays 

We will use the long_array data set created from the wide data set and we will reshape it back to the 
original wide format. 

proc print data=long_array; 
run; 
 
Obs    famid    year    faminc 
 1       1       96      40000 
 2       1       97      40500 
 3       1       98      41000 
 4       2       96      45000 
 5       2       97      45400 
 6       2       98      45800 
 7       3       96      75000 
 8       3       97      76000 
 9       3       98      77000 

We will be using first.famid so we must sort the data set on famid. 

proc sort data=long_array out=long_sort; 
  by famid; 
run; 
data wide_array; 
  set long_sort; 
  by famid; 
  retain faminc96-faminc98; 
  array Afaminc(96:98) faminc96-faminc98; 
  if first.famid then do; 
    do i = 96 to 98; 
      Afaminc[i] = .; /*initializing to missing*/ 
    end; 
  end; 
  Afaminc(year) = faminc; /*looping across values in the variable year*/ 
  *if last.famid then output; /* outputs only the last obs in a family*/ 
  drop year faminc i; 
run; 
proc print data=wide_array noobs; 
run; 
 
famid    faminc96    faminc97    faminc98 
  1        40000           .           . 
  1        40000       40500           . 
  1        40000       40500       41000 
  2        45000           .           . 
  2        45000       45400           . 
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  2        45000       45400       45800 
  3        75000           .           . 
  3        75000       76000           . 
  3        75000       76000       77000 
 
data wide_array; 
  set long_sort; 
  by famid; 
  retain faminc96-faminc98; 
  array Afaminc(96:98) faminc96-faminc98; 
  if first.famid then do; 
    do i = 96 to 98; 
      Afaminc[i] = .; 
    end; 
  end; 
  Afaminc(year) = faminc; /*looping across values in the variable year*/ 
  if last.famid then output; /* outputs only the last obs in a family*/ 
  drop year faminc i; 
run; 
proc print data=wide_array noobs; 
run; 
 
famid    faminc96    faminc97    faminc98 
  1        40000       40500       41000 
  2        45000       45400       45800 
  3        75000       76000       77000 

Comparisons across observations using arrays 

A more subtle usage of arrays. One issue in SAS data management is that we cannot do comparisons 
across observations. One solution to this problem is to transpose the data from long to wide; then we 
can use the array to do the comparisons very easily. 
The goal is to compare each observation with the previous and the next observation. If they are the 
same then flag the observation. 

data real_life; 
  input person topicA; 
cards; 
1   0   
1   1   
3  -1   
1   0   
2   0   
1   1   
2  -1   
2  -1   
3   0   
3   1   
4   0   
1   1   
4   1   
4   0   
2  -1   
4   0   
4   0   
1  -1   
; 
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run; 

We need to number the observations within each person. We will be using first.person in the process of 
doing this, so we must first sort the data on person. Then we will create the count variable which will 
enumerates the observations within each person. 

proc sort data=real_life out=sort_real; 
  by person; 
run; 
data count_real; 
  set sort_real; 
  retain count; 
  by person; 
  if first.person then count = 0; 
  count = count + 1; 
run; 
proc print data=count_real noobs; 
run; 
          topic 
person      A      count 
   1         0       1 
   1         1       2 
   1         0       3 
   1         1       4 
   1         1       5 
   1        -1       6 
   2         0       1 
   2        -1       2 
   2        -1       3 
   2        -1       4 
   3        -1       1 
   3         0       2 
   3         1       3 
   4         0       1 
   4         1       2 
   4         0       3 
   4         0       4 
   4         0       5 

We now convert the data set from long to wide. 
Note: We are using first.person and last.person but we do not need to resort the data since it is already 
sorted on person. 

data wide_real; 
  set count_real; 
  array AtopicA(6) topicA_1-topicA_6; 
  retain topicA_1-topicA_6; 
  by person; 
  if first.person then do; 
    do i = 1 to 6; 
     AtopicA[i] = .; 
    end; 
  end; 
  AtopicA(count) = topicA; /*looping across values in the variable count*/ 
  if last.person then output; /* outputs only the last obs per person */ 
run; 
proc print data=wide_real noobs; 
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  var person topicA_1-topicA_6; 
run; 
          topic    topic    topic    topic    topic    topic    flag 
person     A_1      A_2      A_3      A_4      A_5      A_6       A 
   1         0        1        0        1       1        -1       0 
   2         0       -1       -1       -1       .         .       1 
   3        -1        0        1        .       .         .       0 
   4         0        1        0        0       0         .       1 

Now, let's find the people who have the same value for 3 observations in a row. 

data three; 
  set wide_real; 
  array topic(6) topicA_1-topicA_6; 
  do i = 2 to 5; 
   if topic[i-1] ne . & topic[i] ne . & topic[i+1] ne . &  
      topic[i]=topic[i-1] & topic[i]=topic[i+1] then flagA=1; 
  end; 
  if flagA=. then flagA=0; 
run; 
proc print data=three noobs; 
  var person topicA_1-topicA_6 flagA; 
run; 
 
          topic    topic    topic    topic    topic    topic    flag 
person     A_1      A_2      A_3      A_4      A_5      A_6       A 
 
   1         0        1        0        1       1        -1       0 
   2         0       -1       -1       -1       .         .       1 
   3        -1        0        1        .       .         .       0 
   4         0        1        0        0       0         .       1 

Introduction to SAS Macro Language 

• Macro variables  
• Macro functions  
• symput and symget function to pass information to and from a data step  
• Creating a macro variable using proc sql  
• Creating a list of file names for a data step using a macro program  
• A macro program for repeating a procedure multiple times  

The SAS macro language is a very versatile and useful tool. It is often used to reduce the amount of 
regular SAS code and it facilitates passing information from one procedure to another procedure. 
Furthermore, we can use it to write SAS programs that are "dynamic" and flexible. Generally, we can 
consider macro language to be composed of macro variables and macro programs. In this seminar we 
will demonstrate how to create macro variables and how to write basic macro programs. 

Macro Variables 

A macro variable in SAS is a string variable that allows you to dynamically modify the text in a SAS 
program through symbolic substitution. The following example demonstrates how to create and use a 
macro variable. First we set up some system options to have a more concise output style.  

options nodate nonumber nocenter formdlim="-"; 
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data hsb2; 
  input  id female race ses prog 
         read write math scinece socst; 
datalines; 
 70 0 4 1 1 57 52 41 47 57 
121 1 4 2 3 68 59 53 63 61 
 86 0 4 3 1 44 33 54 58 31 
141 0 4 3 3 63 44 47 53 56 
172 0 4 2 2 47 52 57 53 61 
113 1 4 2 2 44 52 51 63 61 
 50 0 3 2 1 50 59 42 53 61 
 11 0 1 2 2 34 46 45 39 36 
 84 0 4 2 1 63 57 54 51 63 
 48 1 3 2 2 57 55 52 50 51 
 75 1 4 2 3 60 46 51 53 61 
 60 1 4 2 2 57 65 51 63 61 
 95 0 4 3 2 73 60 71 61 71 
104 0 4 3 2 54 63 57 55 46 
 38 0 3 1 2 45 57 50 31 56 
115 0 4 1 1 42 49 43 50 56 
 76 0 4 3 2 47 52 51 50 56 
195 0 4 2 1 57 57 60 56 52 
; 
run; 

Suppose that we want to look at the means of some variables and then do a regression analysis on the 
same variables.  

proc means data = hsb2; 
  var write math female socst; 
run; 
proc reg data = hsb2; 
  model read = write math female socst; 
run; 
quit; 

We can simplify the program by creating a macro variable containing all the names of the independent 
variables. A macro variable can be created by using the %let statement. All the key words in statements 
that are related to macro variables or macro programs are preceded by percent sign %; and when we 
reference a macro variable it is preceded by an ampersand sign &. When we submit our program, SAS 
will process the macro variables first, substituting them with the text string they were defined to be and 
then process the program as a standard SAS program.   

%let indvars = write math female socst; 
proc means data = hsb2; 
  var &indvars; 
run; 
 
proc reg data = hsb2; 
  model read = &indvars; 
run; 
quit; 

We can display macro variable value as text in the log window by using %put statement. 

%put my first macro variable indvars is &indvars; 
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In the log window, you will see the following: 

90   %put my first macro variable indvars is &indvars; 
my first macro variable indvars is write math female socst 

SAS has many system-defined macro variables. These macro variables are created automatically when 
SAS is started. Therefore, they are sometimes called automatic macro variables. We can use the %put 
statement again to display the values of these system-defined macro variables.   

%put _automatic_; 

Below is a partial output from the log window. The first column indicates the type of macro variable, 
the second indicates the name of the macro variable and the third contains the value of the macro 
variable. For example, SYSDSN (system data source name) is in the WORK directory and the last data 
set created was hsb2.  

92   %put _automatic_; 
AUTOMATIC AFDSID 0 
AUTOMATIC AFDSNAME 
AUTOMATIC AFLIB 
AUTOMATIC AFSTR1 
AUTOMATIC AFSTR2 
AUTOMATIC FSPBDV 
AUTOMATIC SYSBUFFR 
AUTOMATIC SYSCC 0 
AUTOMATIC SYSCHARWIDTH 1 
AUTOMATIC SYSCMD 
AUTOMATIC SYSDATE 17JUN03 
AUTOMATIC SYSDATE9 17JUN2003 
AUTOMATIC SYSDAY Tuesday 
AUTOMATIC SYSDEVIC 
AUTOMATIC SYSDMG 0 
AUTOMATIC SYSDSN WORK    HSB2 

These macro variables can be used in the same way as ordinary macro variables. For example, in the 
following example, we use two of the system-defined macro variables in the title statement. 

title "today's date is &SYSDATE9 and today is &SYSDAY"; 
proc means data = hsb2; 
  var &indvarS; 
run; 
today's date is 17JUN2003 and today is Tuesday. 
The MEANS Procedure 
Variable     N            Mean         Std Dev         Minimum         Maximum 
------------------------------------------------------------------------------ 
write       18      53.2222222       7.7273811      33.0000000      65.0000000 
math        18      51.6666667       7.1373088      41.0000000      71.0000000 
female      18       0.2777778       0.4608886               0       1.0000000 
socst       18      55.3888889       9.6536423      31.0000000      71.0000000 
------------------------------------------------------------------------------ 

Notice that in the title statement we used double quotation marks around the title. Normally, we can use 
either single quotes or double quotes. When macro variables are embedded in the title statement, only 
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double quotes will work. The following example shows some of the problems that might occur when 
using single quotes with macro variables. 

title 'The date is &SYSDATE9 and today is &SYSDAY'; 
proc means data = hsb2; 
  var &indvarS; 
run; 
The date is &SYSDATE9 and today is &SYSDAY. 
The MEANS Procedure 
Variable     N            Mean         Std Dev         Minimum         Maximum 
------------------------------------------------------------------------------ 
write       18      53.2222222       7.7273811      33.0000000      65.0000000 
math        18      51.6666667       7.1373088      41.0000000      71.0000000 
female      18       0.2777778       0.4608886               0       1.0000000 
socst       18      55.3888889       9.6536423      31.0000000      71.0000000 
------------------------------------------------------------------------------ 

We can also display macro variables defined by a user. The macro variable indvar, which was defined 
earlier, is an example of a user defined macro variable. Since indvar was defined outside a macro 
program it is by default a global macro variable. A global macro variable can be use in any SAS 
procedure or data step whereas a local macro variable can only be used inside the macro program in 
which it was defined. 

%put _user_; 
127  %put _user_; 
GLOBAL INDVARS write math female socst 

Summary:  

In this section, we have mentioned the following. 

• defining a macro variable by using %let statement;  
• displaying macro variable values as text in the SAS log by using %put statement;  
• System-defined automatic macro variables  

o %put _automatic_;  
• User-defined macro variables  

o %put _user_;  
• Substituting the value of a macro variable in a program;  

o use of &;  
o double quotes vs. single quotes;  

 

Macro functions 

There are many functions that are related to macro variables. They include string functions, evaluation 
functions and others. In the this section we will show some examples of  these different types of 
functions.. For a complete list of macro functions, please refer to the SAS online documentation page 
on Macro Functions. 

http://saspdf.ats.ucla.edu/sasdoc/sashtml/macro/z1072445.htm
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Some of the most commonly used string functions include %upcase, %substr and %scan. The 
function %scan takes a string and an integer i as arguments and returns the ith word in the string. The 
%substr function will pick out a subcomponent of a string variable; this function takes three arguments 
where the first argument is the string variable (a macro variable), the second is the start position of the 
substring and the third argument is the length of the substring. The %upcase function creates a new 
variable which contains the upper case version of a string variable. 

%put &indvars; 
938  %put &indvars; 
write math female socst 
%let newind = %upcase(&indvars); 
%put &newind; 
940  %let newind = %upcase(&indvars); 
941  %put &newind; 
WRITE MATH FEMALE SOCST 
%let word2 = %scan(&indvars, 2); 
%put &word2; 
943  %let word2 = %scan(&indvars, 2); 
944  %put &word2; 
math 
%let subword = %substr(&indvars, 5, 3); 
%put &subword; 
946  %let subword = %substr(&indvars, 5, 3); 
947  %put &subword; 
e m 

The evaluation functions evaluate arithmetic and logical expressions. The following are examples of 
very basic arithmetic and logical evaluation functions. 

%let k = 1; 
%let tot = &k + 1; 
%put &tot; 
989   %let k = 1; 
990   %let tot = &k + 1; 
991   %put &tot; 
1 + 1 
%let tot = %eval(&k + 1); 
%put &tot; 
992   %let tot = %eval(&k + 1); 
993   %put &tot; 
2 

Function %eval uses integer arithmetic. That means we will get an error message when any part of the 
expression is not an integer nor a logic statement.  For example,  

%let tot = %eval(&k + 1.234); 
995   %let tot = %eval(&k + 1.234); 
ERROR: A character operand was found in the %EVAL function or %IF condition where a 
numeric 
       operand is required. The condition was: 1 + 1.234 

Instead, we can use %sysevalf function as shown in the following example. 

%let tot = %sysevalf(&k + 1.234); 
%put &tot; 
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996   %let tot = %sysevalf(&k + 1.234); 
997   %put &tot; 
2.234 

Summary: 

In this section, we have mentioned the following. 

• string functions;  
o %upcase;  
o %substr;  
o %scan;  

• evaluation functions;  
o %eval;  
o %sysevalf;  

 

Symput and symget function to pass information to and from a data step  

There are two functions that are particularly useful when we want to get information in and out of a data 
step. These are symput and symget. You use symput to  get information from a data step into a macro 
variable and symget is used when we want to get information from a macro variable into a data step.  

The syntax used is CALL SYMPUT(argument1, argument2), where argument1 is the macro variable 
that we are creating which will store the value that is being passed out of the data step and argument2 
is the value in string format. Notice that the new macro variable has to be in single quotes. 

proc means data = hsb2 n; 
  var write; 
  where write>=55; 
  output out=w55 n=n; 
run; 
proc print data = w55; 
run; 
data _null_; 
  set w55; 
  call symput('n55', n); 
run; 
%put &n55 Observations have write >=55; 
118  %put &n55 Observations have write >=55; 
9 Observations have write >=55 

The syntax for symget is symget(argument) where argument can be the name of a macro variable, a 
string variable or a character expression. Suppose that we want to create a new variable in the hsb2 data 
set that is constant across the entire data set and the value for this variable is the number of students 
who have a writing score 55 or higher. We have already stored the number in the macro variable 
number so this will be the argument for the symget function. Notice that even though number is a 
macro variable we do not use the ampersand sign preceding number, instead we use single quotes. 

data hsb2_55; 
  set hsb2; 
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  w55 = symget('number')+0; 
run; 
proc print data = hsb2_55; 
  var write w55; 
run; 
 
Obs    write    w55 
  1      52      9 
  2      59      9 
  3      33      9 
  4      44      9 
  5      52      9 
  6      52      9 
  7      59      9 
  8      46      9 
  9      57      9 
 10      55      9 
 11      46      9 
 12      65      9 
 13      60      9 
 14      63      9 
 15      57      9 
 16      49      9 
 17      52      9 
 18      57      9 

Summary:  

In this section, we have mentioned the following. 

• symput -- call symput('new_macro_variable', value_in_string_format)  
• symget --symget('macro_variable')  

 

Creating macro variables using proc sql 

Another way of creating macro variables is through proc sql. SQL stands for Structured Query 
Language and is a standardized database language. Proc sql can create SAS macro variables that 
contains values from a query result. In the following example we create a macro variable called w55, 
which contains the number of students whose writing scores are higher than or equal to 55. 

proc sql; 
  select sum(write>=55) into :w55 
  from hsb2; 
quit; 
%put w55 is &w55; 
35   %put w55 is &w55; 
w55 is        9 

The example below shows how to create group means for each level of the variable ses and store them 
in three macro variables called write1, write2 and write3. We make use of the %put function to 
display the values of the macro variables in the log file. 
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proc sql; 
  select mean(write) into :write1 - :write3 
  from hsb2 
  group by ses; 
quit; 
%put write1 to write3 are &write1, &write2 and &write3; 
311  %put write1 to write3 are &write1, &write2 and &write3; 
write1 to write3 are 52.66667, 54.8 and 50.4 

Summary: 

In this section, we have mentioned the following. 

• proc sql with select into statement to create macro variable(s);  

 

Creating a list of file names for a data step using a macro program 

Thus far we have gained familiarity with macro variables.  Now we will use this knowledge to write 
some macro programs. A macro program always starts with the %macro statement including the user 
defined program name and it ends with a %mend statement. When SAS is going to compile a SAS 
program it first sends the program to a word scanner which intercepts the macro syntax before it can 
reach the compiler. The macro processor translates the macro syntax into standard SAS syntax which is 
then compiled. Thus, the macro language serves as a dynamic editor for SAS programs. 

Let's first create some exercise data sets. In the following data step, we create four data files: file1 - 
file4.  

data file1 file2 file3 file4; 
  input a @@; 
  if _n_ <= 3 then output file1; 
  if 3 < _n_<=  6 then output file2; 
  if 6 < _n_ <= 9 then output file3; 
  if 9 < _n_ <=12 then output file4; 
cards; 
1 2 3 4 5 6 7 8 9 10 11 12 
; 
run; 

In the following program the goal is to stack a number of data sets together into one data set. Suppose 
we have four data sets that are named file1, file2 and so forth. In a standard SAS program we would 
have to write out the names of all the files in the set statement. In the macro program we will 
demonstrate how the program will write the names of the files in the set statement for us. 

In general, it is always a good idea to write a regular SAS program first, test it and then turn it into a 
macro program. For example, the following data step will be our base program for stacking the four 
files together. 

data all; 
  set  
   file1  
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   file2  
   file3  
   file4 
  ; 
run; 

How do we turn this piece of SAS program into a SAS macro program? We need to start with a 
%macro statement where we specify the name of the macro; then we write the program and finally we 
end the macro program with a %mend statement. The only part from the SAS program that we need to 
modify substantially is the set statement. Consider the macro program called combine in the following 
example. We need to create a do loop in the set statement in order to create the list of file names 
automatically rather than writing them out one by one. 

%macro combine; 
  data all_1; 
    set 
    %do i = 1 %to 4; 
      file&i 
    %end;  
    ; 
  run; 
%mend; 

We submit the macro program in the same way as we submit a SAS program. The program can then be 
executed by submitting the following code which consists of a percent sign followed by the name of the 
macro program.  Note that macro programs are called in a statement, which unlike all standard SAS 
programs, does NOT end in a semicolon. Another point of interest is that our macro does not take any 
arguments. In order to see what is going on behind the scene, we turn on a SAS system option called 
mprint (for macro print). It will print out SAS statements generated by macro execution.  

*executing the combine program; 
options mprint; 
%combine 

Here is what has happened in the log window: 

167  %combine 
MPRINT(COMBINE):   data all_1; 
MPRINT(COMBINE):   set file1 file2 file3 file4 ; 
MPRINT(COMBINE):   run; 
NOTE: There were 3 observations read from the data set WORK.FILE1. 
NOTE: There were 3 observations read from the data set WORK.FILE2. 
NOTE: There were 3 observations read from the data set WORK.FILE3. 
NOTE: There were 3 observations read from the data set WORK.FILE4. 
NOTE: The data set WORK.ALL_1 has 12 observations and 1 variables. 
NOTE: DATA statement used: 
      real time           0.02 seconds 
      cpu time            0.02 seconds 

Ideally we would like to be able to stack any number of data sets into one long data set. The current 
macro program stacks exactly four data sets together, no more and no less. So, we would like to 
generalize the program to take an argument which will specify how many data sets we are stacking in 
any specific execution of the program. 
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When a macro program takes arguments we list the names of the arguments in parenthesis after the 
name of the program in the %macro statement. In the following example we include an argument 
called num in the new version of the combine program. Inside the macro program we use &num to 
refer to the value passed by the argument. &num is now a local macro variable which only "lives" 
inside the combine macro program. If we refer to &num outside the combine program SAS will have 
no idea what we are talking about and we will get an error indicating that the reference to &num was 
unresolved. 
 
The only other change to the program is that instead of executing the do loop exactly four times we now 
execute it &num number of times. At the end of the code when we finally execute the new version of 
the combine program we specify that we want to execute the do loop three times thus stacking together 
file1, file2 and file3. 

%macro combine(num); 
  data big; 
    set 
    %do i = 1 %to &num; 
      file&i 
    %end;  
    ; 
  run; 
%mend; 
 
*executing the macro program; 
%combine(3) 
180  %combine(3) 
MPRINT(COMBINE):   data big; 
MPRINT(COMBINE):   set file1 file2 file3 ; 
MPRINT(COMBINE):   run; 
NOTE: There were 3 observations read from the data set WORK.FILE1. 
NOTE: There were 3 observations read from the data set WORK.FILE2. 
NOTE: There were 3 observations read from the data set WORK.FILE3. 
NOTE: The data set WORK.BIG has 9 observations and 1 variables. 

 

A macro program for repeating a procedure multiple times 

Suppose that we have a number of binary dependent variables and two independent variables. Our task 
is to fit a logistic model for each of the dependent variables on the same two independent variables. We 
could simply write a proc logistic for each model but this would be tedious and typing intensive. 
Instead we choose to write a macro program which will automatically cycle through all the dependent 
variables and fit a logistic model to each one of the dependent variables. 

Let's first create a data set which consists of the dependent variables v1 to v5 and predictors ind1 and 
ind2.  

data xxx; 
  input v1-v5 ind1 ind2; 
  cards; 
1 0 1 1 0 34 23 
0 0 1 0 1 22 32 
1 1 1 0 0 12 10 
0 1 0 1 1 56 90 
0 1 0 1 1 26 80 
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1 1 0 0 0 46 45 
0 0 0 1 1 57 53 
1 1 0 0 0 22 77 
0 1 0 1 1 44 45 
1 1 0 0 0 41 72 
; 
run; 

To get a better idea of how we will write the macro program let us first write a standard SAS program 
for fitting the logistic model to v1. 

proc logistic data = xxx descending; 
  model v1 = ind1 ind2; 
run; 

What part of the program do we have to change? The key change will be in the model statement. The 
following program will demonstrate one way of changing it. We create a do loop which will iterate 
through each of the dependent variables and fit a logistic model for each one. We include a number 
argument, called num, which will specify how many dependent variables we will be using. The do loop 
takes advantage of the naming convention of the dependent variables.  

%macro mylogit(num); 
   %do i = 1 %to &num; 
      title "dependent variable is v&i"; 
      proc logistic data=xxx des; 
        model v&i = ind1 ind2; 
      run; 
  %end; 
%mend; 
*executing the macro using 5 dependent variable; 
%mylogit(5) 

This was merely the first attempt to automate the repetitive process. We can further modify the program 
in many different ways. 

Debugging a macro program 

Before modifying our macro program, let's pause for a second. When we write SAS macro programs, 
SAS actually will try to help us to detect errors in the program. Two SAS options are particularly useful: 
mprint and mlogic. We have seen how option mprint helps us to see the translation process from a 
macro program to regular SAS statements. Let's add these two options along with other SAS options. 
Notice that, SAS spills out all the relevant information related to a macro program or macro variable to 
log window. The other way to debug  is to use the %put statement manually inside our macro program. 
For example, in the example below, %put is used after the looping. We can see if the looping stops 
correctly this way. 

options mprint mlogic; 
%macro mylogit(num); 
  %do i = 1 %to &num; 
    proc logistic data=xxx des; 
      model v&i = ind1 ind2; 
    run; 
  %end; 
  %put &i; 
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%mend; 
 
*executing the macro using 5 dependent variable; 
%mylogit(5) 
... 
... 
... 
MLOGIC(MYLOGIT):  %DO loop index variable I is now 6; loop will not iterate again. 
MLOGIC(MYLOGIT):  %PUT &i 
6 
MLOGIC(MYLOGIT):  Ending execution. 

Specifying dependent variable names  

There are some limitation to the mylogit macro program in its current form; it only works iteratively 
when the dependent variable names are of the form v1, v2 and so forth. We would like to modify the 
mylogit macro to be able to take any type of dependent variable names and we would like to be able to 
simply pass the macro a variable list as an argument and then the macro will fit a model to every 
variable in that list. To accomplish this goal we make use of the macro function %scan which will scan 
the list of dependent variables one at a time. The name of the dependent variable will then be stored in 
the local macro variable dep which is then passed in to the logistic procedure. The while loop works in 
that we are asking SAS to iterate the process until dep is equal to missing, in other words, the loop 
iterates until the end of the list. We increment the local macro variable k for each iteration of the while 
loop because &k is the position indicator in the variable list.  Thus, for the first iteration of the while 
loop &k=1, and the scan function stores the first variable in the dependent variable list in the local 
macro variable dep.  Then SAS fits a logistic model using the first variable in the list as the dependent 
variable and then it increments &k=2.  Now scan stores the second variable in the dependent variable 
list in dep and this variable is used as the dependent variable in the logistic procedure.  This continuous 
until the dependent variable list has been exhausted at which point dep will be equal to missing and 
SAS will exit the while loop. 

%macro mylogit1(all_deps); 
  %let k=1; 
  %let dep = %scan(&all_deps, &k); 
  %do %while("&dep" NE ""); 
    title "dependent variable is &dep"; 
    proc logistic data=xxx des; 
      model &dep = ind1 ind2; 
    run; 
    %let k = %eval(&k + 1); 
    %let dep = %scan(&all_deps, &k); 
  %end; 
%mend; 
 
*run the program for the frist three v's; 
%mylogit1(v1 v2 v3) 

Saving the estimates to a data set  

The next generalization that we would like to implement is to be able to save the estimates from each 
logistic model in a data set. So, the macro program will now take two arguments: all_dep which is the 
dependent variable list and outest which is the name of the data set containing the estimates of all the 
logistic models.  The mylogit1 macro program takes uses the outest option in the proc logistic 
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statement to create a data set containing the parameter estimates for all the model fitted.  The parameter 
estimates for the first model fitted will be stored in the data set called _est1, the estimates for the second 
model in the data set _est2 and so forth.  If we specify a name for the outest argument then the program 
tells SAS to stack all the data sets containing the parameter estimates in a data set with this name.  If we 
do not specify a name then the program uses a proc datasets to delete all the data sets containing the 
parameter estimates.   

%macro mylogit1(all_deps, outest); 
  %let k=1; 
  %let dep = %scan(&all_deps, &k); 
  %do %while("&dep" NE ""); 
    title "dependent variable is &dep"; 
    proc logistic data=xxx des outest=_est&k; 
      model &dep = ind1 ind2; 
    run; 
    %let k = %eval(&k + 1); 
    %let dep = %scan(&all_deps, &k); 
  %end; 
  %if "&outest" NE "" %then  
  %do; 
    data &outest; 
      set  
      %do i = 1 %to &k - 1; 
        _est&i 
      %end;  
      ; 
    run;    
    %let k = %eval(&k - 1); 
    proc datasets; 
      delete _est1 - _est&k; 
    run; 
  %end; 
  %else  
  %do; 
     %put no dataset name was provided, files are not combined; 
  %end; 
%mend; 
%mylogit1(v1 v2 v3) 
 
%mylogit1(v1 v2 v3, a) 
proc print data = a; 
  var intercept ind1 ind2; 
run; 
 
Obs    Intercept      ind1        ind2 
 
 1       2.4570     -0.04282    -0.01709 
 2       0.3278     -0.09480     0.09078 
 3      33.3421     -0.50434    -0.40122 

A more flexible version of the same macro program  

We can generalize the macro program even more. The new version of the macro program called 
mylogita will allow the user to specify an input data file, a list of dependent variables, a list of 
predictors and an output data set containing the parameter estimates. This macro program actually 
contains two types of arguments: positional arguments and non-positional arguments. The non-
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positional arguments are followed by an equal sign and possibly a default value. The argument indvars 
is an example of a non-positional argument which does not have a defaults value and the argument 
outest is a non-positional argument with the default value of _out. The arguments indata and all_deps 
are both examples of positional arguments. The difference between these types of arguments occur 
when we want to execute the macro program. Positional arguments must appear in the code executing 
the macro in the exact same order they appear in the macro program. In other words, the name of the 
input data set has to be the first argument in the code, the list of dependent variables has to be the 
second argument. The order of the list of independent variables and the name of the data set containing 
the parameter estimates is not fixed. We can change the order of these arguments, all we have to do is 
specify which argument we are giving the value for by including the name of the argument and an equal 
sign and the value. Thus, in the first example where we execute the mylogita macro we declare that the 
list of independent variables should include ind1 and ind2 (by specifying indvars = ind1 ind2) and that 
the name of the data set containing the parameter estimates should be myparms (by specifying outest = 
myparms). In the second example we switch the order of these two arguments without any problems 
since we use the argument name, equal sign and value syntax. 

%macro mylogita(indata, all_deps, indvars =, myout =_out ); 
  %let k=1; 
  %let dep = %scan(&all_deps, &k); 
  %do %while(&dep NE); 
    title "The dependent variable is &dep"; 
    title2 "The independent variables are &indvars"; 
    proc logistic data=&indata des outest=est&k; 
      model &dep = &indvars; 
    run; 
    %let k = %eval(&k + 1); 
    %let dep = %scan(&all_deps, &k); 
  %end; 
  data &myout; 
    set  
    %do i = 1 %to &k - 1; 
      est&i 
    %end;  
    ; 
  run; 
%mend; 
*run the program; 
%mylogita(xxx, v1 v2 v3, indvars = ind1 ind2, myout = myparms) 
 
title; 
proc print data = myparms; 
  var _name_ intercept ind1 ind2; 
run; 
Obs    _NAME_    Intercept      ind1        ind2 
 1       v1        2.4570     -0.04282    -0.01709 
 2       v2        0.3278     -0.09480     0.09078 
 3       v3       33.3421     -0.50434    -0.40122 
* run the program again: unpositional arguments can be reordered; 
%mylogita(hsb2,female, myout = myparm1, indvars = write math) 
 
title; 
proc print data = myparm1; 
  var _name_ intercept write math; 
run; 
Obs    _NAME_    Intercept      write        math 
 1     female     -3.49607    0.068307    -0.022230 
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Summary: 

In this long section, we have mentioned the following. 

• defining a SAS macro program with %macro and %mend;  
• making use of %let statement to create macro variables inside a macro program;  
• making use of macro functions such as %scan and %eval;  
• how to call a SAS macro program (executing a macro program);  
• how to debug a SAS macro program;  
• positional vs. non-positional  arguments;  

 

SAS Graphics 

Topics 

• Graph-N-Go  
• SAS/INSIGHT  
• SAS/ANALYST  
• SAS/PROCS  

1. Graph-N-Go 

Graph-N-Go is mainly for reporting. Its strong point is in its flexibility to save a plot in various formats, 
including graphic format and html format. Its week point is that it only support a few graph types. We 
will show how to save a graph into a dynamic html format, so the graph can be modified later. We will 
also show how to save a graph in a graphic format.  

    Menu: Solution-->Reporting-->Graph-N-Go 

• Bar Graph: Reading vs. Ses  
o Reading in a data set  
o Choose bar chart icon for a bar chart  
o Choose variables--> category variable vs. response variable  
o Titles/Footnotes--> text, font, color, etc  
o Appearance--> Color scheme, bar style, etc  
o No need to adjust the size, it can be done later  
o Right click on the graph, choose Grow/Shrink to resize the graph  
o Right click on the graph, choose Category to change the categorical variable to get a 

different bar chart  
o Right click on the graph and choose Export to save the plot to a file: html-->Interactive 

activeX  

Here is the html page that has been created.  

  

http://www.ats.ucla.edu/stat/sas/seminars/sasGraphics/reading_ses.html
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• Within the html file we just created, we can change the plot and save it later as a gif file.  
o  -->Options-->Axis-->Label options-->Customer Label  
o  -->Options-->Data-->Statistic  
o  -->Options-->Legend  
o -->Bar options->Color and Shape  

• Regression type of plots  
o Choose new plot icon for a scatter plot  
o Choose variables, reading score and math score  
o Choose plotting style to be regression style to get the confidence interval band  
o Choose Export to save it to a graphic file in .gif format  

 

   

2. SAS/Insight 

SAS/Insight is another package that can be used to explore variables and relationships among variables. 
Its strong point is that it offers a lot of good detailed information on variables, such univariate statistics. 
You can save all the graphs to gif files, or other graphic format files. But it is not easy to modify the 
style or the color of the graphs. Its interactive feature makes it strong for exploring data both graphically 
and analytically. 

• Solutions-->Analysis-->Interactive Data Analysis  
• Choose a data set: Libname (Directory)-->Data set name  
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• Choose an analysis  
o Univariate Analysis: Analyze-->Distribution(Y)  
o File-->Save-->Graphics Files-->Specify the path and choose One Per File  

 

 

o Rotating plot (Y Z X)  
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3. SAS/Analyst 

SAS/Analyst tries to be both for exploring and reporting. It is a good place to start to have a look at the 
graphs that you are interested. There are many types of graphs that you can create and the best part of it 
is that it also creates the SAS code for generating the plots in case you want to change some of the 
settings or modify the code for other use. This is not only true for graphics, it is also true for statistical 
analyses. 
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• Solutions-->Analysis-->Analyst  
• File-->Open by SAS Name  
• Choose an analysis or a graph type  

o Stacked bar chart  

• SAS code generated automatically:  
• *-------------------------------------------+                          
• | Generated: Tuesday, May 14, 2002 11:39:23 |                          
• | Data: c:\temp\_TD416\Hsb2     |                          
• +-------------------------------------------*;                         
•    title;                                
•    footnote;                                
• goptions ftext=SWISS ctext=BLACK htext=1.0 cells;                         
• goptions colors=(red green blue cyan purple tan pink orange                     
•      brown yellow plum peru salmon lime);                        
• axis1 label=(a=90 r=0);                              
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• pattern value=solid;                              
• *** Produce bar charts ***;                             
•                                    
• proc gchart data=Work.Hsb2  ;                              
•    vbar3d WRITE                                
•    / description="Vertical Bar Chart of WRITE"                         
•   frame                                  
•   woutline=1                                
•   type=FREQ                                 
•   group=female                                 
•   subgroup=GROUP                               
•   coutline=CX008080                               
•   cframe=CXF7E1C2                              
•   inside=FREQ                               
•   ;                                   
• run;                                  
• goptions ftext= ctext= htext= ;                            
• quit;  
•  

4. SAS/Procs: Univariate, Boxplot, Gplot, Gchart, G3d to create customized more complex plots.  

proc univariate data = hsb2 noprint; 
histogram write; 
run; 

 
/*A better one of the same histogram.*/ 
proc univariate data = hsb2 noprint; 
title "Histogram for variable write"; 
histogram write /cfill=ligr normal cframe=liy barwidth=8 cv=black; 
inset mean std max min; 
run; 
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title; 
 

 

proc sort data = hsb2; 
  by group; 
run; 
goptions reset = all; 
proc boxplot data = hsb2; 
  plot math*group; 
run; 
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goptions reset = all; 
axis1 value=("Group 1" "Group 2" "Group 3" "Group 4") label=('Group'); 
axis2 label = ('Math Score' a=90  justify=center); 
proc boxplot data = hsb2; 
  title1 'Boxplot of Math Score vs. group'; 
  plot math*group /boxconnect=mean boxstyle=schematic haxis=axis1 vaxis = axis2; 
run; 
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goptions reset = all gunit=pct border cback=white 
         colors=( blue green red black) ftext=swiss 
         ftitle=swissb htitle=3 htext=3.5 ctitle=black ctext=black; 
axis1 label=(a=90 'Mean for Variable Write') minor=none; 
 
proc gchart data=hsb2; 
 vbar group /sumvar=write axis=axis1 
             ERRORBAR= bars width = 5 gspace=2 discrete 
             type=mean cframe=ligr coutline= blue cerror=black; 
run; 
quit; 

  
goptions reset = all; 
symbol1 i = none c = blue v = dot w=1 pointlabel=("#id"); 
symbol2 i = none c = red v = dot; 
proc gplot data = hsb2; 
  plot write*math = 1 ; 
where math > 60; 
run; 
quit; 
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symbol1 i = none c = blue v = diamond; 
symbol2 i = none c = red v = triangle; 
proc gplot data=hsb2; 
  plot math*read =1 science*read =2 /overlay hminor=0 vminor=0; 
run; 
quit; 

 
proc sort data= hsb2; 
by read; 
run; 
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symbol1 i = join v=star c=blue l = 1; 
symbol2 i = join v=circle c=red l = 21; 
proc glm data = hsb2; 
 model write = read female female*read ; 
 output out= pred p=pred; 
run; 
quit; 
proc gplot data = pred; 
  plot pred*read = female /overlay; 
run; 
quit; 

 
proc g3d data= hsb2; 
  scatter write*read =math; 
run; 
quit;   
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5. Regression diagnostic plots 

/*regression diagnostic plots from proc reg*/ 
proc reg data = hsb2 noprint; 
  model write = female math ; 
  plot rstudent.*predicted. / vref =(-3  3) vrefl=4 cvrefl=red; 
  plot rstudent.*obs.; 
  plot cookd.*predicted.; 
  plot cookd.*obs.; 
run; 
quit; 
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