
 1

Introduction to the features of SAS

1. Introduction

This module illustrates some of the features of The SAS System. SAS is a comprehensive package with
very powerful data management tools, a wide variety of statistical analysis and graphical
procedures. This is a very brief introduction and only covers just a fraction of all of the features of SAS.
We use the following data file to illustrate the features of SAS. This data file contains information
about 26 automobiles, namely their make, price, miles per gallon, repair rating (in 1978), weight in
pounds, length in inches, and whether the car was foreign or domestic. Here is the data file.

make price mpg rep78 weight length foreign

AMC 4099 22 3 2930 186 0
AMC 4749 17 3 3350 173 0
AMC 3799 22 3 2640 168 0
Audi 9690 17 5 2830 189 1
Audi 6295 23 3 2070 174 1
BMW 9735 25 4 2650 177 1
Buick 4816 20 3 3250 196 0
Buick 7827 15 4 4080 222 0
Buick 5788 18 3 3670 218 0
Buick 4453 26 3 2230 170 0
Buick 5189 20 3 3280 200 0
Buick 10372 16 3 3880 207 0
Buick 4082 19 3 3400 200 0
Cad. 11385 14 3 4330 221 0
Cad. 14500 14 2 3900 204 0
Cad. 15906 21 3 4290 204 0
Chev. 3299 29 3 2110 163 0
Chev. 5705 16 4 3690 212 0
Chev. 4504 22 3 3180 193 0
Chev. 5104 22 2 3220 200 0
Chev. 3667 24 2 2750 179 0
Chev. 3955 19 3 3430 197 0
Datsun 6229 23 4 2370 170 1
Datsun 4589 35 5 2020 165 1
Datsun 5079 24 4 2280 170 1
Datsun 8129 21 4 2750 184 1

The program below reads the data and creates a temporary data file called auto. The descriptive
statistics shown in this module are all performed on this data file called auto.

DATA auto ;
 INPUT make $ price mpg rep78 weight length foreign ;
DATALINES;
AMC 4099 22 3 2930 186 0
AMC 4749 17 3 3350 173 0
AMC 3799 22 3 2640 168 0
Audi 9690 17 5 2830 189 1
Audi 6295 23 3 2070 174 1
BMW 9735 25 4 2650 177 1
Buick 4816 20 3 3250 196 0
Buick 7827 15 4 4080 222 0

 2

Buick 5788 18 3 3670 218 0
Buick 4453 26 3 2230 170 0
Buick 5189 20 3 3280 200 0
Buick 10372 16 3 3880 207 0
Buick 4082 19 3 3400 200 0
Cad. 11385 14 3 4330 221 0
Cad. 14500 14 2 3900 204 0
Cad. 15906 21 3 4290 204 0
Chev. 3299 29 3 2110 163 0
Chev. 5705 16 4 3690 212 0
Chev. 4504 22 3 3180 193 0
Chev. 5104 22 2 3220 200 0
Chev. 3667 24 2 2750 179 0
Chev. 3955 19 3 3430 197 0
Datsun 6229 23 4 2370 170 1
Datsun 4589 35 5 2020 165 1
Datsun 5079 24 4 2280 170 1
Datsun 8129 21 4 2750 184 1;
RUN;

PROC PRINT DATA=auto(obs=10);
RUN;

The output of the proc print is shown below. You can compare the program to the output below.

OBS MAKE PRICE MPG REP78 WEIGHT LENGTH FOREIGN
 1 AMC 4099 22 3 2930 186 0
 2 AMC 4749 17 3 3350 173 0
 3 AMC 3799 22 3 2640 168 0
 4 Audi 9690 17 5 2830 189 1
 5 Audi 6295 23 3 2070 174 1
 6 BMW 9735 25 4 2650 177 1
 7 Buick 4816 20 3 3250 196 0
 8 Buick 7827 15 4 4080 222 0
 9 Buick 5788 18 3 3670 218 0
 10 Buick 4453 26 3 2230 170 0

2. Descriptive statistics in SAS

We can get descriptive statistics for all of the variables using proc means as shown below.

PROC MEANS DATA=auto;
RUN;

Here is the output produced by the proc means statements above.

Variable N Mean Std Dev Minimum Maximum
--
PRICE 26 6651.73 3371.12 3299.00 15906.00
MPG 26 20.9230769 4.7575042 14.0000000 35.0000000
REP78 26 3.2692308 0.7775702 2.0000000 5.0000000
WEIGHT 26 3099.23 695.0794089 2020.00 4330.00
LENGTH 26 190.0769231 18.1701361 163.0000000 222.0000000
FOREIGN 26 0.2692308 0.4523443 0 1.0000000
--

 3

We can get descriptive statistics separately for foreign and domestic cars (i.e., broken down by foreign)
as shown below.

PROC MEANS DATA=auto;
 CLASS foreign;
RUN;

The output from the above statements is shown below.

 FOREIGN N Obs Variable N Mean Std Dev Minimum

 0 19 PRICE 19 6484.16 3768.46 3299.00
 MPG 19 19.7894737 4.0356598 14.0000000
 REP78 19 2.9473684 0.5242650 2.0000000
 WEIGHT 19 3347.89 627.1769106 2110.00
 LENGTH 19 195.4210526 17.9639014 163.0000000

 1 7 PRICE 7 7106.57 2101.83 4589.00
 MPG 7 24.0000000 5.5075705 17.0000000
 REP78 7 4.1428571 0.6900656 3.0000000
 WEIGHT 7 2424.29 325.1593016 2020.00
 LENGTH 7 175.5714286 8.4628038 165.0000000

 FOREIGN N Obs Variable Maximum

 0 19 PRICE 15906.00
 MPG 29.0000000
 REP78 4.0000000
 WEIGHT 4330.00
 LENGTH 222.0000000

 1 7 PRICE 9735.00
 MPG 35.0000000
 REP78 5.0000000
 WEIGHT 2830.00
 LENGTH 189.0000000

We can get detailed descriptive statistics for price using proc univariate as shown below.

PROC UNIVARIATE DATA=auto;
 VAR PRICE;
RUN;

The results are shown below.

 Univariate Procedure
Variable=PRICE

 Moments
 N 26 Sum Wgts 26
 Mean 6651.731 Sum 172945
 Std Dev 3371.12 Variance 11364449
 Skewness 1.470727 Kurtosis 1.534672
 USS 1.4345E9 CSS 2.8411E8
 CV 50.68034 Std Mean 661.131

 4

 T:Mean=0 10.06114 Pr>|T| 0.0001
 Num ^= 0 26 Num > 0 26
 M(Sign) 13 Pr>=|M| 0.0001
 Sgn Rank 175.5 Pr>=|S| 0.0001

 Quantiles(Def=5)

 100% Max 15906 99% 15906
 75% Q3 8129 95% 14500
 50% Med 5146.5 90% 11385
 25% Q1 4453 10% 3799
 0% Min 3299 5% 3667
 1% 3299
 Range 12607
 Q3-Q1 3676
 Mode 3299

 Extremes
 Lowest Obs Highest Obs
 3299(17) 9735(6)
 3667(21) 10372(12)
 3799(3) 11385(14)
 3955(22) 14500(15)
 4082(13) 15906(16)

We can get a frequency distribution of rep78 (the repair rating of the car) using proc freq as shown
below.

PROC FREQ DATA=auto;
 TABLES rep78 ;
RUN;

The results are shown below.

 Cumulative Cumulative
REP78 Frequency Percent Frequency Percent
--
 2 3 11.5 3 11.5
 3 15 57.7 18 69.2
 4 6 23.1 24 92.3
 5 2 7.7 26 100.0

We can make a two way table showing the frequencies for rep78 for foreign and domestic cars as
shown below.

PROC FREQ DATA=auto ;
 TABLES rep78 * foreign ;
RUN;

The output is shown below.

 TABLE OF REP78 BY FOREIGN

REP78 FOREIGN

Frequency|

 5

Percent |
Row Pct |
Col Pct | 0| 1| Total
---------+--------+--------+
 2 | 3 | 0 | 3
 | 11.54 | 0.00 | 11.54
 | 100.00 | 0.00 |
 | 15.79 | 0.00 |
---------+--------+--------+
 3 | 14 | 1 | 15
 | 53.85 | 3.85 | 57.69
 | 93.33 | 6.67 |
 | 73.68 | 14.29 |
---------+--------+--------+
 4 | 2 | 4 | 6
 | 7.69 | 15.38 | 23.08
 | 33.33 | 66.67 |
 | 10.53 | 57.14 |
---------+--------+--------+
 5 | 0 | 2 | 2
 | 0.00 | 7.69 | 7.69
 | 0.00 | 100.00 |
 | 0.00 | 28.57 |
---------+--------+--------+
Total 19 7 26
 73.08 26.92 100.00

3. Making graphs in SAS

We can make a bar chart showing the frequencies of rep78 as shown below.

TITLE 'Bar Chart with Discrete Option';
PROC GCHART DATA=auto;
 VBAR rep78/ DISCRETE;

RUN;

This program produces the following chart.

 6

4. Correlation, regression and analysis of variance

We can use proc corr to get correlations of price mpg weight and length as shown below.

PROC CORR DATA=auto ;
 VAR price mpg weight length ;
RUN;

The output is shown below.

 Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

PRICE 26 6652 3371 172945 3299 15906
MPG 26 20.92308 4.75750 544.00000 14.00000 35.00000
WEIGHT 26 3099 695.07941 80580 2020 4330
LENGTH 26 190.07692 18.17014 4942 163.00000 222.00000

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 26

 PRICE MPG WEIGHT LENGTH

PRICE 1.00000 -0.43846 0.55607 0.43604
 0.0 0.0251 0.0032 0.0260

MPG -0.43846 1.00000 -0.80816 -0.76805
 0.0251 0.0 0.0001 0.0001

WEIGHT 0.55607 -0.80816 1.00000 0.90654
 0.0032 0.0001 0.0 0.0001

LENGTH 0.43604 -0.76805 0.90654 1.00000
 0.0260 0.0001 0.0001 0.0

We can use proc reg to predict mpg from weight length and foreign, as shown below.

PROC REG DATA=auto;
 MODEL mpg = weight length foreign ;
RUN;

The output is shown below.

 Model: MODEL1
Dependent Variable: MPG

Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Prob>F

Model 3 378.69701 126.23234 14.839 0.0001
Error 22 187.14915 8.50678
C Total 25 565.84615

 7

 Root MSE 2.91664 R-square 0.6693
 Dep Mean 20.92308 Adj R-sq 0.6242
 C.V. 13.93982

Parameter Estimates

 Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 44.968582 9.32267757 4.824 0.0001
WEIGHT 1 -0.005008 0.00218752 -2.289 0.0320
LENGTH 1 -0.043056 0.07692650 -0.560 0.5813
FOREIGN 1 -1.269211 1.63213395 -0.778 0.4451

We can use proc glm to do an ANOVA to test if the mean mpg is the same for foreign and domestic
cars, as shown below.

 PROC GLM DATA=auto;
 CLASS foreign ;
 MODEL mpg = foreign ;
RUN;

The output is shown below.

General Linear Models Procedure
Class Level Information

Class Levels Values

FOREIGN 2 0 1

Number of observations in data set = 26

General Linear Models Procedure

Dependent Variable: MPG
 Sum of Mean
Source DF Squares Square F Value Pr > F
Model 1 90.68825911 90.68825911 4.58 0.0427
Error 24 475.15789474 19.79824561
Corrected Total 25 565.84615385

 R-Square C.V. Root MSE MPG Mean
 0.160270 21.26610 4.4495220 20.923077

Source DF Type I SS Mean Square F Value Pr > F
FOREIGN 1 90.68825911 90.68825911 4.58 0.0427

Source DF Type III SS Mean Square F Value Pr > F
FOREIGN 1 90.68825911 90.68825911 4.58 0.0427

Using SAS Display Manager

This is a very brief introduction to show you the basics of using the SAS Display Manager for running
your programs. This introduction shows just the essentials that you need to know for using SAS

 8

Display Manager. There are so many options that it would be too confusing to even begin to explore
them. Let's start by opening SAS.

Starting SAS

You can start SAS by clicking the Start menu then looking for The SAS System (it can be hard to find
since it is usually under T for The SAS System). You also might find an icon labeled The SAS
System. When you start SAS, it will probably look something like the window shown below. The
bottom window is called the Program Editor and the top window is called the Log Window. Hidden
under these two windows is the Output Window.

Most people would run SAS using the window configuration shown above. However, this can be
difficult for beginners since you cannot see all three windows at the same time. Sometimes vital
information will be contained in one of the hidden windows and you will be frustrated because you
don't see the information. To help you get comfortable with SAS, we will suggest you run SAS with
the windows in a Tiled configuration until you get comfortable with SAS. You can get the tiled
configuration as shown below by choosing the Window pull-down and then Tile .

 9

In this configuration, the Program Editor is at the left, the Log Window is in the center, and the
Output Window is at the right. You can't see all the contents of the windows, but you can see all the
windows. You can zoom any of the windows if you need see the contents of a window better.
Let's start by typing this short little program into the Program Editor window as shown below.
data test;
 input id x y;
cards;
1 3 8
2 6 2
3 7 4
4 4 3
5 9 3
;
run;

proc print data=test;
run;
Below you see this program typed into the Program Editor.

 10

You can run the program by clicking the running person in the toolbar just under the Options
pulldown.

Running the program caused things to show up in the Log Window and the Output Window as shown
below. The log window shows your program along with messages (NOTEs) about the running of your
program about your program. In the Output Window you see the output of SAS procedures (in this
case, the output of the proc print).

 11

Let's have a better look at the the Log Window. We can double click the Title Bar (indicated by the
arrow below) to zoom the window and make it bigger.

Now we can see the Log Window better. The log tells us that work.test has five observations and
three variables (that is right) and it tells us that the proc print took 0.11 seconds.

 12

Now that the excitement of the Log Window has worn off, lets return the window back to its original
size by clicking the unzoom button, shown below.

Now that we are back to the three window configuration, let's type these statements into the Program
Window.
proc means data=test;
run;
This is shown below.

 13

We click on the running bald woman to run the program, and we see the program shown back to us in
the Log Window and some new output in the Output Window.

 14

We double click the Title Bar for the Output Window so we can zoom it and get a better look at our
data. The zoomed window is shown below.

 15

Now that we have had a good look at the data, we will unzoom the output window. Say that we really
just wanted the mean of x and y (and not id). Instead of retyping the entire program, we can click the
Program Editor window, and then choose Locals then Recall Text (see below) and that will bring
back the program we were working on previously so we can edit it and change it.

Now that the text has been recalled, we can just delete the id as shown below.

 16

We click on the the running person to run the revised program.

and the result is shown below. You can see in the Output Window that you have just the means of X
and Y.

 17

What happens when you make an error? Say that you typed in this program that is clearly incorrect and
ran it.
proc means data=test;
 var x y z;
run;
The result is shown below. In the Log Window you can see the error message in red, saying Variable
Z not (the rest of the message is not found).

 18

When this happens, you can click the Program Editor Window, recall the program (see below), fix the
error, and then run the program again.

Summary

Running programs in SAS display manager can sometimes be like a repeating loop. You

• type in your in the Program Editor
• Run it (by clicking the running person)

 19

• You look at the Log Window and Output Window find some problems or changes you want to
make

• Go back to the Program Editor
• Recall your program (Locals then Recall Text from the pull-down).
• etc. etc. etc.

Descriptive statistics

1. Introduction

This module illustrates how to obtain basic descriptive statistics using SAS. We illustrate this using a
data file about 26 automobiles with their make, price, mpg, repair record, and whether the car was
foreign or domestic. The data file is illustrated below.

 MAKE PRICE MPG REP78 FOREIGN
AMC 4099 22 3 0
AMC 4749 17 3 0
AMC 3799 22 3 0
Audi 9690 17 5 1
Audi 6295 23 3 1
BMW 9735 25 4 1
Buick 4816 20 3 0
Buick 7827 15 4 0
Buick 5788 18 3 0
Buick 4453 26 3 0
Buick 5189 20 3 0
Buick 10372 16 3 0
Buick 4082 19 3 0
Cad. 11385 14 3 0
Cad. 14500 14 2 0
Cad. 15906 21 3 0
Chev. 3299 29 3 0
Chev. 5705 16 4 0
Chev. 4504 22 3 0
Chev. 5104 22 2 0
Chev. 3667 24 2 0
Chev. 3955 19 3 0
Datsun 6229 23 4 1
Datsun 4589 35 5 1
Datsun 5079 24 4 1
Datsun 8129 21 4 1

The program below reads the data and creates a temporary data file called auto. The descriptive
statistics shown in this module are all performed on this data file called auto.

 DATA auto ;
 input MAKE $ PRICE MPG REP78 FOREIGN ;
DATALINES;
AMC 4099 22 3 0
AMC 4749 17 3 0
AMC 3799 22 3 0
Audi 9690 17 5 1

 20

Audi 6295 23 3 1
BMW 9735 25 4 1
Buick 4816 20 3 0
Buick 7827 15 4 0
Buick 5788 18 3 0
Buick 4453 26 3 0
Buick 5189 20 3 0
Buick 10372 16 3 0
Buick 4082 19 3 0
Cad. 11385 14 3 0
Cad. 14500 14 2 0
Cad. 15906 21 3 0
Chev. 3299 29 3 0
Chev. 5705 16 4 0
Chev. 4504 22 3 0
Chev. 5104 22 2 0
Chev. 3667 24 2 0
Chev. 3955 19 3 0
Datsun 6229 23 4 1
Datsun 4589 35 5 1
Datsun 5079 24 4 1
Datsun 8129 21 4 1
;
RUN;

PROC PRINT DATA=auto(obs=10);
RUN;

The output of the proc print is shown below. You can compare the program to the output below.

OBS MAKE PRICE MPG REP78 FOREIGN

 1 AMC 4099 22 3 0
 2 AMC 4749 17 3 0
 3 AMC 3799 22 3 0
 4 Audi 9690 17 5 1
 5 Audi 6295 23 3 1
 6 BMW 9735 25 4 1
 7 Buick 4816 20 3 0
 8 Buick 7827 15 4 0
 9 Buick 5788 18 3 0
 10 Buick 4453 26 3 0

2. Using proc freq for frequencies

We can use proc freq to produce frequency tables. Below, we use it to make frequency tables for
make, rep78 and foreign.

 PROC FREQ DATA=auto;
 TABLES make ;
RUN;

PROC FREQ DATA=auto;
 TABLES rep78 ;
RUN;

PROC FREQ DATA=auto;

 21

 TABLES foreign ;
RUN;

Here is the output produced by the proc freq statements above.

 Cumulative Cumulative
MAKE Frequency Percent Frequency Percent
--
AMC 3 11.5 3 11.5
Audi 2 7.7 5 19.2
BMW 1 3.8 6 23.1
Buick 7 26.9 13 50.0
Cad. 3 11.5 16 61.5
Chev. 6 23.1 22 84.6
Datsun 4 15.4 26 100.0

 Cumulative Cumulative
REP78 Frequency Percent Frequency Percent

 2 3 11.5 3 11.5
 3 15 57.7 18 69.2
 4 6 23.1 24 92.3
 5 2 7.7 26 100.0

 Cumulative Cumulative
FOREIGN Frequency Percent Frequency Percent

 0 19 73.1 19 73.1
 1 7 26.9 26 100.0

Instead of having three separate proc freqs, we could have done this all in one proc freq step as
illustrated below.

 PROC FREQ DATA=auto;
 TABLES make price mpg rep78 foreign ;
RUN;

Let's use proc freq to look at a cross tabulation of the repair history of the cars (rep78) for foreign and
domestic cars (foreign). The proc freq statements for this are shown below.

 PROC FREQ DATA=auto;
 TABLES rep78*foreign ;
RUN;

This is the output produced.

 TABLE OF REP78 BY FOREIGN

REP78 FOREIGN

Frequency|
Percent |
Row Pct |
Col Pct | 0| 1| Total

 22

---------+--------+--------+
 2 | 3 | 0 | 3
 | 11.54 | 0.00 | 11.54
 | 100.00 | 0.00 |
 | 15.79 | 0.00 |
---------+--------+--------+
 3 | 14 | 1 | 15
 | 53.85 | 3.85 | 57.69
 | 93.33 | 6.67 |
 | 73.68 | 14.29 |
---------+--------+--------+
 4 | 2 | 4 | 6
 | 7.69 | 15.38 | 23.08
 | 33.33 | 66.67 |
 | 10.53 | 57.14 |
---------+--------+--------+
 5 | 0 | 2 | 2
 | 0.00 | 7.69 | 7.69
 | 0.00 | 100.00 |
 | 0.00 | 28.57 |
---------+--------+--------+
Total 19 7 26
 73.08 26.92 100.00

We can show just the cell percentages to make the table easier to read by using the norow, nocol and
nofreq options on the tables statement to suppress the printing of the row percentages, column
percentages and frequencies (leaving just the cell percentages). Note that the options come after the /
on the tables statement.

 PROC FREQ DATA=auto;
 TABLES rep78*foreign / NOROW NOCOL NOFREQ ;
RUN;

The output is shown below.

 TABLE OF REP78 BY FOREIGN

REP78 FOREIGN

Percent | 0| 1| Total
--------+--------+--------+
 2 | 11.54 | 0.00 | 11.54
--------+--------+--------+
 3 | 53.85 | 3.85 | 57.69
--------+--------+--------+
 4 | 7.69 | 15.38 | 23.08
--------+--------+--------+
 5 | 0.00 | 7.69 | 7.69
--------+--------+--------+
Total 19 7 26
 73.08 26.92 100.00

The order of the options does not matter. We would have gotten the same output had we written the
command like this.

 PROC FREQ DATA=auto;

 23

 TABLES rep78*foreign / NOFREQ NOROW NOCOL ;
RUN;

3. Using proc means for summary statistics

To produce summary statistics, proc means can be used. Below, proc means is used to get descriptive
statistics for the variable mpg.

 PROC MEANS DATA=auto;
 VAR price mpg;
RUN;

The results of the proc means are shown below.

 Analysis Variable : MPG

 N Mean Std Dev Minimum Maximum
--
26 20.9230769 4.7575042 14.0000000 35.0000000
--

Suppose we would like to get the summary statistics separately for foreign and domestic cars (indicated
by the variable foreign). We can use the class statement as shown below to get separate results for the
different values of foreign.

PROC MEANS DATA=auto;
 CLASS foreign ;
 VAR mpg;
RUN;

As you see below, the results are presented separately for the seven foreign cars (foreign equals 1) and
the 19 domestic cars (when foreign is 0).

 Analysis Variable : MPG

FOREIGN N Obs N Mean Std Dev Minimum Maximum

 0 19 19 19.78 4.0356598 14.0000 29.00
 1 7 7 24.00 5.5075705 17.0000 35.00
--

4. Using proc univariate for detailed summary statistics

You can use proc univariate to get more detailed summary statistics, as shown below.

 PROC UNIVARIATE DATA=auto;
 VAR mpg;
RUN;

And here are the results of the proc univariate.

 Univariate Procedure

 24

Variable=MPG

 Moments
 N 26 Sum Wgts 26
 Mean 20.92308 Sum 544
 Std Dev 4.757504 Variance 22.63385
 Skewness 0.935473 Kurtosis 1.7927
 USS 11948 CSS 565.8462
 CV 22.73807 Std Mean 0.933023
 T:Mean=0 22.42503 Pr>|T| 0.0001
 Num ^= 0 26 Num > 0 26
 M(Sign) 13 Pr>=|M| 0.0001
 Sgn Rank 175.5 Pr>=|S| 0.0001

 Quantiles(Def=5)
 100% Max 35 99% 35
 75% Q3 23 95% 29
 50% Med 21 90% 26
 25% Q1 17 10% 15
 0% Min 14 5% 14
 1% 14
 Range 21
 Q3-Q1 6
 Mode 22

 Extremes
 Lowest Obs Highest Obs
 14(15) 24(25)
 14(14) 25(6)
 15(8) 26(10)
 16(18) 29(17)
 16(12) 35(24)

To obtain separate univariate results for foreign and domestic cars, you would naturally think about the
class statement that we used with proc means. While many SAS PROCs permit the use of the class
statement, proc univariate does not permit the class statement. Instead, we can use proc sort to sort
the data by foreign and then with the proc univariate use the by statement as illustrated below.

PROC SORT DATA=auto;
 BY foreign;
RUN;

PROC UNIVARIATE DATA=auto;
 BY foreign;
 VAR mpg;
RUN;

As you see in the output below, you get a complete set of output for the case where foreign is 0 and
then another set of output when foreign is 1.

FOREIGN=0

Univariate Procedure

Variable=MPG

 Moments

 25

 N 19 Sum Wgts 19
 Mean 19.78947 Sum 376
 Std Dev 4.03566 Variance 16.28655
 Skewness 0.477379 Kurtosis 0.041198
 USS 7734 CSS 293.1579
 CV 20.39296 Std Mean 0.925844
 T:Mean=0 21.37453 Pr>|T| 0.0001
 Num ^= 0 19 Num > 0 19
 M(Sign) 9.5 Pr>=|M| 0.0001
 Sgn Rank 95 Pr>=|S| 0.0001

 Quantiles(Def=5)
 100% Max 29 99% 29
 75% Q3 22 95% 29
 50% Med 20 90% 26
 25% Q1 16 10% 14
 0% Min 14 5% 14
 1% 14
 Range 15
 Q3-Q1 6
 Mode 22

 Extremes
 Lowest Obs Highest Obs
 14(12) 22(16)
 14(11) 22(17)
 15(5) 24(18)
 16(15) 26(7)
 16(9) 29(14)

FOREIGN=1

Univariate Procedure

Variable=MPG
 Moments
 N 7 Sum Wgts 7
 Mean 24 Sum 168
 Std Dev 5.507571 Variance 30.33333
 Skewness 1.340812 Kurtosis 3.286052
 USS 4214 CSS 182
 CV 22.94821 Std Mean 2.081666
 T:Mean=0 11.52923 Pr>|T| 0.0001
 Num ^= 0 7 Num > 0 7
 M(Sign) 3.5 Pr>=|M| 0.0156
 Sgn Rank 14 Pr>=|S| 0.0156

 Quantiles(Def=5)
 100% Max 35 99% 35
 75% Q3 25 95% 35
 50% Med 23 90% 35
 25% Q1 21 10% 17
 0% Min 17 5% 17
 1% 17
 Range 18
 Q3-Q1 4
 Mode 23

 Extremes

 26

 Lowest Obs Highest Obs
 17(1) 23(2)
 21(7) 23(4)
 23(4) 24(6)
 23(2) 25(3)
 24(6) 35(5)

5. Problems to look out for

• If you make a crosstab with proc freq and one of the variables has large number of values (say
10 or more) the crosstab table could be very hard to read. In such cases, try using the list option
on the tables statement, e.g.,
 TABLES rep78*foreign / LIST ;

• When using the by statement in proc univariate, if you choose a by variable with a large
number of values (say 5, 10, or more) it will produce a very large amount of output. In such
cases, you may try to use proc means with a class statement instead of proc univariate.

1. Introduction and description of data

We will illustrate doing some basic statistical tests in SAS, including t-tests, Chi Square, Correlation,
Regression, and Analysis of Variance. We demonstrate this using the auto data file. The program
below reads the data and creates a temporary data file called auto. (Please note that we have made the
values of mpg to be missing for the AMC cars. This differs from the other example data files where
the AMC cars have valid data for mpg.)

DATA auto ;
 LENGTH make $ 20 ;
 INPUT make $ 1-17 price mpg rep78 hdroom trunk weight
 length turn displ gratio foreign ;
CARDS;
AMC Concord 4099 . 3 2.5 11 2930 186 40 121 3.58 0
AMC Pacer 4749 . 3 3.0 11 3350 173 40 258 2.53 0
AMC Spirit 3799 . . 3.0 12 2640 168 35 121 3.08 0
Audi 5000 9690 17 5 3.0 15 2830 189 37 131 3.20 1
Audi Fox 6295 23 3 2.5 11 2070 174 36 97 3.70 1
BMW 320i 9735 25 4 2.5 12 2650 177 34 121 3.64 1
Buick Century 4816 20 3 4.5 16 3250 196 40 196 2.93 0
Buick Electra 7827 15 4 4.0 20 4080 222 43 350 2.41 0
Buick LeSabre 5788 18 3 4.0 21 3670 218 43 231 2.73 0
Buick Opel 4453 26 . 3.0 10 2230 170 34 304 2.87 0
Buick Regal 5189 20 3 2.0 16 3280 200 42 196 2.93 0
Buick Riviera 10372 16 3 3.5 17 3880 207 43 231 2.93 0
Buick Skylark 4082 19 3 3.5 13 3400 200 42 231 3.08 0
Cad. Deville 11385 14 3 4.0 20 4330 221 44 425 2.28 0
Cad. Eldorado 14500 14 2 3.5 16 3900 204 43 350 2.19 0
Cad. Seville 15906 21 3 3.0 13 4290 204 45 350 2.24 0
Chev. Chevette 3299 29 3 2.5 9 2110 163 34 231 2.93 0
Chev. Impala 5705 16 4 4.0 20 3690 212 43 250 2.56 0
Chev. Malibu 4504 22 3 3.5 17 3180 193 31 200 2.73 0
Chev. Monte Carlo 5104 22 2 2.0 16 3220 200 41 200 2.73 0
Chev. Monza 3667 24 2 2.0 7 2750 179 40 151 2.73 0
Chev. Nova 3955 19 3 3.5 13 3430 197 43 250 2.56 0
Datsun 200 6229 23 4 1.5 6 2370 170 35 119 3.89 1
Datsun 210 4589 35 5 2.0 8 2020 165 32 85 3.70 1
Datsun 510 5079 24 4 2.5 8 2280 170 34 119 3.54 1

 27

Datsun 810 8129 21 4 2.5 8 2750 184 38 146 3.55 1
Dodge Colt 3984 30 5 2.0 8 2120 163 35 98 3.54 0
Dodge Diplomat 4010 18 2 4.0 17 3600 206 46 318 2.47 0
Dodge Magnum 5886 16 2 4.0 17 3600 206 46 318 2.47 0
Dodge St. Regis 6342 17 2 4.5 21 3740 220 46 225 2.94 0
Fiat Strada 4296 21 3 2.5 16 2130 161 36 105 3.37 1
Ford Fiesta 4389 28 4 1.5 9 1800 147 33 98 3.15 0
Ford Mustang 4187 21 3 2.0 10 2650 179 43 140 3.08 0
Honda Accord 5799 25 5 3.0 10 2240 172 36 107 3.05 1
Honda Civic 4499 28 4 2.5 5 1760 149 34 91 3.30 1
Linc. Continental 11497 12 3 3.5 22 4840 233 51 400 2.47 0
Linc. Mark V 13594 12 3 2.5 18 4720 230 48 400 2.47 0
Linc. Versailles 13466 14 3 3.5 15 3830 201 41 302 2.47 0
Mazda GLC 3995 30 4 3.5 11 1980 154 33 86 3.73 1
Merc. Bobcat 3829 22 4 3.0 9 2580 169 39 140 2.73 0
Merc. Cougar 5379 14 4 3.5 16 4060 221 48 302 2.75 0
Merc. Marquis 6165 15 3 3.5 23 3720 212 44 302 2.26 0
Merc. Monarch 4516 18 3 3.0 15 3370 198 41 250 2.43 0
Merc. XR-7 6303 14 4 3.0 16 4130 217 45 302 2.75 0
Merc. Zephyr 3291 20 3 3.5 17 2830 195 43 140 3.08 0
Olds 98 8814 21 4 4.0 20 4060 220 43 350 2.41 0
Olds Cutl Supr 5172 19 3 2.0 16 3310 198 42 231 2.93 0
Olds Cutlass 4733 19 3 4.5 16 3300 198 42 231 2.93 0
Olds Delta 88 4890 18 4 4.0 20 3690 218 42 231 2.73 0
Olds Omega 4181 19 3 4.5 14 3370 200 43 231 3.08 0
Olds Starfire 4195 24 1 2.0 10 2730 180 40 151 2.73 0
Olds Toronado 10371 16 3 3.5 17 4030 206 43 350 2.41 0
Peugeot 604 12990 14 . 3.5 14 3420 192 38 163 3.58 1
Plym. Arrow 4647 28 3 2.0 11 3260 170 37 156 3.05 0
Plym. Champ 4425 34 5 2.5 11 1800 157 37 86 2.97 0
Plym. Horizon 4482 25 3 4.0 17 2200 165 36 105 3.37 0
Plym. Sapporo 6486 26 . 1.5 8 2520 182 38 119 3.54 0
Plym. Volare 4060 18 2 5.0 16 3330 201 44 225 3.23 0
Pont. Catalina 5798 18 4 4.0 20 3700 214 42 231 2.73 0
Pont. Firebird 4934 18 1 1.5 7 3470 198 42 231 3.08 0
Pont. Grand Prix 5222 19 3 2.0 16 3210 201 45 231 2.93 0
Pont. Le Mans 4723 19 3 3.5 17 3200 199 40 231 2.93 0
Pont. Phoenix 4424 19 . 3.5 13 3420 203 43 231 3.08 0
Pont. Sunbird 4172 24 2 2.0 7 2690 179 41 151 2.73 0
Renault Le Car 3895 26 3 3.0 10 1830 142 34 79 3.72 1
Subaru 3798 35 5 2.5 11 2050 164 36 97 3.81 1
Toyota Celica 5899 18 5 2.5 14 2410 174 36 134 3.06 1
Toyota Corolla 3748 31 5 3.0 9 2200 165 35 97 3.21 1
Toyota Corona 5719 18 5 2.0 11 2670 175 36 134 3.05 1
Volvo 260 11995 17 5 2.5 14 3170 193 37 163 2.98 1
VW Dasher 7140 23 4 2.5 12 2160 172 36 97 3.74 1
VW Diesel 5397 41 5 3.0 15 2040 155 35 90 3.78 1
VW Rabbit 4697 25 4 3.0 15 1930 155 35 89 3.78 1
VW Scirocco 6850 25 4 2.0 16 1990 156 36 97 3.78 1
;
RUN;

2. T-tests

We can use proc ttest to perform a t-test to determine whether the average mpg for domestic cars differ
from the foreign cars.

PROC TTEST DATA=auto;

 28

 CLASS foreign;
 VAR mpg;
RUN;

Here is the output produced by the proc ttest. The results show that foreign cars have significantly
higher gas mileage (mpg) than domestic cars. Note that the overall N is 71 (not 74). This is because
mpg was missing for 3 of the observations, so those observations were omitted from the analysis.

TTEST PROCEDURE

Variable: MPG

FOREIGN N Mean Std Dev Std Error Minimum Maximum
--
 0 49 19.79591837 4.85188791 0.69312684 12.00000000 34.00000000
 1 22 24.77272727 6.61118690 1.40950978 14.00000000 41.00000000

Variances T DF Prob>|T|

Unequal -3.1685 31.6 0.0034
Equal -3.5597 69.0 0.0007

For H0: Variances are equal, F' = 1.86 DF = (21,48) Prob>F' = 0.0776

Note that the output provides two t values, one assuming the the variances are Unequal and another
assuming that the variances are Equal, and below that is shown a test of whether the variances are
equal. The test for equal variances has an F value of 1.86, with a p value of 0.0776 indicating that the
variances of the two groups do not significantly differ, therefore the Equal variance t-test would be the
appropriate test to use. In this case, we would repot a t value of -3.5597 with a p value of 0.007,
concluding that the mean mpg for foreign cars is significantly greater than the mpg for domestic
cars. Had the F test of equal variances been significant, then the Unequal variance t value (-3.1685)
would have been the appropriate value to use. This is especially important when the sample sizes for
the 2 groups differ, because when the variances of the two groups differ and the sample sizes of the two
groups differ, then the results assuming Equal variances can be quite inaccurate and could differ from
the Unequal variance result..

3. Chi-square tests

We can use proc freq to examine the repair records of the cars (rep78, where 1 is the word repair
record, 5 is the best repair record) by foreign (foreign coded 1, domestic coded 0). Using the chi2
option we can request a chi-square test that tests if these two variables are independent, as shown below.

PROC FREQ DATA=auto;
 TABLES rep78*foreign / CHISQ ;
RUN;

The results are shown below, first giving the crosstab and then the chi-square test.

TABLE OF REP78 BY FOREIGN

REP78 FOREIGN

Frequency|

 29

Percent |
Row Pct |
Col Pct | 0| 1| Total
---------+--------+--------+
 1 | 2 | 0 | 2
 | 2.90 | 0.00 | 2.90
 | 100.00 | 0.00 |
 | 4.17 | 0.00 |
---------+--------+--------+
 2 | 8 | 0 | 8
 | 11.59 | 0.00 | 11.59
 | 100.00 | 0.00 |
 | 16.67 | 0.00 |
---------+--------+--------+
 3 | 27 | 3 | 30
 | 39.13 | 4.35 | 43.48
 | 90.00 | 10.00 |
 | 56.25 | 14.29 |
---------+--------+--------+
 4 | 9 | 9 | 18
 | 13.04 | 13.04 | 26.09
 | 50.00 | 50.00 |
 | 18.75 | 42.86 |
---------+--------+--------+
 5 | 2 | 9 | 11
 | 2.90 | 13.04 | 15.94
 | 18.18 | 81.82 |
 | 4.17 | 42.86 |
---------+--------+--------+
Total 48 21 69
 69.57 30.43 100.00

Frequency Missing = 5

STATISTICS FOR TABLE OF REP78 BY FOREIGN
Statistic DF Value Prob
--
Chi-Square 4 27.264 0.001
Likelihood Ratio Chi-Square 4 29.912 0.001
Mantel-Haenszel Chi-Square 1 23.851 0.001
Phi Coefficient 0.629
Contingency Coefficient 0.532
Cramer's V 0.629

Effective Sample Size = 69
Frequency Missing = 5
WARNING: 40% of the cells have expected counts less
 than 5. Chi-Square may not be a valid test.

Notice the warning that SAS gave at the end of the results. The chi-square is not really valid when you
have empty cells (or cells with expected values less than 5). In such cases, you can request Fisher's
exact test (which is valid under such circumstances) with the exact option as shown below.

PROC FREQ DATA=auto;
 TABLES rep78*foreign / CHISQ EXACT ;
RUN;

 30

The results are shown below (omitting the crosstab, which is exactly the same as the prior results). The
Fisher's Exact Test is significant, showing that there is an association between rep78 and foreign. In
other words, the repair records for the domestic cars differ from the repair record of the foreign cars.

STATISTICS FOR TABLE OF REP78 BY FOREIGN

Statistic DF Value Prob
--
Chi-Square 4 27.264 0.001
Likelihood Ratio Chi-Square 4 29.912 0.001
Mantel-Haenszel Chi-Square 1 23.851 0.001
Fisher's Exact Test (2-Tail) 6.27E-06
Phi Coefficient 0.629
Contingency Coefficient 0.532
Cramer's V 0.629

4. Correlation

Let's use proc corr to examine the correlations among price mpg and weight.

PROC CORR DATA=auto;
 VAR price mpg weight ;
RUN;

The results of the proc corr are shown below.

Correlation Analysis
 3 'VAR' Variables: PRICE MPG WEIGHT

 Simple Statistics
Variable N Mean Std Dev Sum Minimum Maximum
PRICE 74 6165 2949 456229 3291 15906
MPG 71 21.33803 5.88447 1515 12.00000 41.00000
WEIGHT 74 3019 777.19357 223440 1760 4840

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0/Number of
Observations
 PRICE MPG WEIGHT
PRICE 1.00000 -0.47774 0.53861
 0.0 0.0001 0.0001
 74 71 74

MPG -0.47774 1.00000 -0.80749
 0.0001 0.0 0.0001
 71 71 71

WEIGHT 0.53861 -0.80749 1.00000
 0.0001 0.0001 0.0
 74 71 74

The top portion of the output shows simple descriptive statistics for the variables (note that the N for
mpg is 71 because it has 3 missing observations). The second part of the output shows the correlation
matrix for the price, mpg, and weight Each entry shows the correlation, and below that the 2 tailed p

 31

value for the hypothesis test that the correlation is 0, and below that is the sample size (N) on which the
correlation is based.

By looking at the sample sizes, we can see how proc corr handled the missing values. Since mpg had
3 missing values, all the correlations that involved it have an N of 71, whereas the rest of the
correlations were based on an N of 74. This is called pairwise deletion of missing data since SAS
used the maximum number of non-missing values for each pair of variables. It is possible to ask SAS to
only perform the correlations on the records which had complete data for all of the variables on the var
statement. This is called listwise deletion of missing data, meaning that when any of the variables are
missing, the entire record will be omitted from analysis. You can request listwise deletion with the
nomiss option as illustrated below.

PROC CORR DATA=auto NOMISS ;
 VAR price mpg weight ;
RUN;

The results are shown below. Notice that the N for all the simple statistics is 71, and notice that the N is
not displayed along with the correlations. That is because the N is 71 for all of them (as shown in the
title, N = 71).

Correlation Analysis
 3 'VAR' Variables: PRICE MPG WEIGHT

 Simple Statistics
Variable N Mean Std Dev Sum Minimum Maximum
PRICE 71 6248 2983 443582 3291 15906
MPG 71 21.33803 5.88447 1515 12.00000 41.00000
WEIGHT 71 3021 791.31589 214520 1760 4840

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 71
 PRICE MPG WEIGHT
PRICE 1.00000 -0.47774 0.54176
 0.0 0.0001 0.0001

MPG -0.47774 1.00000 -0.80749
 0.0001 0.0 0.0001

WEIGHT 0.54176 -0.80749 1.00000
 0.0001 0.0001 0.0

5. Regression

Let's perform a regression analysis where we predict price from mpg and weight. The proc reg
example below does just this.

PROC REG DATA=auto;
 MODEL price = mpg weight ;
RUN;

The results are shown below. Two interesting things to note are...
 - Only 71 observations are used (not all 74) because mpg had three missing values. Proc reg deletes
missing cases using listwise deletion. If you have lots of missing data, this is important to notice

 32

 - Looking at the predictors, the results show that weight is the only variable that significantly predicts
price (with a t-value of 2.603 and a p-value of 0.0113).

NOTE: 74 observations read.
NOTE: 3 observations have missing values.
NOTE: 71 observations used in computations.

Model: MODEL1
Dependent Variable: PRICE

Analysis of Variance
 Sum of Mean
Source DF Squares Square F Value Prob>F

Model 2 185670655.62 92835327.809 14.444 0.0001
Error 68 437038564.86 6427037.7185
C Total 70 622709220.48

 Root MSE 2535.16029 R-square 0.2982
 Dep Mean 6247.63380 Adj R-sq 0.2775
 C.V. 40.57793

Parameter Estimates
 Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 2394.284967 3647.8753623 0.656 0.5138
MPG 1 -58.668896 87.29400011 -0.672 0.5038
WEIGHT 1 1.689685 0.64914497 2.603 0.0113

6. Analysis of variance (and analysis of covariance)

Let's compare the average prices among the cars in the different repair groups using Analysis of
Variance. You might think to use proc anova for such an analysis, but proc anova assumes that the
sample sizes for all groups are equal, an assumption that is frequently untrue. Instead, we will use proc
glm to perform an ANOVA comparing the prices among the repair groups. Since there are so few cars
with a repair record (rep78) of 1 or 2, we will use a where statement to omit them, allowing us to
concentrate on the cars with repair records of 3, 4 and 5. The proc glm below performs an Analysis of
Variance testing whether the average mpg for the 3 repair groups (rep78) are the same. It also
produces the means for the 3 repair groups.

PROC GLM DATA=auto2;
 WHERE (rep78 = 3) OR (rep78 = 4) OR (rep78 = 5);
 CLASS rep78;
 MODEL mpg = rep78 ;
 MEANS rep78 ;
RUN;

The results of the proc glm are shown below. SAS informs us that it used only 57 observations (due to
the missing values of mpg). The results suggest that there are significant differences in mpg among the
three repair groups (based on the F value of 8.08 with a p value of 0.009). The means for groups 3, 4
and 5 were 19.43, 21.67, and 27.36 .

General Linear Models Procedure
Class Level Information

 33

Class Levels Values
REP78 3 3 4 5

Number of observations in data set = 59
NOTE: Due to missing values, only 57 observations can be used in this analysis.
General Linear Models Procedure

Dependent Variable: MPG
 Sum of Mean
Source DF Squares Square F Value Pr > F
Model 2 497.26406926 248.63203463 8.08 0.0009
Error 54 1661.40259740 30.76671477
Corrected Total 56 2158.66666667

 R-Square C.V. Root MSE MPG Mean
 0.230357 25.60050 5.5467752 21.666667

Source DF Type I SS Mean Square F Value Pr > F
REP78 2 497.26406926 248.63203463 8.08 0.0009

Source DF Type III SS Mean Square F Value Pr > F
REP78 2 497.26406926 248.63203463 8.08 0.0009

Level of -------------MPG-------------
REP78 N Mean SD

3 28 19.4285714 4.23764934
4 18 21.6666667 4.93486992
5 11 27.3636364 8.73238487

You can use the tukey option on the means statement to request Tukey tests for pairwise comparisons
among the three means.

PROC GLM DATA=auto2;
 CLASS rep78;
 MODEL price = rep78 ;
 MEANS rep78 / TUKEY ;
RUN;

The results just for the Tukey tests are shown below (the rest of the output is identical). The Tukey
comparisons that are significant are indicated by "***". The group with rep78 of 5 is significantly
different from 3 and significantly different from 4. However, the group with rep78 of 3 is not
significantly different from rep78 of 4.

Tukey's Studentized Range (HSD) Test for variable: MPG

NOTE: This test controls the type I experimentwise error rate.

Alpha= 0.05 Confidence= 0.95 df= 54 MSE= 30.76671
Critical Value of Studentized Range= 3.408

Comparisons significant at the 0.05 level are indicated by '***'.

 Simultaneous Simultaneous
 Lower Difference Upper
 REP78 Confidence Between Confidence
 Comparison Limit Means Limit

 34

5 - 4 0.581 5.697 10.813 ***
5 - 3 3.178 7.935 12.692 ***

4 - 5 -10.813 -5.697 -0.581 ***
4 - 3 -1.800 2.238 6.277

3 - 5 -12.692 -7.935 -3.178 ***
3 - 4 -6.277 -2.238 1.800

Graphing data in SAS

1. Introduction and description of data

This module demonstrates how to obtain basic high resolution graphics using SAS. This example uses
a data file about 26 automobiles with their make, mpg, repair record, weight, and whether the car was
foreign or domestic. The program below reads the data and creates a temporary data file called
auto. The graphs shown in this module are all performed on this data file called auto. The data can be
seen with the program statements

DATA auto ;
 INPUT make $ mpg rep78 weight foreign ;
CARDS;
AMC 22 3 2930 0
AMC 17 3 3350 0
AMC 22 . 2640 0
Audi 17 5 2830 1
Audi 23 3 2070 1
BMW 25 4 2650 1
Buick 20 3 3250 0
Buick 15 4 4080 0
Buick 18 3 3670 0
Buick 26 . 2230 0
Buick 20 3 3280 0
Buick 16 3 3880 0
Buick 19 3 3400 0
Cad. 14 3 4330 0
Cad. 14 2 3900 0
Cad. 21 3 4290 0
Chev. 29 3 2110 0
Chev. 16 4 3690 0
Chev. 22 3 3180 0
Chev. 22 2 3220 0
Chev. 24 2 2750 0
Chev. 19 3 3430 0
Datsun 23 4 2370 1
Datsun 35 5 2020 1
Datsun 24 4 2280 1
Datsun 21 4 2750 1
;
RUN;

2. Creating charts with proc gchart

 35

We create vertical Bar Charts with proc gchart and the vbar statement. The program below creates a
vertical bar chart for mpg.

TITLE 'Simple Vertical Bar Chart ';
PROC GCHART DATA=auto;
 VBAR mpg;
RUN;

This program produces the following chart.

The vbar statement produces a vertical bar chart, and while optional the title statement allows you to
label the chart. Since mpg is a continuous variable the automatic "binning" of the data into five groups
yields a readable chart. The midpoint of each bin labels the respective bar.

You can control the number of bins for a continuous variable with the level= option on the vbar
statement. The program below creates a vertical bar chart with seven bins for mpg.

TITLE 'Bar Chart - Control Number of Bins';
PROC GCHART;
 VBAR mpg/LEVELS=7;
RUN;

This program produces the following chart.

 36

On the other hand, rep78 has only four categories and SAS's tendency to bin into five categories and
use midpoints would not do justice to the data. So when you want to use the actual values of the
variable to label each bar you will want to use the discrete option on the vbar statement.

TITLE 'Bar Chart with Discrete Option';
PROC GCHART DATA=auto;
 VBAR rep78/ DISCRETE;
RUN;

This program produces the following chart.

Notice that only the values in the dataset for rep78 appear in the bar chart.

Other charts may be easily produced simply by changing vbar. For example, you can produce a
horizontal bar chart by replacing vbar with hbar.

TITLE 'Horizontal Bar Chart with Discrete';

 37

PROC GCHART DATA=auto;
 HBAR rep78/ DISCRETE;
RUN;

This program produces the following horizontal bar chart.

Use the discrete option to insure that only the values in the dataset for rep78 label bars in the bar
chart. With hbar you automatically obtain frequency, cumulative frequency, percent, and cumulative
percent to the right of each bar.

You can produce a pie chart by replacing hbar in the above example with pie. The value=, percent=,
and slice= options control the location of each of those labels.

TITLE 'Pie Chart with Discrete';
PROC GCHART DATA=auto;
 PIE rep78/ DISCRETE VALUE=INSIDE
 PERCENT=INSIDE SLICE=OUTSIDE;
RUN;

This program produces the following pie chart.

 38

Use the discrete option to insure that only the values in the dataset for rep78 label slices in the pie
chart.

value=inside causes the frequency count to be placed inside the pie slice.
percent=inside causes the percent to be placed inside the pie slice.
slice=outside causes the label (value of rep78) to be placed outside the pie slice.

We have shown only some of the charts and options available to you. Additionally you can create city
block charts (block) and star charts (star), and use options and statements to further control the look of
charts.

3. Creating Scatter plots with proc gplot

To examine the relationship between two continuous variables you will want to produce a scattergram
using proc gplot, and the plot statement. The program below creates a scatter plot for
mpg*weight. This means that mpg will be plotted on the vertical axis, and weight will be plotted on
the horizontal axis.

TITLE 'Scatterplot - Two Variables';
PROC GPLOT DATA=auto;
 PLOT mpg*weight ;
RUN;

This program produces the following scattergram.

 39

You can easily tell that there is a negative relationship between mpg and weight. As weight increases
mpg decreases.

You may want to examine the relationship between two continuous variables and see which points fall
into one or another category of a third variable. The program below creates a scatter plot for
mpg*weight with each level of foreign marked. You specify mpg*weight=foreign on the plot
statement to have each level of foreign identified on the plot.

TITLE 'Scatterplot - Foreign/Domestic Marked';
PROC GPLOT DATA=auto;
 PLOT mpg*weight=foreign;
RUN;

This program produces the following scattergram with each foreign and domestic marked.

You can easily tell which level of foreign you are looking at, as values of zero are in black and values
of 1 are in red. Since the default symbol is plus for both, if this graph is printed in black and white you

 40

will not be able to tell the levels of foreign apart. The next example demonstrates how to use different
symbols in scattergrams.

4. Customizing with proc gplot and symbol statements

The program below creates a scatter plot for mpg*weight with each level of foreign marked. The
proc gplot is specified exactly the same as in the previous example. The only difference is the
inclusion of symbol statements to control the look of the graph through the use of the operands V=, I=,
and C=.

SYMBOL1 V=circle C=black I=none;
SYMBOL2 V=star C=red I=none;

TITLE 'Scatterplot - Different Symbols';
PROC GPLOT DATA=auto;
 PLOT mpg*weight=foreign;

RUN;

Symbol1 is used for the lowest value of foreign which is zero (domestic cars), and symbol2 is used for
the next lowest value which is one (foreign cars) in this case.

V= controls the type of point to be plotted. We requested a circle to be plotted for foreign cars, and a
star (asterisk) for domestic cars.
I= none causes SAS not to plot a line joining the points.
C= controls the color of the plot. We requested black for domestic cars, and red for foreign
cars. (Sometimes the C= option is needed for any options to take effect.)

This program produces the following scattergram with each foreign and domestic marked and with
different symbols.

You can easily tell which level of foreign you are looking at, as values of zero are marked with circles
in black and values of 1 are marked with asterisks in red. Now if this graph is printed in black and
white you will be able to tell the levels of foreign apart.

 41

At times it is useful to plot a regression line along with the scatter gram of points. The program below
creates a scatter plot for mpg*weight with such a regression line. The regression line is produced with
the I=R operand on the symbol statement.

SYMBOL1 V=circle C=blue I=r;

TITLE 'Scatterplot - With Regression Line ';
PROC GPLOT DATA=auto;
 PLOT mpg*weight ;
RUN;
QUIT;

The symbol statement controls color, the shape of the points, and the production of a regression line.

I=R causes SAS to plot a regression line.
V=circle causes a circle to be plotted for each case.
C=blue causes the points and regression line to appear in blue. Always specify the C= option to insure
that the symbol statement takes effect.

This program produces the following scattergram with using blue circles and plotting a regression line.

5. Problems to look out for

• If SAS seems to be ignoring your symbol statement, then try including a color specification
(C=).

• Avoid using the discrete option in proc chart with truly continuous variables, for this causes
problems with the number of bars.

Using where with SAS procedures

 42

1. Introduction

This program builds a SAS file called auto, which we will use to demonstrate the use of the where
statement. (For information about creating SAS files from raw data, see the SAS Learning Module titled
Inputting Raw Data into SAS.

DATA auto ;
 LENGTH make $ 20 ;
 INPUT make $ 1-17 price mpg rep78 hdroom trunk weight length turn
 displ gratio foreign ;
CARDS;
AMC Concord 4099 22 3 2.5 11 2930 186 40 121 3.58 0
AMC Pacer 4749 17 3 3.0 11 3350 173 40 258 2.53 0
AMC Spirit 3799 22 . 3.0 12 2640 168 35 121 3.08 0
Audi 5000 9690 17 5 3.0 15 2830 189 37 131 3.20 1
Audi Fox 6295 23 3 2.5 11 2070 174 36 97 3.70 1
BMW 320i 9735 25 4 2.5 12 2650 177 34 121 3.64 1
Buick Century 4816 20 3 4.5 16 3250 196 40 196 2.93 0
Buick Electra 7827 15 4 4.0 20 4080 222 43 350 2.41 0
Buick LeSabre 5788 18 3 4.0 21 3670 218 43 231 2.73 0
Buick Opel 4453 26 . 3.0 10 2230 170 34 304 2.87 0
Buick Regal 5189 20 3 2.0 16 3280 200 42 196 2.93 0
Buick Riviera 10372 16 3 3.5 17 3880 207 43 231 2.93 0
Buick Skylark 4082 19 3 3.5 13 3400 200 42 231 3.08 0
Cad. Deville 11385 14 3 4.0 20 4330 221 44 425 2.28 0
Cad. Eldorado 14500 14 2 3.5 16 3900 204 43 350 2.19 0
Cad. Seville 15906 21 3 3.0 13 4290 204 45 350 2.24 0
Chev. Chevette 3299 29 3 2.5 9 2110 163 34 231 2.93 0
Chev. Impala 5705 16 4 4.0 20 3690 212 43 250 2.56 0
Chev. Malibu 4504 22 3 3.5 17 3180 193 31 200 2.73 0
Chev. Monte Carlo 5104 22 2 2.0 16 3220 200 41 200 2.73 0
Chev. Monza 3667 24 2 2.0 7 2750 179 40 151 2.73 0
Chev. Nova 3955 19 3 3.5 13 3430 197 43 250 2.56 0
Datsun 200 6229 23 4 1.5 6 2370 170 35 119 3.89 1
Datsun 210 4589 35 5 2.0 8 2020 165 32 85 3.70 1
Datsun 510 5079 24 4 2.5 8 2280 170 34 119 3.54 1
Datsun 810 8129 21 4 2.5 8 2750 184 38 146 3.55 1
Dodge Colt 3984 30 5 2.0 8 2120 163 35 98 3.54 0
Dodge Diplomat 4010 18 2 4.0 17 3600 206 46 318 2.47 0
Dodge Magnum 5886 16 2 4.0 17 3600 206 46 318 2.47 0
Dodge St. Regis 6342 17 2 4.5 21 3740 220 46 225 2.94 0
Fiat Strada 4296 21 3 2.5 16 2130 161 36 105 3.37 1
Ford Fiesta 4389 28 4 1.5 9 1800 147 33 98 3.15 0
Ford Mustang 4187 21 3 2.0 10 2650 179 43 140 3.08 0
Honda Accord 5799 25 5 3.0 10 2240 172 36 107 3.05 1
Honda Civic 4499 28 4 2.5 5 1760 149 34 91 3.30 1
Linc. Continental 11497 12 3 3.5 22 4840 233 51 400 2.47 0
Linc. Mark V 13594 12 3 2.5 18 4720 230 48 400 2.47 0
Linc. Versailles 13466 14 3 3.5 15 3830 201 41 302 2.47 0
Mazda GLC 3995 30 4 3.5 11 1980 154 33 86 3.73 1
Merc. Bobcat 3829 22 4 3.0 9 2580 169 39 140 2.73 0
Merc. Cougar 5379 14 4 3.5 16 4060 221 48 302 2.75 0
Merc. Marquis 6165 15 3 3.5 23 3720 212 44 302 2.26 0
Merc. Monarch 4516 18 3 3.0 15 3370 198 41 250 2.43 0
Merc. XR-7 6303 14 4 3.0 16 4130 217 45 302 2.75 0
Merc. Zephyr 3291 20 3 3.5 17 2830 195 43 140 3.08 0
Olds 98 8814 21 4 4.0 20 4060 220 43 350 2.41 0
Olds Cutl Supr 5172 19 3 2.0 16 3310 198 42 231 2.93 0

http://www.ats.ucla.edu/stat/sas/modules/input.htm

 43

Olds Cutlass 4733 19 3 4.5 16 3300 198 42 231 2.93 0
Olds Delta 88 4890 18 4 4.0 20 3690 218 42 231 2.73 0
Olds Omega 4181 19 3 4.5 14 3370 200 43 231 3.08 0
Olds Starfire 4195 24 1 2.0 10 2730 180 40 151 2.73 0
Olds Toronado 10371 16 3 3.5 17 4030 206 43 350 2.41 0
Peugeot 604 12990 14 . 3.5 14 3420 192 38 163 3.58 1
Plym. Arrow 4647 28 3 2.0 11 3260 170 37 156 3.05 0
Plym. Champ 4425 34 5 2.5 11 1800 157 37 86 2.97 0
Plym. Horizon 4482 25 3 4.0 17 2200 165 36 105 3.37 0
Plym. Sapporo 6486 26 . 1.5 8 2520 182 38 119 3.54 0
Plym. Volare 4060 18 2 5.0 16 3330 201 44 225 3.23 0
Pont. Catalina 5798 18 4 4.0 20 3700 214 42 231 2.73 0
Pont. Firebird 4934 18 1 1.5 7 3470 198 42 231 3.08 0
Pont. Grand Prix 5222 19 3 2.0 16 3210 201 45 231 2.93 0
Pont. Le Mans 4723 19 3 3.5 17 3200 199 40 231 2.93 0
Pont. Phoenix 4424 19 . 3.5 13 3420 203 43 231 3.08 0
Pont. Sunbird 4172 24 2 2.0 7 2690 179 41 151 2.73 0
Renault Le Car 3895 26 3 3.0 10 1830 142 34 79 3.72 1
Subaru 3798 35 5 2.5 11 2050 164 36 97 3.81 1
Toyota Celica 5899 18 5 2.5 14 2410 174 36 134 3.06 1
Toyota Corolla 3748 31 5 3.0 9 2200 165 35 97 3.21 1
Toyota Corona 5719 18 5 2.0 11 2670 175 36 134 3.05 1
Volvo 260 11995 17 5 2.5 14 3170 193 37 163 2.98 1
VW Dasher 7140 23 4 2.5 12 2160 172 36 97 3.74 1
VW Diesel 5397 41 5 3.0 15 2040 155 35 90 3.78 1
VW Rabbit 4697 25 4 3.0 15 1930 155 35 89 3.78 1
VW Scirocco 6850 25 4 2.0 16 1990 156 36 97 3.78 1
;
RUN;

2. Basic use of the where statement

The where statement allows us to run procedures on a subset of records. For example, instead of
printing all records in the file, the following program prints only cars where the value for rep78 is 3 or
greater.

 PROC PRINT DATA=auto;
 WHERE (rep78 >= 3);
 VAR make rep78;
RUN;

Here is the output from the proc print. Note that we have directed SAS to print only two variables:
make and rep78.

 OBS MAKE rep78
 1 AMC Concord 3
 2 AMC Pacer 3
 4 Audi 5000 5
 5 Audi Fox 3
 6 BMW 320i 4
 7 Buick Century 3
 8 Buick Electra 4
 9 Buick LeSabre 3
 11 Buick Regal 3
 12 Buick Riviera 3
 13 Buick Skylark 3
 14 Cad. Deville 3

 44

 16 Cad. Seville 3
 17 Chev. Chevette 3
 18 Chev. Impala 4
 19 Chev. Malibu 3
 22 Chev. Nova 3
 23 Datsun 200 4
 24 Datsun 210 5
 25 Datsun 510 4
 26 Datsun 810 4
 27 Dodge Colt 5
 31 Fiat Strada 3
 32 Ford Fiesta 4
 33 Ford Mustang 3
 34 Honda Accord 5
 35 Honda Civic 4
 36 Linc. Continental 3
 37 Linc. Mark V 3
 38 Linc. Versailles 3
 39 Mazda GLC 4
 40 Merc. Bobcat 4
 41 Merc. Cougar 4
 42 Merc. Marquis 3
 43 Merc. Monarch 3
 44 Merc. XR-7 4
 45 Merc. Zephyr 3
 46 Olds 98 4
 47 Olds Cutl Supr 3
 48 Olds Cutlass 3
 49 Olds Delta 88 4
 50 Olds Omega 3
 52 Olds Toronado 3
 54 Plym. Arrow 3
 55 Plym. Champ 5
 56 Plym. Horizon 3
 59 Pont. Catalina 4
 61 Pont. Grand Prix 3
 62 Pont. Le Mans 3
 65 Renault Le Car 3
 66 Subaru 5
 67 Toyota Celica 5
 68 Toyota Corolla 5
 69 Toyota Corona 5
 70 Volvo 260 5
 71 VW Dasher 4
 72 VW Diesel 5
 73 VW Rabbit 4
 74 VW Scirocco 4

Consider the following program which compares repair records for foreign and domestic cars by
creating a table of repairs (rep78) for each separately.

PROC FREQ DATA=auto;
 TABLES rep78*foreign ;
RUN;

TABLE OF rep78 BY FOREIGN

 rep78 FOREIGN

 45

 Frequency=
 Percent =
 Row Pct =
 Col Pct = 0= 1= Total
 ============================
 1 = 2 = 0 = 2
 = 2.90 = 0.00 = 2.90
 = 100.00 = 0.00 =
 = 4.17 = 0.00 =
 ============================
 2 = 8 = 0 = 8
 = 11.59 = 0.00 = 11.59
 = 100.00 = 0.00 =
 = 16.67 = 0.00 =
 ============================
 3 = 27 = 3 = 30
 = 39.13 = 4.35 = 43.48
 = 90.00 = 10.00 =
 = 56.25 = 14.29 =
 ============================
 4 = 9 = 9 = 18
 = 13.04 = 13.04 = 26.09
 = 50.00 = 50.00 =
 = 18.75 = 42.86 =
 ============================
 5 = 2 = 9 = 11
 = 2.90 = 13.04 = 15.94
 = 18.18 = 81.82 =
 = 4.17 = 42.86 =
 ============================
 Total 48 21 69
 69.57 30.43 100.00

Using the where statement, we restrict the analysis to only cars with a repair rating of 3 or more
(rep78 >= 3):

PROC FREQ DATA=auto;
 WHERE (rep78 >= 3);
 TABLES rep78*foreign ;
RUN;

TABLE OF rep78 BY FOREIGN
 rep78 FOREIGN

 Frequency=
 Percent =
 Row Pct =
 Col Pct = 0= 1= Total
 ============================
 3 = 27 = 3 = 30
 = 45.76 = 5.08 = 50.85
 = 90.00 = 10.00 =
 = 71.05 = 14.29 =
 ============================
 4 = 9 = 9 = 18
 = 15.25 = 15.25 = 30.51
 = 50.00 = 50.00 =

 46

 = 23.68 = 42.86 =
 ============================
 5 = 2 = 9 = 11
 = 3.39 = 15.25 = 18.64
 = 18.18 = 81.82 =
 = 5.26 = 42.86 =
 ============================
 Total 38 21 59
 64.41 35.59 100.00

The where statement works with most SAS procedures. The following program prints only records for
which the car has a repair rating of 2 or less:

PROC PRINT DATA=auto;
 WHERE (rep78 <= 2);
 VAR make price rep78 ;
RUN;

 OBS MAKE price rep78
 3 AMC Spirit 3799 .
 10 Buick Opel 4453 .
 15 Cad. Eldorado 14500 2
 20 Chev. Monte Carlo 5104 2
 21 Chev. Monza 3667 2
 28 Dodge Diplomat 4010 2
 29 Dodge Magnum 5886 2
 30 Dodge St. Regis 6342 2
 51 Olds Starfire 4195 1
 53 Peugeot 604 12990 .
 57 Plym. Sapporo 6486 .
 58 Plym. Volare 4060 2
 60 Pont. Firebird 4934 1
 63 Pont. Phoenix 4424 .
 64 Pont. Sunbird 4172 2

3. Missing values and the where statement

In the example above, note that some of the records print a '.' instead of a value for rep78. These are
records where rep78 is missing. SAS stores missing values for numeric variables as '.' and treats them
as negative infinity, or the lowest number possible. To exclude missing values, modify the where
statement as follows (the rep78 ^= . indicates rep78 is not equal to missing).

PROC PRINT DATA=auto;
 WHERE (rep78 <= 2) and (rep78 ^= .) ;
 VAR make price rep78 ;
RUN;

Note that there are no missing values in the listing.

OBS MAKE price rep78
 15 Cad. Eldorado 14500 2
 20 Chev. Monte Carlo 5104 2
 21 Chev. Monza 3667 2
 28 Dodge Diplomat 4010 2
 29 Dodge Magnum 5886 2
 30 Dodge St. Regis 6342 2

 47

 51 Olds Starfire 4195 1
 58 Plym. Volare 4060 2
 60 Pont. Firebird 4934 1
 64 Pont. Sunbird 4172 2

Similarly, this where statement yields the same result:

PROC PRINT DATA=auto;
 WHERE (. < rep78 <= 2);
 VAR make price rep78 ;
RUN;

4. More complex where statements

This program generates summary statistics for price, but only for cars with repair histories of 1 or 2:

PROC MEANS DATA=auto;
 WHERE (rep78 = 1) OR (rep78 = 2) ;
 VAR price ;
RUN;

Here is the output from the proc means. By default, proc means will generate the following statistics:
mean, minimum and maximum values, standard deviation, and the number of non-missing values for
the analysis variable (in this case price).

Analysis Variable : price
N Mean Std Dev Minimum Maximum
--
10 5687.00 3216.38 3667.00 14500.00
--

To see summary statistics for price for cars with repair histories of 3, 4 or 5, modify the where
statement accordingly:

PROC MEANS DATA=auto;
 WHERE (rep78 = 3) or (rep78 = 4) or (rep78 = 5) ;
 VAR price ;
RUN;

Or:

PROC MEANS DATA=auto;
 WHERE (3 <= rep78 <= 5) ;
 VAR price ;
RUN;

Analysis Variable : price
 N Mean Std Dev Minimum Maximum
 --
 59 6223.85 2880.45 3291.00 15906.00
 --

The where statement also works with the in operator as follows:

 48

PROC MEANS DATA=auto;
 WHERE rep78 in (3,4,5);
 VAR price ;
RUN;

5. Problems to look out for

Be careful when using less than or less than or equal or not equal when you have missing data. Be
sure to separately exclude the missing cases if you want them excluded.

Missing data in SAS

1. Introduction

This module will explore missing data in SAS, focusing on numeric missing data. It will describe how
to indicate missing data in your raw data files, how missing data is handled in SAS procedures, and how
to handle missing data in a SAS data step. Suppose we did a reaction time study with six subjects, and
the subjects reaction time was measured three times. The data file is shown below.

DATA times ;
 INPUT id trial1 trial2 trial3 ;
CARDS ;
1 1.5 1.4 1.6
2 1.5 . 1.9
3 . 2.0 1.6
4 . . 2.2
5 2.1 2.3 2.2
6 1.8 2.0 1.9
;
RUN ;

PROC PRINT DATA=times ;
RUN ;

You might notice that some of the reaction times are coded using a single dot. For example, for subject
2, the second trial is coded just as a dot. Well, the person measuring response time for that trial did not
measure the response time properly so the data for that trial was missing.

OBS ID TRIAL1 TRIAL2 TRIAL3
 1 1 1.5 1.4 1.6
 2 2 1.5 . 1.9
 3 3 . 2.0 1.6
 4 4 . . 2.2
 5 5 2.1 2.3 2.2
 6 6 1.8 2.0 1.9

In your raw data, missing data is generally coded using a single . to indicate a missing value. SAS
recognizes a single . as a missing value and knows to interpret it as missing and handles it in special
ways. Let's examine how SAS handles missing data in procedures.

2. How SAS handles missing data in SAS procedures

 49

As a general rule, SAS procedures that perform computations handle missing data by omitting the
missing values. (We say procedures that perform computations to indicate that we are not addressing
procedures like proc contents). The way that missing values are eliminated is not always the same
among SAS procedures, so let's us look at some examples. First, let's do a proc means on our data file
and see how SAS proc means handles the missing values.

PROC MEANS DATA=times ;
 VAR trial1 trial2 trial3 ;
RUN ;

As you see in the output below, proc means computed the means using 4 observations for trial1 and
trial2 and 6 observations for trial3. In short, proc means used all of the valid data and performed the
computations on all of the available data.

Variable N Mean Std Dev Minimum Maximum

TRIAL1 4 1.7250000 0.2872281 1.5000000 2.1000000
TRIAL2 4 1.9250000 0.3774917 1.4000000 2.3000000
TRIAL3 6 1.9000000 0.2683282 1.6000000 2.2000000

As you see below, proc freq likewise performed its computations using just the available data. Note
that the percentages are computed based on just the total number of non-missing cases.

PROC FREQ DATA=times ;
 TABLES trial1 trial2 trial3 ;
RUN ;

 Cumulative Cumulative
TRIAL1 Frequency Percent Frequency Percent
--
 1.5 2 50.0 2 50.0
 1.8 1 25.0 3 75.0
 2.1 1 25.0 4 100.0

Frequency Missing = 2

 Cumulative Cumulative
TRIAL2 Frequency Percent Frequency Percent
--
 1.4 1 25.0 1 25.0
 2 2 50.0 3 75.0
 2.3 1 25.0 4 100.0

Frequency Missing = 2

 Cumulative Cumulative
TRIAL3 Frequency Percent Frequency Percent
--
 1.6 2 33.3 2 33.3
 1.9 2 33.3 4 66.7
 2.2 2 33.3 6 100.0

 50

It is possible that you might want the the percentages to be computed out of the total number of values,
and even report the percentage missing right in the table itself. You can request this using the missing
option on the tables statement of proc freq as shown below (just for trial1).

PROC FREQ DATA=times ;
 TABLES trial1 / MISSING ;
RUN ;

As you see, now the percentages are computed out of the total number of observations, and the
percentage missing are shown right in the table as well.

 Cumulative Cumulative
TRIAL1 Frequency Percent Frequency Percent
--
 . 2 33.3 2 33.3
 1.5 2 33.3 4 66.7
 1.8 1 16.7 5 83.3
 2.1 1 16.7 6 100.0

Let's look at how proc corr handles missing data. We would expect that it would do the computations
based on the available data, and omit the missing values. Here is an example program.

PROC CORR DATA=times ;
 VAR trial1 trial2 trial3 ;
RUN ;

The output of this program is shown below. Note how the missing values were excluded. For each pair
of variables, proc corr used the number of pairs that had valid data. For the pair formed by trial1 and
trial2, there were 3 pairs with valid data. For the pairing of trial1 and trial3 there were 4 valid pairs,
and likewise there were 4 valid pairs for trial2 and trial3. Since this used all of the valid pairs of data,
this is often called pairwise deletion of missing data.

Correlation Analysis
 3 'VAR' Variables: TRIAL1 TRIAL2 TRIAL3
 Simple Statistics

Variable N Mean Std Dev Sum Minimum
Maximum
TRIAL1 4 1.725000 0.287228 6.900000 1.500000
2.100000
TRIAL2 4 1.925000 0.377492 7.700000 1.400000
2.300000
TRIAL3 6 1.900000 0.268328 11.400000 1.600000
2.200000

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / Number of
Observations

 TRIAL1 TRIAL2 TRIAL3
TRIAL1 1.00000 0.98198 0.85280
 0.0 0.1210 0.1472
 4 3 4

 51

TRIAL2 0.98198 1.00000 0.76089
 0.1210 0.0 0.2391
 3 4 4

TRIAL3 0.85280 0.76089 1.00000
 0.1472 0.2391 0.0
 4 4 6

It is possible to ask SAS to only perform the correlations on the observations that had complete data for
all of the variables on the var statement. For example, you might want the correlations of the reaction
times just for the observations that had non-missing data on all of the trials. This is called listwise
deletion of missing data meaning that when any of the variables are missing, the entire observation is
omitted from the analysis. You can request listwise deletion within proc corr with the nomiss option as
illustrated below.

PROC CORR DATA=times NOMISS ;
 VAR trial1 trial2 trial3 ;
RUN ;

As you see in the results below, the N for all the simple statistics is the same, 3, which corresponds to
the number of cases with complete non-missing data for trial1 trial2 and trial3. Since the N is the same
for all of the correlations (i.e., 3), the N is not displayed along with the correlations.

Correlation Analysis
 3 'VAR' Variables: TRIAL1 TRIAL2 TRIAL3

 Simple Statistics
Variable N Mean Std Dev Sum Minimum Maximum
TRIAL1 3 1.800000 0.300000 5.400000 1.500000 2.100000
TRIAL2 3 1.900000 0.458258 5.700000 1.400000 2.300000
TRIAL3 3 1.900000 0.300000 5.700000 1.600000 2.200000

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 3

 TRIAL1 TRIAL2 TRIAL3

TRIAL1 1.00000 0.98198 1.00000
 0.0 0.1210 0.0001

TRIAL2 0.98198 1.00000 0.98198
 0.1210 0.0 0.1210

TRIAL3 1.00000 0.98198 1.00000
 0.0001 0.1210 0.0

3. Summary of how missing values are handled in SAS procedures

It is important to understand how SAS procedures handle missing data if you have missing data. To
know how a procedure handles missing data, you should consult the SAS manual. Here is a brief
overview of how some common SAS procedures handle missing data.

• - proc means
For each variable, the number of non-missing values are used

 52

• proc freq
By default, missing values are excluded and percentages are based on the number of non-
missing values. If you use the missing option on the tables statement, the percentages are based
on the total number of observations (non-missing and missing) and the percentage of missing
values are reported in the table.

• proc corr
By default, correlations are computed based on the number of pairs with non-missing data
(pairwise deletion of missing data). The nomiss option can be used on the proc corr statement
to request that correlations be computed only for observations that have non-missing data for all
variables on the var statement (listwise deletion of missing data).

• proc reg
If any of the variables on the model or var statement are missing, they are excluded from the
analysis (i.e., listwise deletion of missing data)

• proc factor
Missing values are deleted listwise, i.e., observations with missing values on any of the
variables in the analysis are omitted from the analysis.

• proc glm
The handling of missing values in proc glm can be complex to explain. If you have an analysis
with just one variable on the left side of the model statement (just one outcome or dependent
variable), observations are eliminated if any of the variables on the model statement are missing.
Likewise, if you are performing a repeated measures ANOVA or a MANOVA, then
observations are eliminated if any of the variables in the model statement are missing. For other
situations, see the SAS/STAT manual about proc glm.

• For other procedures, see the SAS manual for information on how missing data is handled.

4. Missing values in assignment statements

It is important to understand how missing values are handled in assignment statements. Consider the
example shown below.

DATA times2 ;
 SET times ;
 avg = (trial1 + trial2 + trial3) / 3 ;
RUN ;

PROC PRINT DATA=times2 ;
RUN ;

The proc print below illustrates how missing values are handled in assignment statements. The
variable avg is based on the variables trial1 trial2 and trial3. If any of those variables were missing,
the value for avg was set to missing. This meant that avg was missing for observations 2, 3 and 4.

OBS ID TRIAL1 TRIAL2 TRIAL3 AVG
 1 1 1.5 1.4 1.6 1.5
 2 2 1.5 . 1.9 .
 3 3 . 2.0 1.6 .
 4 4 . . 2.2 .
 5 5 2.1 2.3 2.2 2.2
 6 6 1.8 2.0 1.9 1.9

 53

In fact, SAS included a NOTE: in the Log to let you know about the missing values that were created.
The Log entry from this example is shown below.

222 DATA times2 ;
223 SET times ;
224 avg = (trial1 + trial2 + trial3) / 3 ;
225 RUN ;
NOTE: Missing values were generated as a result of performing an operation on
 missing values.
 Each place is given by: (Number of times) at (Line):(Column).
 3 at 224:17 3 at 224:26 3 at 224:36
NOTE: The data set WORK.TIMES2 has 6 observations and 5 variables.

This note tells us that three missing values were created in the program at line 224. This makes sense,
we know that 3 missing values were created for avg and that avg is created on line 224.

As a general rule, computations involving missing values yield missing values. For example,

2 + 2 yields 4
2 + . yields .
2 / 2 yields 1
. / 2 yields .
2 * 3 yields 6
2 * . yields .

whenever you add, subtract, multiply, divide, etc., values that involve missing data, the result it missing.

In our reaction time experiment, the average reaction time avg is missing for three out of six cases. We
could try just averaging the data for the non-missing trials by using the mean function as shown in the
example below.

DATA times3 ;
 SET times ;
 avg = MEAN(trial1, trial2, trial3) ;
RUN ;

PROC PRINT DATA=times3 ;
RUN ;

The results below show that avg now contains the average of the non-missing trials.

OBS ID TRIAL1 TRIAL2 TRIAL3 AVG
 1 1 1.5 1.4 1.6 1.5
 2 2 1.5 . 1.9 1.7
 3 3 . 2.0 1.6 1.8
 4 4 . . 2.2 2.2
 5 5 2.1 2.3 2.2 2.2
 6 6 1.8 2.0 1.9 1.9

Had there been a large number of trials, say 50 trials, then it would be annoying to have to type
avg = mean(trial1, trial2, trial3 trial50)
Here is a shortcut you could use in this kind of situation
avg = mean(of trial1-trial50)

 54

Also, if we wanted to get the sum of the times instead of the average, then we could just use the sum
function instead of the mean function. The syntax of the sum function is just like the mean function,
but it returns the sum of the non-missing values.

Finally, you can use the N function to determine the number of non-missing values in a list of variables,
as illustrated below.

DATA times4 ;
 SET times ;
 n = N(trial1, trial2, trial3) ;
RUN ;

PROC PRINT DATA=times4 ;
RUN ;

As you see below, observations 1, 5 and 6 had three valid values, observations 2 and 3 had two valid
values, and observation 4 had only one valid value.

OBS ID TRIAL1 TRIAL2 TRIAL3 N
 1 1 1.5 1.4 1.6 3
 2 2 1.5 . 1.9 2
 3 3 . 2.0 1.6 2
 4 4 . . 2.2 1
 5 5 2.1 2.3 2.2 3
 6 6 1.8 2.0 1.9 3

You might feel uncomfortable with the variable avg for observation 4 since it is not really an average at
all. We can use the variable n to create avg only when there are two or more valid values, but if the
number of non-missing values is 1 or less, then make avg to be missing. This is illustrated below.

DATA times5 ;
 SET times ;
 n = N(trial1, trial2, trial3) ;
 IF n >= 2 THEN avg = MEAN(trial1, trial2, trial3) ;
 IF n <= 1 THEN avg=. ;
RUN ;

PROC PRINT DATA=times5 ;
RUN ;

In the output below, you see that avg now contains the average reaction time for the non-missing values,
except for observation 4 where the value is assigned to missing because it had only 1 valid observation.

OBS ID TRIAL1 TRIAL2 TRIAL3 N AVG
 1 1 1.5 1.4 1.6 3 1.5
 2 2 1.5 . 1.9 2 1.7
 3 3 . 2.0 1.6 2 1.8
 4 4 . . 2.2 1 .
 5 5 2.1 2.3 2.2 3 2.2
 6 6 1.8 2.0 1.9 3 1.9

5. Missing values in logical statements

 55

It is important to understand how missing values are handled in logical statements. For example, say
that you want to create a 0/1 value for trial1 that is 0 if it is 1.5 or less, and 1 if it is over 1.5. We show
this below (incorrectly, as you will see).

DATA times2 ;
 SET times ;
 if (trial1 <= 1.5) then trial1a = 0; else trial1a = 1 ;
RUN ;

proc print data=times2;
 var id trial1 trial1a;
run;

And as you can see in the output, the values for trial1a are wrong when id is 3 or 4, when trial1 is
missing. This is because SAS treats a missing value as the smallest possible value (e.g., negative
infinity) and that value is less than 1.5, so then the value for trial1a becomes 0.

Obs id trial1 trial1a
 1 1 1.5 0
 2 2 1.5 0
 3 3 . 0
 4 4 . 0
 5 5 2.1 1
 6 6 1.8 1

Instead, we will explicitly exclude missing values to make sure they are treated properly, as shown
below.

DATA times2 ;
 SET times ;
 trial1a = .;
 if (trial1 <= 1.5) and (trial1 > .) then trial1a = 0;
 if (trial1 > 1.5) then trial1a = 1 ;
RUN ;

proc print data=times2;
 var id trial1 trial1a;
run;

And now we get the results that we wish. The value for trial1a is only 0 when it is less than or equal to
1.5 and it is not missing. The value for trial1a is only 0 when it is over 1.5, as shown below.

Obs id trial1 trial1a

 1 1 1.5 0
 2 2 1.5 0
 3 3 . .
 4 4 . .
 5 5 2.1 1
 6 6 1.8 1

6. Problems to look out for

 56

• When creating or recoding variables that involve missing values, always pay attention to the
SAS log to detect when you are creating missing values.

SAS system options

This module will illustrate some of the system options offered by the SAS system.

1. SAS system options

System options are global instructions that affect the entire SAS session and control the way SAS
performs operations. SAS system options differ from SAS data set options and statement options in that
once you invoke a system option, it remains in effect for all subsequent data and proc steps in a SAS
job, unless you specify them.

In order to view which options are available and in effect for your SAS session, use proc options.

PROC OPTIONS;
RUN;

Here is some sample output produced by the proc options statement above.

PORTABLE OPTIONS:

 NOCAPS Translate quoted strings and titles to upper case?
 CENTER Center SAS output?
 DATE Date printed in title?
 ERRORS=20 Maximum number of observations with error messages
 FIRSTOBS=1 First observation of each data set to be processed
 FMTERR Treat missing format or informat as an error?
 LABEL Allow procedures to use variable labels?
 LINESIZE=96 Line size for printed output
 MISSING=. Character printed to represent numeric missing values
 NOTES Print SAS notes on log?
 NUMBER Print page number on each page of SAS output?
 OBS=MAX Number of last observation to be processed
 PAGENO=1 Resets the current page number on the print file
 PAGESIZE=54 Number of lines printed per page of output
 PROBSIG=0 Number of significant figures guaranteed when printing P-values
 REPLACE Allow replacement of permanent SAS data sets?
 SOURCE List SAS source statements on log?
 NOSOURCE2 List included SAS source statements on log?
 YEARCUTOFF=1900 Cutoff year for DATE7. informat

Not every SAS system option is listed above, but many of the most common options are listed. Of
course, it is not necessary to understand every SAS option in order to run a SAS job. This module will
discuss some of the more common SAS system options that the typical user would use to customize
their SAS sessions.

2. Log, output and procedure options

Log, output and procedure options specify the ways in which SAS output is written to the SAS log and
procedure output file.

 57

Below are some commonly used log, output, and procedure options:

center controls whether SAS procedure output is centered. By default, output is always centered. To
specify not centered, use nocenter, which will print results to the output window as left justified.

date prints the date and time to the log and output window. By default, the date and time is always
printed. To suppress the printing of the date, use nodate.

label allows SAS procedures to use labels with variables. By default, labels are permitted. To suppress
the printing of labels, use nolabel.

notes controls whether notes are printed to the SAS log. By default, notes are printed. To suppress the
printing of notes, use nonotes.

number controls whether page numbers are printed on the first title line of each page of printed output.
By default, page numbers are printed. To suppress the printing of page numbers, use nonumber.

linesize= specifies the line size (printer line width) for the SAS log and the SAS procedure output file
used by the data step and procedures.

pagesize= specifies the number of lines that can be printed per page of SAS output.

missing= specifies the character to be printed for missing numeric variable values.

formchar= specifies the the list of graphics characters that define table boundaries.

Below is sample syntax for setting some of these options.

OPTIONS NOCENTER NODATE NONOTES LINESIZE=80 MISSING=.
 FORMCHAR = '|----|+|---+=|-/<>*';

3. SAS data set control options

SAS data set control options specify how SAS data sets are input, processed, and output.

Below are some commonly used SAS data set control options:

firstobs= causes SAS to begin reading at a specified observation in a data set. If SAS is processing a
file of raw data, this option forces SAS to begin reading at a specified line of data. The default is
firstobs=1.

obs= specifies the last observation from a data set or the last record from a raw data file that SAS is to
read. To return to using all observations in a data set use obs=all replace specifies whether permanently
stored SAS data sets are to be replaced. By default, the SAS system will over-write existing SAS data
sets if the SAS data set is re-specified in a data step. To suppress this option, use noreplace.

Below is sample syntax for invoking some of these options.

 58

OPTIONS OBS=100 NOREPLACE;

4. Error handling options

Error handling options specify how the SAS System reports on and recovers from error conditions.

Below are two commonly used error handling options:

errors= controls the maximum number of observations for which complete error messages are printed.
The default maximum number of complete error messages is errors=20

fmterr (which is in effect by default if not specified) controls whether the SAS System generates an
error message when the system cannot find a format to associate with a variable. Turning this option off
is useful when you have a SAS system data set with custom formats, but you do not have the
corresponding SAS format library. In this situation, SAS will generate an ERROR message for every
unknown format it encounters and will terminate the SAS job without running any following data and
proc steps. Thus, in order to override this default option and read a SAS system data set without
requiring a SAS format library, use nofmterr

Below is sample syntax for invoking these options.

OPTIONS ERRORS=100 NOFMTERR;
RUN;

5. Reading and writing data options

Reading and writing data options control the ways in which data are input to, and output from, the SAS
system.

Below are some commonly used reading and writing data options:

caps specifies whether lowercase characters input to the SAS System are translated to uppercase. The
default is nocaps.

probsig= controls the number of significant digits of p-values in some statistical procedures.

yearcutoff= specifies the first year of a 100-year span used as the default by various informats and
functions. (For more information on yearcutoff and Y2K issues with dates in SAS, see Statistical
Computing and the Year 2000 and Using dates in SAS).

Below is sample syntax for invoking these options.

OPTIONS CAPS PROBSIG=3 YEARCUTOFF=1900;

It should also be noted that these data set options are global options, as opposed to local data set options
that are specified within a data or proc step, and remain in effect until the data or proc step ends. For
more on local data set options, such as obs, keep and drop, see Subsetting data in SAS.

http://www.ats.ucla.edu/stat/mult_pkg/library/y2k.htm
http://www.ats.ucla.edu/stat/mult_pkg/library/y2k.htm
http://www.ats.ucla.edu/stat/sas/modules/dates.htm
http://www.ats.ucla.edu/stat/sas/modules/subset.htm

 59

An overview of the syntax of SAS procedures

1. Introduction

This module will illustrate the general syntax of SAS procedures. We will use the auto data file shown
below to illustrate the syntax of SAS procedures.

DATA auto ;
 input MAKE $ PRICE MPG REP78 FOREIGN ;
DATALINES;
AMC 4099 22 3 0
AMC 4749 17 3 0
AMC 3799 22 3 0
Audi 9690 17 5 1
Audi 6295 23 3 1
BMW 9735 25 4 1
Buick 4816 20 3 0
Buick 7827 15 4 0
Buick 5788 18 3 0
Buick 4453 26 3 0
Buick 5189 20 3 0
Buick 10372 16 3 0
Buick 4082 19 3 0
Cad. 11385 14 3 0
Cad. 14500 14 2 0
Cad. 15906 21 3 0
Chev. 3299 29 3 0
Chev. 5705 16 4 0
Chev. 4504 22 3 0
Chev. 5104 22 2 0
Chev. 3667 24 2 0
Chev. 3955 19 3 0
Datsun 6229 23 4 1
Datsun 4589 35 5 1
Datsun 5079 24 4 1
Datsun 8129 21 4 1
;
RUN;

2. Using a procedure with no options

Now, lets have a look at the use of SAS procedures using proc means as an example. Here we show
that it is possible to use proc means with no options at all. By default, it uses the last data file created
(i.e., auto) and it makes means for all of the numeric variables in the file.

PROC MEANS ;
RUN;

Here you see the results, the means from auto and it displays the N, mean, Std Dev, Min and Max for
all of the numeric variables.

 Variable N Mean Std Dev Minimum Maximum
--
PRICE 23 6507.57 3094.96 3299.00 15906.00

 60

MPG 23 21.0434783 4.8003623 14.0000000 35.0000000
REP78 23 3.4347826 0.6623709 3.0000000 5.0000000
FOREIGN 23 0.3043478 0.4704720 0 1.0000000
--

3. Using options on the PROC statement

We can use the data= option to tell proc means for what file we want the means. The data= option
comes right after proc means. Even though the data= option is optional, we strongly recommend using
it every time because it avoids errors of omission when you revise your programs.

PROC MEANS DATA=auto;
RUN;

As you see, the results are identical to those above.

 Variable N Mean Std Dev Minimum Maximum
--
PRICE 23 6507.57 3094.96 3299.00 15906.00
MPG 23 21.0434783 4.8003623 14.0000000 35.0000000
REP78 23 3.4347826 0.6623709 3.0000000 5.0000000
FOREIGN 23 0.3043478 0.4704720 0 1.0000000
--

We can use the n, mean and std options to tell proc means that we just want the N, mean and standard
deviation for the data.

PROC MEANS DATA=auto N MEAN STD ;
RUN;

The output, shown below, shows just the N, mean, and standard deviation, just as we requested.

Variable N Mean Std Dev
--
PRICE 23 6507.57 3094.96
MPG 23 21.0434783 4.8003623
REP78 23 3.4347826 0.6623709
FOREIGN 23 0.3043478 0.4704720
--

These examples have shown us that you can have options on the proc statement, for example after proc
means we used the data= n mean and std options.

4. Using additional statements

Proc means also supports additional statements. Here we use the var statement to say which variables
we want the means for proc means.

PROC MEANS DATA=auto2;
 VAR price ;
RUN;

As you would expect, the output shows the results just for the variable price.

 61

Analysis Variable : PRICE

 N Mean Std Dev Minimum Maximum
--
23 6507.57 3094.96 3299.00 15906.00
--

Here we also use the class statement to request means broken down by foreign (i.e., foreign and
domestic cars).

PROC MEANS DATA=auto;
 CLASS foreign ;
 VAR price ;
RUN;

As we requested, the means of price are shown for the two levels of foreign.

Analysis Variable : PRICE
 FOREIGN N Obs N Mean Std Dev Minimum Maximum

 0 16 16 6245.50 3470.04 3299.00 15906.00
 1 7 7 7106.57 2101.83 4589.00 9735.00

These examples have shown that you can have additional statements with a proc (for example, the var
and class statement). Each proc has its own set of additional statements that are valid for that proc.

5. Options on additional statements

It is also possible to have options on the additional statements (the statements after the proc
statement). We will illustrate this using proc reg.

Here we use proc reg to predict price from mpg. We use the model statement to tell proc reg that we
want to predict price from mpg.

PROC REG DATA=auto ;
 MODEL price = mpg ;
RUN;

Here is the output from the proc reg.

Model: MODEL1
Dependent Variable: PRICE

Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Prob>F

Model 1 54620027.581 54620027.581 5.712 0.0251
Error 24 229491191.53 9562132.9806
C Total 25 284111219.12

 Root MSE 3092.26988 R-square 0.1922

 62

 Dep Mean 6651.73077 Adj R-sq 0.1586
 C.V. 46.48820

Parameter Estimates

 Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 13152 2786.6930753 4.720 0.0001
MPG 1 -310.689641 129.99546608 -2.390 0.0251

Notice that we don't get standardized estimates (betas). We have to ask proc reg to give those to us. In
particular, we use the stb option on the model statement, as shown below. Note that the stb option
comes after a / . Options on a proc statement come right after the name of the proc, but options for
subsequent statements must follow a slash / .

PROC REG DATA=auto ;
 MODEL price = mpg / STB;
RUN;

The output is the same as the output above, except that it also includes this portion shown below that
has the standardized estimates (betas).

 Standardized
Variable DF Estimate

INTERCEP 1 0.00000000
MPG 1 -0.43846180

6. More examples

We have illustrated the general syntax of SAS procedures using proc means and proc reg. Let's look
at a few more examples, this time using proc freq. As you may imagine, proc freq is used for
generating frequency tables. From what we have learned, we would expect that proc freq would have:

- Options on the proc freq statement that would influence the way that the tables look.
- Additional statements that would specify what tables to produce.
- Options on the additional statements that would influence how those particular tables look.

Let's look at some examples.

First, consider the program below. As you might expect, the program above would generate frequency
tables for every variable in the auto data file.

PROC FREQ DATA=auto;
RUN;

If we use the page option, proc freq will start every table on a new page. Note that this influences all
of the tables produced in that proc freq step.

PROC FREQ DATA=auto PAGE;

 63

RUN;

We have also seen that a SAS procedure can have one or more optional statements. Below we show
that we can have one or more tables statements to specify the frequency tables we want, in this case,
tables for rep78 and price. Because we used the page option, each table will start on a new page. This
influences both the table made for rep78 and price. (Note that we could have specified tables rep78
price; and gotten the same result, but we wanted to illustrate having more than one tables statement.)

PROC FREQ DATA=auto PAGE;
 TABLES rep78 ;
 TABLES price ;
RUN;

As we might expect, we could supply options on each of the tables statements to determine how those
particular tables are shown. The example below requests frequency tables for rep78 and price, but the
table for rep78 will omit percentages because it used the nopercent option. Both tables will appear on
a new page (because the page option influences all of the tables) but only rep78 will suppress the
printing of percentages because the nopercent option only applies to that one tables statement.

PROC FREQ DATA=auto PAGE;
 TABLES rep78 / NOPERCENT ;
 TABLES price ;
RUN;

7. Problems to look out for

When you use options, it is easy to confuse an option that goes on the proc statement with options that
follow on subsequent statements.

Common error messages in SAS

When a SAS program is executed, SAS generates a log.

1. The log

• Echoes program statements
• Provides information about computer resources
• Provides diagnostic information

Understanding the log enables you to identify and correct errors in your program. The log contains three
types of messages:

• Notes
• Warnings
• Errors

Although notes and warnings will not cause the program to terminate, they are worthy of your attention,
since they may alert you to potential problems.

 64

An error message is more serious, since it indicates that the program has failed and stopped execution.

However, the majority of errors are easily corrected.

2. Finding and correcting errors

1. Start at the beginning
Do not become alarmed if your program has several errors in it. Sometimes there is a single error in the
beginning of the program that causes the others. Correcting this error may eliminate all those that
follow. Start at the beginning of your program and work down.

2. Debug your programs one step at a time.
SAS executes programs in steps, so even if you have an error in a step written in the beginning of your
program, SAS will try to execute all subsequent steps, which wastes not only your time, but computer
resources as well. Simplify your work. Correct your programs one step at a time, before proceeding to
the next step. As mentioned above, often a single error in the beginning of the program can create a
cascading error effect. Correcting an error in a previous step may eliminate other errors.

Look at the statements immediately above and immediately following the line with the error. SAS will
underline the error where it detects it, but sometimes the actual error is in a different place in your
program, typically the preceding line.

4. Look for common errors first.
Most errors are caused by a few very common mistakes.

3. Common errors

3.1. Missing semicolon
This is by far the most common error. A missing semicolon will cause SAS to misinterpret not only the
statement where the semicolon is missing, but possibly several statements that follow. Consider the
following program, which is correct, except for the missing semicolon:

proc print data = auto
 var make mpg;
run;

The missing semicolon causes SAS to read the two statements as a single statement. As a result, the var
statement is read as an option to the procedure. Since there is no var option in proc print, the program
fails.

 proc print data = auto
44 var make mpg;

 202 202 202
45 run;

ERROR 202-322: The option or parameter is not recognized.
NOTE: The SAS System stopped processing this step because of errors.

 65

The syntax for the following program is absolutely correct, except for the missing semicolon on the
comment:

* Build a file named auto2

data auto2;
 set auto;
 ratio=mpg/weight;
run;

34 * Build a file named auto2
35
36 data auto2;
37 set auto;

 180
ERROR 180-322: Statement is not valid or it is used out of proper order.
38 ratio=mpg/weight;

 180
ERROR 180-322: Statement is not valid or it is used out of proper order.
39 run;

Taken out of the context of the program, both statements are correct.

 set auto;
 ratio=mpg/weight;

However, SAS flags them as errors, because it fails to read the data statement correctly. Instead it reads
this statement as part of the comment.

 * Build a file named auto2 data auto2;

Why? Because the first semicolon it encounters is after the word auto2. Consequently the two correct
statements are now errors.

3.1 Misspellings

Sometimes SAS will correct your spelling mistakes for you by making its best guess at what you meant
to do. When this happens, SAS will continue execution and issue a warning explaining the assumption
it has made.. Consider for example, the following program:

DAT auto ;
 INPUT make $ mpg rep78 weight foreign ;
CARDS;
AMC 22 3 2930 0
AMC 17 3 3350 0
AMC 22 . 2640 0
;

 66

run;

Note that the word "DATA" is misspelled. If we were to run this program, SAS would correct the
spelling and run the program, but issue a warning.

68 DAT auto ;

14 69 INPUT make $ mpg rep78 weight foreign ;
 70 CARDS; WARNING 14-169: Assuming the symbol DATA was misspelled as DAT.
NOTE: The data set WORK.AUTO has 26 observations and 5 variables.

Sometimes SAS identifies a spelling error in a note, which does not cause the program to fail. Never
assume that a program that has run without errors is correct! Always review the SAS log for notes and
warning as well as errors.

The following program runs successfully, but is it correct?

data auto2;
 set auto;
 ratio = mpg/wieght;
run;

A careful review of the SAS log reveals that it is not.

75 data auto2;
76 set auto;
77 ratio = mpg/wieght;
78 run;

NOTE: Variable WIEGHT is uninitialized.
NOTE: Missing values were generated as a result of performing an
 operation on missing values.
 Each place is given by:
 (Number of times) at (Line):(Column). 6 at 77:15
NOTE: The data set WORK.AUTO2 has 26 observations and 7 variables.

Sometimes missing values are legitimate. However, when a variable is missing data for every record in
the file, there may be a problem with the program, as illustrated above. More often, when your program
contains spelling errors, the step will terminate and SAS will issue an error statement or a note
underlining the word, or words, it does not recognize.

65 proc print
66 var make mpg weight;

 76
67 run;

ERROR 76-322: Syntax error, statement will be ignored.
NOTE: The SAS System stopped processing this step because of errors.

In this example, there is nothing wrong with the var statement. Adding a semicolon to the proc print
solves the problem.

proc print;

 67

 var make mpg weight;
run;

3.2 Unmatched quotes/comments

Unclosed quotes and unclosed comments will result in a variety of errors because SAS will fail to read
subsequent statements correctly. If you are running interactively, your program may appear to be doing
nothing, because SAS is waiting for the end of the quoted string or comment before continuing. For
example, if we were to run the following program

proc print;
 var make mpg;
 Title "Auto File ';
run;

SAS would not read the run statement. Instead it reads it as part of the title statement, because the title
statement is missing the closing double quotes. When run, the program would appear to be doing
nothing. System messages would indicate that it is running, which in fact it is. However, SAS is reading
the rest of the program, waiting for the end of the step, which it will never find because it has become
part of the title statement. When executed, the program will disappear from the program editor.

Nothing appears in the output window (not shown). If we check the log, it indicates the program is
running.

If we correct the program by adding the double quotes, and the program will now run.

 68

Note that SAS includes the string 'run; in the the title when it prints the output listing.

Auto File ';run;

OBS MAKE MPG
 1 AMC 22
 2 AMC 17
 3 AMC 22
 4 Audi 17
 5 Audi 23
 6 BMW 25
 7 Buick 20
 8 Buick 15
 9 Buick 18
10 Buick 26
11 Buick 20
12 Buick 16
13 Buick 19
14 Cad. 14
15 Cad. 14
16 Cad. 21
17 Chev. 29
18 Chev. 16
19 Chev. 22
20 Chev. 22
21 Chev. 24
22 Chev. 19
23 Datsun 23
24 Datsun 35
25 Datsun 24
26 Datsun 21

3.3 Mixing proc and data statements

Since the data and proc steps perform very different functions in SAS, statements that are valid for one
will probably cause an error when used in the other. Although a program may include several steps,
steps are processed separately.

A step ends in one of three ways:

1. SAS encounters a keyword that begins a new step (either proc or data)
2. SAS encounters the run statement, which instructs it to run the previous step(s)
3. SAS encounters the end of the program.

 69

Each data, proc and run statement causes the previous step to execute. Consequently, once a new step
has begun, you may not go back and add statements to an earlier step. Consider this program, for
example.

data auto2;
 set auto;
proc sort; by make;
 ratio = mpg/weight;
run;

SAS creates the new file auto2 when it reaches the end of the data step. This occurs when it encounters
the beginning of a new step (in this example proc sort). Consequently, the assignment statement is
invalid because the data step has been terminated, and an assignment statement cannot be used in a
procedure.

40 data auto2;
41 set auto;

NOTE: The data set WORK.AUTO2 has 26 observations and 5 variables.
NOTE: The DATA statement used 0.12 seconds.

42 proc sort; by make;
43 ratio = mpg/weight;

 180
44 run;

ERROR 180-322: Statement is not valid or it is used out of proper order.
NOTE: The SAS System stopped processing this step because of errors.

Simply moving the statement solves the problem.

data auto2;
 set auto;
 ratio = mpg/weight;
proc sort; by make;
run;

3.4 Using options with the wrong proc

Similarly, although many options work with a variety of procedures, some are only valid when used
with a particular procedure. Remember to evaluate all errors in context. A perfectly correct statement or
option may cause an error not because it was written incorrectly, but because it is being used in the
wrong place.

88 proc freq data = auto2;
89 var make;

 180
90 run;

ERROR 180-322: Statement is not valid or it is used out of proper order.
NOTE: The SAS System stopped processing this step because of errors.

 70

The var statement is not valid when used with proc freq. Change the statement to tables and the
program runs successfully.

proc freq data = auto2;
 tables make;
run;

Conversely, the tables statement may not work with other procedures.

92 proc means data = auto2;
93 tables make;

 180
94 run;

ERROR 180-322: Statement is not valid or it is used out of proper order.
NOTE: The SAS System stopped processing this step because of errors.

In this example, the var statement is correct:

proc means data = auto2;
 var make;
run;

4. Understanding common error messages

Variable uninitialized
Variable not found

These errors mean that your program includes a reference to a variable name that SAS has never seen.
The mostly likely cause is a spelling error. If all variables and programming statements are spelled
correctly, check that you are in fact reading the correct data set and not one with a similar name.

• Check spelling
Has the variable name been spelled correctly?

• Consider data errors
Are you reading the correct data set?
Have the data changed?
Has the variable been dropped?
Consider logic errors
Are you using a variable before it has been built?
Consider the log generated when the following program is run:

 106 data auto2;
107 set auto;
108 if tons > .5;
109 tons = weight/2000;
110 run;

NOTE: The data set WORK.AUTO2 has 0 observations

 71

Although the program ran with no errors, the new data set has no observations in it. Since we would
expect most cars to weigh more than half a ton, there is probably an error in the program logic. In this
case, we are subsetting on a variable that has not yet been defined.

Changing the order of the programming statements yields a different result:

 118 data auto2;
119 set auto;
120 tons = weight/2000;
121 if tons > .5;
122 run;

NOTE: The data set WORK.AUTO2 has 26 observations.

Invalid option
This means that the option is not valid for the procedure in which it is being used.
Check procedure/options
Is the option appropriate for the procedure?

Option or parameter not recognized
This error means that although the option may be correct as written, it is not being used correctly in the
program.
Check procedure/options
Is the option appropriate for the procedure?
Look for missing semicolon.
Is there a missing semicolon in a preceding statement?

Statement is not valid or is used out of proper order
This means that the statement itself is incorrect as written.
Check your syntax

Inputting data into SAS

This module will show how to input raw data into SAS, showing how to read instream data and external
raw data files using some common raw data formats. Section 3 shows how to read external raw data
files on a PC, UNIX/AIX, and Macintosh, while sections 4-6 give examples showing how to read the
external raw data files on a PC, however these examples are easily converted to work on UNIX/AIX or
a Macintosh based on the examples shown in section 3.

1. Reading free formatted data instream

One of the most common ways to read data into SAS is by reading the data instream in a data step -
that is, by typing the data directly into the syntax of your SAS program. This approach is good for
relatively small datasets. Spaces are usually used to "delimit" (or separate) free formatted data. For
example:

DATA cars1;
 INPUT make $ model $ mpg weight price;
CARDS;
AMC Concord 22 2930 4099

 72

AMC Pacer 17 3350 4749
AMC Spirit 22 2640 3799
Buick Century 20 3250 4816
Buick Electra 15 4080 7827
;
RUN;

After reading in the data with a data step, it is usually a good idea to print the first few cases of your
dataset to check that things were read correctly.

title "cars1 data";
PROC PRINT DATA=cars1(obs=5);
RUN;

Here is the output produced by the proc print statement above.

cars1 data

OBS MAKE MODEL MPG WEIGHT PRICE
1 AMC Concord 22 2930 4099
2 AMC Pacer 17 3350 4749
3 AMC Spirit 22 2640 3799
4 Buick Century 20 3250 4816
5 Buick Electra 15 4080 7827

2. Reading fixed formatted data instream

Fixed formatted data can also be read instream. Usually, because there are no delimiters (such as spaces,
commas, or tabs) to separate fixed formatted data, column definitions are required for every variable in
the dataset. That is, you need to provide the beginning and ending column numbers for each variable.
This also requires the data to be in the same columns for each case. For example, if we rearrange the
cars data from above, we can read it as fixed formatted data:

DATA cars2;
 INPUT make $ 1-5 model $ 6-12 mpg 13-14 weight 15-18 price 19-22;
CARDS;
AMC Concord2229304099
AMC Pacer 1733504749
AMC Spirit 2226403799
BuickCentury2032504816
BuickElectra1540807827
;
RUN;

TITLE "cars2 data";
PROC PRINT DATA=car2(obs=5);
RUN;

The benefit of fixed formatted data is that you can fit more information on a line when you do not use
delimiters such as spaces or commas.

Here is the output produced by the proc print statement above.

cars2 data

 73

OBS MAKE MODEL MPG WEIGHT PRICE
1 AMC Concord 22 2930 4099
2 AMC Pacer 17 3350 4749
3 AMC Spirit 22 2640 3799
4 Buick Century 20 3250 4816
5 Buick Electra 15 4080 7827

3. Reading fixed formatted data from an external file

Suppose you are using a PC and you have a file named cars3.dat, that is stored in the c:\carsdata
directory of your computer. Here's what the data in the file cars3.dat look like:

AMC Concord2229304099
AMC Pacer 1733504749
AMC Spirit 2226403799
BuickCentury2032504816
BuickElectra1540807827

To read the file cars3.dat, use the following syntax.

 DATA cars3;
 INFILE "c:\carsdata\cars3.dat";
 INPUT make $ 1-5 model $ 6-12 mpg 13-14 weight 15-18 price 19-22;
RUN;

TITLE "cars3 data";
PROC PRINT DATA=cars3(obs=5);
RUN;

Here is the output produced by the proc print statement above.

cars3 data

OBS MAKE MODEL MPG WEIGHT PRICE
1 AMC Concord 22 2930 4099
2 AMC Pacer 17 3350 4749
3 AMC Spirit 22 2640 3799
4 Buick Century 20 3250 4816
5 Buick Electra 15 4080 7827

Suppose you were working on UNIX. The UNIX version of this program, assuming the file cars3.dat
is located in the directory ~/carsdata, would use the syntax shown below. (Note that the "~" in the
UNIX pathname above refers to the user's HOME directory. Hence, the directory called carsdata that is
located in the users HOME directory.)

DATA cars3;
 INFILE "~/carsdata/cars3.dat";
 INPUT make $ 1-5 model $ 6-12 mpg 13-14 weight 15-18 price 19-22;
RUN;

TITLE "cars3 data";
PROC PRINT DATA=cars3(obs=5);
RUN;

 74

Likewise, suppose you were working on a Macintosh. The Macintosh version of this program,
assuming cars3.dat is located on your hard drive (called Hard Drive) in a folder called carsdata
would look like this.

DATA cars3;
 INFILE 'Hard Drive:carsdata:cars3.dat';
 INPUT make $ 1-5 model $ 6-12 mpg 13-14 weight 15-18 price 19-22;
RUN;

TITLE "cars3 data";
PROC PRINT DATA=cars3(OBS=5);
RUN;

In examples 4, 5 and 6 below, you can change the infile statement as these examples have shown to
make the programs appropriate for UNIX or for the Macintosh.

4. Reading free formatted (space delimited) data from an external file

Free formatted data that is space delimited can also be read from an external file. For example, suppose
you have a space delimited file named cars4.dat, that is stored in the c:\carsdata directory of your
computer.

Here's what the data in the file cars4.dat look like:

AMC Concord 22 2930 4099
AMC Pacer 17 3350 4749
AMC Spirit 22 2640 3799
Buick Century 20 3250 4816
Buick Electra 15 4080 7827

To read the data from cars4.dat into SAS, use the following syntax:

DATA cars4;
 INFILE "c:\carsdata\cars4.dat";
 INPUT make $ model $ mpg weight price;
RUN;

TITLE "cars4 data";
PROC PRINT DATA=cars4(OBS=5);
RUN;

Here is the output produced by the proc print statement above.

cars4 data

OBS MAKE MODEL MPG WEIGHT PRICE
1 AMC Concord 22 2930 4099
2 AMC Pacer 17 3350 4749
3 AMC Spirit 22 2640 3799
4 Buick Century 20 3250 4816
5 Buick Electra 15 4080 7827

5. Reading free formatted (comma delimited) data from an external file

 75

Free formatted data that is comma delimited can also be read from an external file. For example,
suppose you have a comma delimited file named cars5.dat, that is stored in the c:\carsdata directory of
your computer.

Here's what the data in the file cars5.dat look like:

AMC,Concord,22,2930,4099
AMC,Pacer,17,3350,4749
AMC,Spirit,22,2640,3799
Buick,Century,20,3250,4816
Buick,Electra,15,4080,7827

To read the data from cars5.dat into SAS, use the following syntax:

DATA cars5;
 INFILE "c:\carsdata\cars5.dat" delimiter=',';
 INPUT make $ model $ mpg weight price;
RUN;

TITLE "cars5 data";
PROC PRINT DATA=cars5(OBS=5);
RUN;

Here is the output produced by the proc print statement above.

cars5 data

OBS MAKE MODEL MPG WEIGHT PRICE
1 AMC Concord 22 2930 4099
2 AMC Pacer 17 3350 4749
3 AMC Spirit 22 2640 3799
4 Buick Century 20 3250 4816
5 Buick Electra 15 4080 7827

6. Reading free formatted (tab delimited) data from an external file

Free formatted data that is TAB delimited can also be read from an external file. For example, suppose
you have a tab delimited file named cars6.dat, that is stored in the c:\carsdata directory of your
computer.

Here's what the data in the file cars6.dat look like:

AMC Concord 22 2930 4099
AMC Pacer 17 3350 4749
AMC Spirit 22 2640 3799
Buick Century 20 3250 4816
Buick Electra 15 4080 7827

To read the data from cars6.dat into SAS, use the following syntax:

DATA cars6;
 INFILE "c:\carsdata\cars6.dat" DELIMITER='09'x;
 INPUT make $ model $ mpg weight price;
RUN;

 76

TITLE "cars6 data";
PROC PRINT DATA=cars6(OBS=5);
RUN;

Here is the output produced by the proc print statement above.

cars6 data

OBS MAKE MODEL MPG WEIGHT PRICE
1 AMC Concord 22 2930 4099
2 AMC Pacer 17 3350 4749
3 AMC Spirit 22 2640 3799
4 Buick Century 20 3250 4816
5 Buick Electra 15 4080 7827

7. Problems to look out for

• If you read a file that is wider than 80 columns, you may need to use the lrecl= parameter on the
infile statement.

Using dates

1. Reading dates in data

This module will show how to read date variables, use date functions, and use date display formats in
SAS. You are assumed to be familiar with data steps for reading data into SAS, and assignment
statements for computing new variables. If any of the concepts are completely new, you may want to
look at For more information below for directions to other learning modules. The data file used in the
first example is presented next.

John 1 Jan 1960
Mary 11 Jul 1955
Kate 12 Nov 1962
Mark 8 Jun 1959

The program below reads the data and creates a temporary data file called dates. Note that the dates are
read in the data step, and the format date11. is used to read the date.

 DATA dates;
 INPUT name $ 1-4 @6 bday date11.;
CARDS;
John 1 Jan 1960
Mary 11 Jul 1955
Kate 12 Nov 1962
Mark 8 Jun 1959
;
RUN;
PROC PRINT DATA=dates;
RUN;

 77

The output of the proc print is presented below. Compare the dates in the data to the values of bday.
Note that for John the date is 1 Jan 1960 and the value for bday is 0. This is because dates are stored
internally in SAS as the number of days from Jan 1,1960. Since Mary was born before 1960 the value
of bday for her is negative (-1635).

OBS NAME BDAY

 1 John 0
 2 Mary -1635
 3 Kate 1046
 4 Mark -207

In order to see the dates in a way that we understand you would have to format the output. We use the
date9. format to see dates in the form ddmmmyyyy. This is specified on a format statement.

 PROC PRINT DATA=dates;
 FORMAT bday date9. ;
RUN;

Here is the output produced by the proc print statement above.

OBS NAME BDAY

 1 John 01JAN1960
 2 Mary 11JUL1955
 3 Kate 12NOV1962
 4 Mark 08JUN1959

Let's look at the following data. At first glance it looks like the dates are so different that they couldn't
be read. They do have two things in common:

1) they all have numeric months,
2) they all are ordered month, day, and then year.

John 1 1 1960
Mary 07/11/1955
Joan 07-11-1955
Kate 11.12.1962
Mark 06081959

These dates can be read with the same format, mmddyy11. An example of the use of that format in a
data step follows.

DATA dates;
 INPUT name $ 1-4 @6 bday mmddyy11.;
CARDS;
John 1 1 1960
Mary 07/11/1955
Joan 07-11-1955
Kate 11.12.1962
Mark 06081959
;
RUN;
PROC PRINT DATA=dates;

 78

 FORMAT bday date9. ;
RUN;

The results of the above proc print show that all of the dates are read correctly.

OBS NAME BDAY

 1 John 01JAN1960
 2 Mary 11JUL1955
 3 Joan 11JUL1955
 4 Kate 12NOV1962
 5 Mark 08JUN1959

There is a wide variety of formats available for use in reading dates into SAS. The following is a
sample of some of those formats.

Informat Description Range Width Sample
-------- ----------- ----- ------- ------
JULIANw. Julian date 5-32 5 65001
 YYDDD
DDMMYYw. date values 6-32 6 14/8/1963
MONYYw. month and year 5-32 5 JUN64
YYMMDDw. date values 6-32 8 65/4/29
YYQw. year and quarter 4-32 4 65/1

Consider the following data in which the order is month, year, and day.

 7 1948 11
 1 1960 1
10 1970 15
12 1971 10

You may read these data with each portion of the date in a separate variable as in the data step that
follows.

DATA dates;
 INPUT month 1-2 year 4-7 day 9-10;
 bday=MDY(month,day,year);
CARDS;
 7 1948 11
 1 1960 1
10 1970 15
12 1971 10
;
RUN;

PROC PRINT DATA=dates;
 FORMAT bday date9. ;
RUN;

Notice the function mdy(month,day,year) in the data step. This function is used to create a date value
from the individual components. The result of the proc print follows.

OBS MONTH YEAR DAY BDAY

 79

 1 7 1948 11 11JUL1948
 2 1 1960 1 01JAN1960
 3 10 1970 15 15OCT1970
 4 12 1971 10 10DEC1971

2. SAS dates and Y2K

Consider the following data, which are the same as above except that only 2 digits are used to signify
the year, and year appears last.

 7 11 18
 7 11 48
 1 1 60
10 15 70
12 10 71

Reading the data is the same as we just did.

DATA dates;
 INPUT month day year ;
 bday=MDY(month,day,year);
CARDS;
 7 11 18
 7 11 48
 1 1 60
10 15 70
12 10 71
;
RUN;

PROC PRINT DATA=dates;
 FORMAT bday date9. ;
RUN;

The results of the proc print are shown below.

OBS MONTH DAY YEAR BDAY

 1 7 11 18 11JUL1918
 2 7 11 48 11JUL1948
 3 1 1 60 01JAN1960
 4 10 15 70 15OCT1970
 5 12 10 71 10DEC1971

Two digit years work here because SAS assumes a cutoff (yearacutoff) before which value 2 digit
years are interpreted as Year 2000 and above and after which they are interpreted as 1999 and below.
The default yearcutoff differs for different versions of SAS:

SAS 6.12 and before (YEARCUTOFF=1900)
SAS 7 and 8 (YEARCUTOFF=1920)

If you have files which use 2 digits to signify the year portion of a date, be sure to see the discussion of
SAS on our web page "Statistical Computing and the Year 2000" at

 80

http://www.ats.ucla.edu/stat/y2k.htm .
Pay particular attention to the yearacutoff= option..

The options statement in the program that follows changes the yearacutoff value to 1920. This causes
in 2 digit years lower than 20 to be read as after the year 2000. Running the same program then will
yield different results when this option is set.

OPTIONS YEARCUTOFF=1920;

DATA dates;
 INPUT month day year ;
 bday=MDY(month,day,year);
CARDS;
 7 11 18
 7 11 48
 1 1 60
10 15 70
12 10 71
;
RUN;

PROC PRINT DATA=dates;
 FORMAT bday date9. ;
RUN;

The results of the proc print are shown below. The first observation is now read as occurring in 2018
instead of 1918.

OBS MONTH DAY YEAR BDAY

 1 7 11 18 11JUL2018
 2 7 11 48 11JUL1948
 3 1 1 60 01JAN1960
 4 10 15 70 15OCT1970
 5 12 10 71 10DEC1971

There is no complete answer to the Y2K problem, but with the yearacutoff= option SAS provides some
powerful tools to help. The ultimate answer is to use 4 digit years.

3. Computations with elapsed dates

SAS date variables make computations involving dates very convenient. For example, to calculate
everyone's age on January 1, 2000 use the following conversion in the data step.

 age2000=(mdy(1,1,2000)-bday)/365.25 ;

The program with this calculation in context follows.

OPTIONS YEARCUTOFF=1900; /* sets the cutoff back to the default */

DATA dates;
 INPUT name $ 1-4 @6 bday mmddyy11.;
 age2000=(=MDY(1,1,2000)-bday)/365.25 ;
CARDS;

http://www.ats.ucla.edu/stat/mult_pkg/library/y2k.htm

 81

John 1 1 1960
Mary 07/11/1955
Joan 07-11-1955
Kate 11.12.1962
Mark 06081959
;
RUN;

PROC PRINT DATA=dates;
 FORMAT bday date9. ;
RUN;

The results of the proc print are shown below. AGE2000 now is the age in years as of January 1,
2000.

OBS NAME BDAY AGE2000

 1 John 01JAN1960 40.0000
 2 Mary 11JUL1955 44.4764
 3 Joan 11JUL1955 44.4764
 4 Kate 12NOV1962 37.1362
 5 Mark 08JUN1959 40.5667

4. Other useful date functions

There are a number of useful functions for use with date variables. The following is a list of some of
those functions.

 Function Description Sample
-------- --------------------- -----------------
month() Extracts Month m=MONTH(bday);
day() Extracts Day d=DAY(bday) ;
year() Extracts Year y=YEAR(bday);
weekday() Extracts Day of Week wk_d=WEEKDAY(bday);
qtr() Extracts Quarter q=QTR(bday);

The following program demonstrates the use of these functions.

DATA dates;
 INPUT name $ 1-4 @6 bday mmddyy11.;
 m=MONTH(bday);
 d=DAY(bday) ;
 y=YEAR(bday);
 wk_d=WEEKDAY(bday);
 q=QTR(bday);
CARDS;
John 1 1 1960
Mary 07/11/1955
Joan 07-11-1955
Kate 11.12.1962
Mark 06081959
;
RUN;

PROC PRINT DATA=dates;
 VAR bday m d y;

 82

 FORMAT bday date9. ;
RUN;

PROC PRINT DATA=dates;
 VAR bday wk_d q;
 FORMAT bday date9. ;
RUN;

The results of the proc prints are shown below. The new variables contain the month, day, year, day of
the week and quarter.

OBS BDAY M D Y

 1 01JAN1960 1 1 1960
 2 11JUL1955 7 11 1955
 3 11JUL1955 7 11 1955
 4 12NOV1962 11 12 1962
 5 08JUN1959 6 8 1959

OBS BDAY WK_D Q

 1 01JAN1960 6 1
 2 11JUL1955 2 3
 3 11JUL1955 2 3
 4 12NOV1962 2 4
 5 08JUN1959 2 2

5. Summary

• Dates are read with date formats, most commonly date9. and mmddyy10.
• Date functions can be used to create date values from their components (mdy(m,d,y)), and to

extract the components from a date value (month(),day(), etc.).
• The yearacutoff option may be used to control where the 2000 break comes if you have to read

two digit years.

6. Problems to look out for

• Dates are mixed within a field such that no single date format can read them. Solution: Read
the field as a character field, test the string, and use the input function and appropriate format to
read the value into the date variable.

• There is no format capable of reading the date. Solution: read the date as components and use a
function to produce a date value.

• Sometimes the default for yearacutoff is not the default for the version of the package
mentioned above. Solution: to determine the current setting for yearacutoff simply run a
program containing
PROC OPTIONS YEARCUTOFF; RUN;.
This will result in output containing the current value of yearacutoff.

Creating and recoding variables in SAS

1. Creating and replacing variables in SAS

 83

We will illustrate creating and replacing variables in SAS using a data file about 26 automobiles with
their make, price, mpg, repair record in 1978 (rep78), and whether the car was foreign or domestic
(foreign). The program below reads the data and creates a temporary data file called "auto". Please
note that there are two missing values for mpg in the data file (coded as a single period).

We will create one new variable to go along with the existing ones. First, we will create cost so that it
gives us the price in thousands of dollars. Then we will create mpgpd which will stand for miles per
gallon per thousand dollars. In each case, we just type the variable name, followed by an equal sign,
followed by an expression for the value.

DATA auto;
 INPUT make $ price mpg rep78 foreign;
 cost = ROUND(price / 1000);
 mpgptd = mpg / price;
DATALINES;
AMC 4099 22 3 0
AMC 4749 17 3 0
AMC 3799 22 3 0
Audi 9690 . 5 1
Audi 6295 23 3 1
BMW 9735 25 4 1
Buick 4816 20 3 0
Buick 7827 15 4 0
Buick 5788 18 3 0
Buick 4453 26 3 0
Buick 5189 20 3 0
Buick 10372 16 3 0
Buick 4082 19 3 0
Cad. 11385 14 3 0
Cad. 14500 14 2 0
Cad. 15906 21 3 0
Chev. 3299 29 3 0
Chev. 5705 16 4 0
Chev. 4504 . 3 0
Chev. 5104 22 2 0
Chev. 3667 24 2 0
Chev. 3955 19 3 0
Datsun 6229 23 4 1
Datsun 4589 35 5 1
Datsun 5079 24 4 1
Datsun 8129 21 4 1
;
RUN;
PROC PRINT DATA=auto;
RUN;

Here is the output of the proc print. You can compare the output to the original data.

OBS MAKE PRICE MPG REP78 FOREIGN COST MPGPTD

 1 AMC 4099 22 3 0 4 .0053672
 2 AMC 4749 17 3 0 5 .0035797
 3 AMC 3799 22 3 0 4 .0057910
 4 Audi 9690 . 5 1 10 .
 5 Audi 6295 23 3 1 6 .0036537

 84

 6 BMW 9735 25 4 1 10 .0025681
 7 Buick 4816 20 3 0 5 .0041528
 8 Buick 7827 15 4 0 8 .0019164
 9 Buick 5788 18 3 0 6 .0031099
 10 Buick 4453 26 3 0 4 .0058388
 11 Buick 5189 20 3 0 5 .0038543
 12 Buick 10372 16 3 0 10 .0015426
 13 Buick 4082 19 3 0 4 .0046546
 14 Cad. 11385 14 3 0 11 .0012297
 15 Cad. 14500 14 2 0 15 .0009655
 16 Cad. 15906 21 3 0 16 .0013203
 17 Chev. 3299 29 3 0 3 .0087905
 18 Chev. 5705 16 4 0 6 .0028046
 19 Chev. 4504 . 3 0 5 .
 20 Chev. 5104 22 2 0 5 .0043103
 21 Chev. 3667 24 2 0 4 .0065449
 22 Chev. 3955 19 3 0 4 .0048040
 23 Datsun 6229 23 4 1 6 .0036924
 24 Datsun 4589 35 5 1 5 .0076269
 25 Datsun 5079 24 4 1 5 .0047253
 26 Datsun 8129 21 4 1 8 .0025833

Note that cost is just a one or two-digit value. The vehicle that achieves the best mpgptd is the Chev.
for observation 17 which gets 9+ miles per gallon for every thousand dollars in price. The Cad. in
observation 14 has the worst mpgptd.

Also note that there are two missing values for mpgptd because of the missing values in mpg.

2. Recoding variables in SAS

The variable rep78 is coded 1 through 5 standing for poor, fair, average, good and excellent. We would
like to change rep78 so that it has only three values, 1 through 3, standing for below average, average,
and above average. We will do this by creating a new variable called repair and recoding the values of
rep78 into it.

We will also create a new variable called himpg that is a dummy coding of mpg. All vehicles with
better than 20 mpg will be coded 1 and those with 20 or less will be coded 0.

SAS does not have a recode command, so we will use a series of if-then/else commands in a data step
to do the job. This data step creates a temporary data file called auto2.

DATA auto2;
 SET auto;

 repair = .;
 IF (rep78=1) or (rep78=2) THEN repair = 1;
 IF (rep78=3) THEN repair = 2;
 IF (rep78=4) or (rep78=5) THEN repair = 3;

 himpg = .;
 IF (mpg <= 20) THEN himpg = 0;
 IF (mpg > 20) THEN himpg = 1;
RUN;

 85

Note that we begin by setting repair and himpg to missing, just in case we make a mistake in the
recoding. Proc freq will show us how the recoding worked.

PROC FREQ DATA=auto2;
 TABLES repair*rep78 repair*himpg / MISSING;
RUN;
TABLE OF REPAIR BY REP78

REPAIR REP78

Frequency|
Percent |
Row Pct |
Col Pct | 2| 3| 4| 5| Total
---------+--------+--------+--------+--------+
 1 | 3 | 0 | 0 | 0 | 3
 | 11.54 | 0.00 | 0.00 | 0.00 | 11.54
 | 100.00 | 0.00 | 0.00 | 0.00 |
 | 100.00 | 0.00 | 0.00 | 0.00 |
---------+--------+--------+--------+--------+
 2 | 0 | 15 | 0 | 0 | 15
 | 0.00 | 57.69 | 0.00 | 0.00 | 57.69
 | 0.00 | 100.00 | 0.00 | 0.00 |
 | 0.00 | 100.00 | 0.00 | 0.00 |
---------+--------+--------+--------+--------+
 3 | 0 | 0 | 6 | 2 | 8
 | 0.00 | 0.00 | 23.08 | 7.69 | 30.77
 | 0.00 | 0.00 | 75.00 | 25.00 |
 | 0.00 | 0.00 | 100.00 | 100.00 |
---------+--------+--------+--------+--------+
Total 3 15 6 2 26
 11.54 57.69 23.08 7.69 100.00

TABLE OF REPAIR BY HIMPG

REPAIR HIMPG

Frequency|
Percent |
Row Pct |
Col Pct | 0| 1| Total
---------+--------+--------+
 1 | 1 | 2 | 3
 | 3.85 | 7.69 | 11.54
 | 33.33 | 66.67 |
 | 7.69 | 15.38 |
---------+--------+--------+
 2 | 9 | 6 | 15
 | 34.62 | 23.08 | 57.69
 | 60.00 | 40.00 |
 | 69.23 | 46.15 |
---------+--------+--------+
 3 | 3 | 5 | 8
 | 11.54 | 19.23 | 30.77
 | 37.50 | 62.50 |
 | 23.08 | 38.46 |
---------+--------+--------+
Total 13 13 26

 86

 50.00 50.00 100.00

Uh oh, there's a problem with himpg. There are no missing values for himpg even though there were
two missing values of mpg. SAS treats missing values (values coded with a .) as the smallest number
possible (i.e., negative infinity). When we recoded mpg we wrote

 IF (mpg <= 20) THEN himpg = 0;

which converted all values of mpg that were 20 or less into a value of 0 for himpg. Since a missing
value is also less than 20, the missing values got recoded to 0 as well. (It is unforeseen mistakes like
this that make it so important to check every variable that you recode.) Let's try recoding himpg again,
being careful to properly treat missing values like this:

 IF (mpg <= 20) THEN himpg = 0;

The complete program, with the fixed if statement, is shown below.

DATA auto2;
 SET auto;

 repair = .;
 IF (rep78=1) or (rep78=2) THEN repair = 1;
 IF (rep78=3) THEN repair = 2;
 IF (rep78=4) or (rep78=5) THEN repair = 3;

 himpg = .;
 IF (. < mpg <= 20) THEN himpg = 0;
 IF (mpg > 20) THEN himpg = 1;
RUN;

Now let's use proc freq again to check the recoding.

PROC FREQ DATA=auto3;
 TABLES repair*himpg / MISSING;
RUN;
TABLE OF REPAIR BY HIMPG

REPAIR HIMPG

Frequency|
Percent |
Row Pct |
Col Pct | .| 0| 1| Total
---------+--------+--------+--------+
 1 | 0 | 1 | 2 | 3
 | 0.00 | 3.85 | 7.69 | 11.54
 | 0.00 | 33.33 | 66.67 |
 | 0.00 | 9.09 | 15.38 |
---------+--------+--------+--------+
 2 | 1 | 8 | 6 | 15
 | 3.85 | 30.77 | 23.08 | 57.69
 | 6.67 | 53.33 | 40.00 |
 | 50.00 | 72.73 | 46.15 |
---------+--------+--------+--------+
 3 | 1 | 2 | 5 | 8

 87

 | 3.85 | 7.69 | 19.23 | 30.77
 | 12.50 | 25.00 | 62.50 |
 | 50.00 | 18.18 | 38.46 |
---------+--------+--------+--------+
Total 2 11 13 26
 7.69 42.31 50.00 100.00

There, that's better, this time there are two missing values for himpg.

3. Problems to look out for

Watch out for math errors, such as, division by zero and square root of a negative number.

4. Helpful hints and suggestions

• Set values to missing and then recode them.
• Use new variable names when you create or recode variables. Avoid constructions like this,

total = total + sub1 + sub2; that reuse the variable name total.
• Use the missing option with proc freq to make sure all missing values are accounted for.

Using SAS functions for making and recoding variables

1. Introduction

A SAS function returns a value from a computation or system manipulation that requires zero or more
arguments. Most functions use arguments supplied by the user; however, a few obtain their arguments
from the operating system. Here is the syntax of a function:

function-name(argument1, argument2)

We will illustrate some functions using the following dataset that includes name, x, test1, test2, and
test3.

DATA getdata;
 INPUT name $14. x test1 test2 test3;
DATALINES;
John Smith 4.2 86.5 84.55 81
Samuel Adams 9.0 70.3 82.37 .
Ben Johnson -6.2 82.1 84.81 87
Chris Adraktas 9.5 94.2 92.64 93
John Brown . 79.7 79.07 72
;
RUN;

The data set funct1 will create new variables using the int, round and mean numeric functions. What
happens to tave due to the missing value of test3?

DATA funct1;
 SET getdata;
 t1int = INT(test1); t2int = INT(test2); /* integer part of a number */
 t1rnd = ROUND(test1);t2rnd = ROUND(test2,.1); /* round to nearest whole number */
 tave = MEAN(test1, test2, test3); /* mean across variables */

 88

RUN;

PROC PRINT DATA=funct1;
 VAR test1 test2 test3 t1int t2int t1rnd t2rnd tave;
RUN;

OBS TEST1 TEST2 TEST3 T1INT T2INT T1RND T2RND TAVE
 1 86.5 84.55 81 86 84 87 84.6 84.0167
 2 70.3 82.37 . 70 82 70 82.4 76.3350
 3 82.1 84.81 87 82 84 82 84.8 84.6367
 4 94.2 92.64 93 94 92 94 92.6 93.2800
 5 79.7 79.07 72 79 79 80 79.1 76.9233

Now let's try some more math functions. What happens when there is a missing or negative value of x?

DATA funct2;
 SET getdata;
 xsqrt = SQRT(x); /* square root */
 xlog = LOG(x); /* log base 10 */
 xexp = EXP(x); /* e raised to the power */
RUN;

PROC PRINT DATA=funct2;
 VAR x xsqrt xlog xexp;
RUN;

OBS X XSQRT XLOG XEXP
 1 4.2 2.04939 1.43508 66.69
 2 9.0 3.00000 2.19722 8103.08
 3 -6.2 . . 0.00
 4 9.5 3.08221 2.25129 13359.73
 5

This time we'll try some string functions. In particular, look closely at the substr function that is used in
fname and lname.

DATA funct3;
 SET getdata;
 c1 = UPCASE(name); /* convert to upper case */
 c2 = SUBSTR(name,3,8); /* substring */
 len = LENGTH(name); /* length of string */
 ind = INDEX(name,' '); /* position in string */
 fname = SUBSTR(name,1,INDEX(name,' '));
 lname = SUBSTR(name,INDEX(name,' '));
RUN;

PROC PRINT DATA=funct3;
 VAR name c1 c2 len ind fname lname;
RUN;

OBS NAME C1 C2 LEN IND FNAME LNAME
 1 John Smith JOHN SMITH hn Smith 10 5 John Smith
 2 Samuel Adams SAMUEL ADAMS muel Ada 12 7 Samuel Adams
 3 Ben Johnson BEN JOHNSON n Johnso 11 4 Ben Johnson
 4 Chris Adraktas CHRIS ADRAKTAS ris Adra 14 6 Chris Adraktas
 5 John Brown JOHN BROWN hn Brown 10 5 John Brown

 89

2. Random numbers in SAS

Random numbers are more useful than you might imagine. They are used extensively in Monte Carlo
studies, as well as in many other situations. We will look at two of SAS's random number functions.

• UNIFORM(SEED) - generates values from a random uniform distribution between 0 and 1
• NORMAL(SEED) - generates values from a random normal distribution with mean 0 and

standard deviation 1

The statements if x>.5 then coin = 'heads' and else coin = 'tails' create a random variable called coins
that has values 'heads' and 'tails'. The data sets random1 and random2 use a seed value of -
1. Negative seed values will result in different random numbers being generated each time.

DATA random1;
 x = UNIFORM(-1);
 y = 50 + 3*NORMAL(-1);
 IF x>.5 THEN coin = 'heads';
 ELSE coin = 'tails';
RUN;

DATA random2;
 x = UNIFORM(-1);
 y = 50 + 3*NORMAL(-1);
 IF x>.5 THEN coin = 'heads';
 ELSE coin = 'tails';
RUN;

PROC PRINT DATA=random1;
 VAR x y coin;
RUN;
PROC PRINT DATA=random2;
 VAR x y coin;
RUN;

OBS X Y COIN
 1 0.24441 49.7470 heads

OBS X Y COIN
 1 0.16922 49.1155 tails

Sometimes we will want to generate the same random numbers each time so that we can debug our
programs. To do this we just enter the same positive number as the seed value. The data sets random3
and random4 illustrate how to generate the same results each time.

data random3;
 x = UNIFORM(123456);
 y = 50 + 3*NORMAL(123456);
 IF x>.5 THEN coin = 'heads';
 ELSE coin = 'tails';
RUN;

data random4;
 x = UNIFORM(123456);
 y = 50 + 3*NORMAL(123456);
 IF x>.5 THEN coin = 'heads';

 90

 ELSE coin = 'tails';
RUN;

PROC PRINT DATA=random3;
 VAR x y coin;
RUN;
PROC PRINT DATA=random4;
 VAR x y coin;
RUN;

OBS X Y COIN
 1 0.73902 48.7832 heads

OBS X Y COIN
 1 0.73902 48.7832 heads

Now let's generate 100 random coin tosses and compute a frequency table of the results.

DATA random5;
 DO i=1 to 100;
 x = UNIFORM(123456);
 IF x>.5 THEN coin = 'heads';
 ELSE coin = 'tails';
 OUTPUT;
 END;
RUN;

PROC FREQ DATA=random5;
 table coin;
RUN;

 Cumulative Cumulative
COIN Frequency Percent Frequency Percent

heads 48 48.0 48 48.0
tails 52 52.0 100 100.0

3. Problems to look out for

Watch out for math errors, such as division by zero, square root of a negative number and taking the log
of a negative number.

4. For more information

For information on functions is SAS consult the SAS Language manual.

Subsetting data in SAS

1. Introduction

This module demonstrates how to select variables using the keep and drop statements, using keep and
drop data step options records, and using the subsetting if and delete statement(s). Selecting variables:

 91

The SAS file structure is similar to a spreadsheet. Data values are stored as variables, which are like
fields or columns on a spreadsheet. Sometimes data files contain information that is superfluous to a
particular analysis, in which case we might want to change the data file to contain only variables of
interest. Programs will run more quickly and occupy less storage space if files contain only necessary
variables. The following program builds a SAS file called auto. (For information about creating SAS
files from raw data, see the SAS Learning Module on Inputting Data into SAS .)

DATA auto ;
 LENGTH make $ 20 ;
 INPUT make $ 1-17 price mpg rep78 hdroom trunk weight length turn
 displ gratio foreign ;
CARDS;
AMC Concord 4099 22 3 2.5 11 2930 186 40 121 3.58 0
AMC Pacer 4749 17 3 3.0 11 3350 173 40 258 2.53 0
AMC Spirit 3799 22 . 3.0 12 2640 168 35 121 3.08 0
Audi 5000 9690 17 5 3.0 15 2830 189 37 131 3.20 1
Audi Fox 6295 23 3 2.5 11 2070 174 36 97 3.70 1
BMW 320i 9735 25 4 2.5 12 2650 177 34 121 3.64 1
Buick Century 4816 20 3 4.5 16 3250 196 40 196 2.93 0
Buick Electra 7827 15 4 4.0 20 4080 222 43 350 2.41 0
Buick LeSabre 5788 18 3 4.0 21 3670 218 43 231 2.73 0
Buick Opel 4453 26 . 3.0 10 2230 170 34 304 2.87 0
Buick Regal 5189 20 3 2.0 16 3280 200 42 196 2.93 0
Buick Riviera 10372 16 3 3.5 17 3880 207 43 231 2.93 0
Buick Skylark 4082 19 3 3.5 13 3400 200 42 231 3.08 0
Cad. Deville 11385 14 3 4.0 20 4330 221 44 425 2.28 0
Cad. Eldorado 14500 14 2 3.5 16 3900 204 43 350 2.19 0
Cad. Seville 15906 21 3 3.0 13 4290 204 45 350 2.24 0
Chev. Chevette 3299 29 3 2.5 9 2110 163 34 231 2.93 0
Chev. Impala 5705 16 4 4.0 20 3690 212 43 250 2.56 0
Chev. Malibu 4504 22 3 3.5 17 3180 193 31 200 2.73 0
Chev. Monte Carlo 5104 22 2 2.0 16 3220 200 41 200 2.73 0
Chev. Monza 3667 24 2 2.0 7 2750 179 40 151 2.73 0
Chev. Nova 3955 19 3 3.5 13 3430 197 43 250 2.56 0
Datsun 200 6229 23 4 1.5 6 2370 170 35 119 3.89 1
Datsun 210 4589 35 5 2.0 8 2020 165 32 85 3.70 1
Datsun 510 5079 24 4 2.5 8 2280 170 34 119 3.54 1
Datsun 810 8129 21 4 2.5 8 2750 184 38 146 3.55 1
Dodge Colt 3984 30 5 2.0 8 2120 163 35 98 3.54 0
Dodge Diplomat 4010 18 2 4.0 17 3600 206 46 318 2.47 0
Dodge Magnum 5886 16 2 4.0 17 3600 206 46 318 2.47 0
Dodge St. Regis 6342 17 2 4.5 21 3740 220 46 225 2.94 0
Fiat Strada 4296 21 3 2.5 16 2130 161 36 105 3.37 1
Ford Fiesta 4389 28 4 1.5 9 1800 147 33 98 3.15 0
Ford Mustang 4187 21 3 2.0 10 2650 179 43 140 3.08 0
Honda Accord 5799 25 5 3.0 10 2240 172 36 107 3.05 1
Honda Civic 4499 28 4 2.5 5 1760 149 34 91 3.30 1
Linc. Continental 11497 12 3 3.5 22 4840 233 51 400 2.47 0
Linc. Mark V 13594 12 3 2.5 18 4720 230 48 400 2.47 0
Linc. Versailles 13466 14 3 3.5 15 3830 201 41 302 2.47 0
Mazda GLC 3995 30 4 3.5 11 1980 154 33 86 3.73 1
Merc. Bobcat 3829 22 4 3.0 9 2580 169 39 140 2.73 0
Merc. Cougar 5379 14 4 3.5 16 4060 221 48 302 2.75 0
Merc. Marquis 6165 15 3 3.5 23 3720 212 44 302 2.26 0
Merc. Monarch 4516 18 3 3.0 15 3370 198 41 250 2.43 0
Merc. XR-7 6303 14 4 3.0 16 4130 217 45 302 2.75 0
Merc. Zephyr 3291 20 3 3.5 17 2830 195 43 140 3.08 0
Olds 98 8814 21 4 4.0 20 4060 220 43 350 2.41 0

http://www.ats.ucla.edu/stat/sas/modules/input.htm

 92

Olds Cutl Supr 5172 19 3 2.0 16 3310 198 42 231 2.93 0
Olds Cutlass 4733 19 3 4.5 16 3300 198 42 231 2.93 0
Olds Delta 88 4890 18 4 4.0 20 3690 218 42 231 2.73 0
Olds Omega 4181 19 3 4.5 14 3370 200 43 231 3.08 0
Olds Starfire 4195 24 1 2.0 10 2730 180 40 151 2.73 0
Olds Toronado 10371 16 3 3.5 17 4030 206 43 350 2.41 0
Peugeot 604 12990 14 . 3.5 14 3420 192 38 163 3.58 1
Plym. Arrow 4647 28 3 2.0 11 3260 170 37 156 3.05 0
Plym. Champ 4425 34 5 2.5 11 1800 157 37 86 2.97 0
Plym. Horizon 4482 25 3 4.0 17 2200 165 36 105 3.37 0
Plym. Sapporo 6486 26 . 1.5 8 2520 182 38 119 3.54 0
Plym. Volare 4060 18 2 5.0 16 3330 201 44 225 3.23 0
Pont. Catalina 5798 18 4 4.0 20 3700 214 42 231 2.73 0
Pont. Firebird 4934 18 1 1.5 7 3470 198 42 231 3.08 0
Pont. Grand Prix 5222 19 3 2.0 16 3210 201 45 231 2.93 0
Pont. Le Mans 4723 19 3 3.5 17 3200 199 40 231 2.93 0
Pont. Phoenix 4424 19 . 3.5 13 3420 203 43 231 3.08 0
Pont. Sunbird 4172 24 2 2.0 7 2690 179 41 151 2.73 0
Renault Le Car 3895 26 3 3.0 10 1830 142 34 79 3.72 1
Subaru 3798 35 5 2.5 11 2050 164 36 97 3.81 1
Toyota Celica 5899 18 5 2.5 14 2410 174 36 134 3.06 1
Toyota Corolla 3748 31 5 3.0 9 2200 165 35 97 3.21 1
Toyota Corona 5719 18 5 2.0 11 2670 175 36 134 3.05 1
Volvo 260 11995 17 5 2.5 14 3170 193 37 163 2.98 1
VW Dasher 7140 23 4 2.5 12 2160 172 36 97 3.74 1
VW Diesel 5397 41 5 3.0 15 2040 155 35 90 3.78 1
VW Rabbit 4697 25 4 3.0 15 1930 155 35 89 3.78 1
VW Scirocco 6850 25 4 2.0 16 1990 156 36 97 3.78 1
;
RUN;
PROC CONTENTS DATA=auto;
RUN;

The proc contents provides information about the file.

CONTENTS PROCEDURE

Data Set Name: WORK.AUTO Observations: 74
Member Type: DATA Variables: 12

-----Alphabetic List of Variables and Attributes-----

 # Variable Type Len Pos

10 DISPL Num 8 84
12 FOREIGN Num 8 100
11 GRATIO Num 8 92
 5 HDROOM Num 8 44
 8 LENGTH Num 8 68
 1 MAKE Char 20 0
 3 MPG Num 8 28
 2 PRICE Num 8 20
 4 REP78 Num 8 36
 6 TRUNK Num 8 52
 9 TURN Num 8 76
 7 WEIGHT Num 8 60

 93

2. Subsetting variables

For example, if we wanted to examine the relationship between mpg and price for various makes, but
had no interest in the automobile's dimensions, we could create a smaller file, by keeping only these
three variables.

DATA auto2;
 SET auto;
 KEEP make mpg price;
RUN;

To verify the contents of the new file, run the proc contents command again.

PROC CONTENTS DATA=AUTO2;
RUN;

CONTENTS PROCEDURE
Data Set Name: WORK.AUTO2 Observations: 74
Member Type: DATA Variables: 3
-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos

1 MAKE Char 20 0
3 MPG Num 8 28
2 PRICE Num 8 20

Note that the number of observations, or records, remains unchanged. This program makes a smaller
version of auto called auto2 that just has the three variables make mpg and price. The new file, named
auto2, is identical to auto except that it contains only the variables listed in the keep statement. To
compare the contents of the two files, run proc contents on each.

PROC CONTENTS DATA = auto;
RUN;
PROC CONTENTS DATA = auto2;
RUN;

The output is shown below.

CONTENTS PROCEDURE
Data Set Name: WORK.AUTO Observations: 74
Member Type: DATA Variables: 12

-----Alphabetic List of Variables and Attributes-----

 # Variable Type Len Pos

10 DISPL Num 8 84
12 FOREIGN Num 8 100
11 GRATIO Num 8 92
 5 HDROOM Num 8 44
 8 LENGTH Num 8 68
 1 MAKE Char 20 0
 3 MPG Num 8 28
 2 PRICE Num 8 20

 94

 4 REP78 Num 8 36
 6 TRUNK Num 8 52
 9 TURN Num 8 76
 7 WEIGHT Num 8 60

CONTENTS PROCEDURE
Data Set Name: WORK.AUTO2 Observations: 74
Member Type: DATA Variables: 3

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos

1 MAKE Char 20 0
3 MPG Num 8 28
2 PRICE Num 8 20

Conversely, we can obtain the same results by using the drop statement.

DATA auto3;
 SET auto;
 DROP rep78 hdroom trunk weight length turn displ gratio foreign;
RUN;

The keep statement names variables to include, while the drop statement names variables to exclude.

Proc contents confirms the results.

PROC CONTENTS DATA = auto3;
RUN;
CONTENTS PROCEDURE
Data Set Name: WORK.AUTO3 Observations: 74
Member Type: DATA Variables: 3

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos

1 MAKE Char 20 0
3 MPG Num 8 28
2 PRICE Num 8 20

Notice that the number of observations in all the examples above remain constant. The keep and drop
statements control the selection of variables only.

3. Subsetting observations

The above illustrates the use of keep and drop statements and data step options to select variables.

The subsetting if is typically used to control the selection of records in the file. Records, or observations
in SAS, correspond to rows in a spreadsheet application.

The auto file contains a variable rep78 with data values from 1 to 5, and missing, which we ascertain
from running the following program.

 95

PROC FRFEQ DATA = auto ;
 TABLES rep78 / MISSING ;
RUN ;
 Cumulative Cumulative
 REP78 Frequency Percent Frequency Percent

 . 5 6.8 5 6.8
 1 2 2.7 7 9.5
 2 8 10.8 15 20.3
 3 30 40.5 45 60.8
 4 18 24.3 63 85.1
 5 11 14.9 74 100.0

Note that this program includes the / missing option on the tables statement. Without it, SAS will print
only frequencies for non-missing values.

If we are only interested in cars with data for rep78 is missing, we may eliminate records with missing
data from the file by using a subsetting if.

DATA auto2;
 SET auto;
 IF rep78 ^= . ;
RUN;

This program creates a new file auto2 which will be identical to auto, except that it will include only
observations where rep78 has a value other than missing. proc freq verifies the change.

PROC FREQ DATA=auto2;
 TABLES rep78 / MISSING ;
RUN;
 Cumulative Cumulative
REP78 Frequency Percent Frequency Percent

 1 2 2.9 2 2.9
 2 8 11.6 10 14.5
 3 30 43.5 40 58.0
 4 18 26.1 58 84.1
 5 11 15.9 69 100.0

The subsetting if specifies which observations to keep, i.e., only cars with data for rep78. Alternately,
we may use the delete statement to specify which observations to eliminate from the file.

The following program keeps in the output file only cars with repair ratings of 3 or less.

DATA auto2;
 SET auto;
 IF rep78 > 3 THEN DELETE ;
RUN;

Check the results, using proc freq.

PROC FREQ DATA = auto2;
 TABLES rep78 / MISSING ;
RUN;

 96

 Cumulative Cumulative
 REP78 Frequency Percent Frequency Percent

 . 5 11.1 5 11.1
 1 2 4.4 7 15.6
 2 8 17.8 15 33.3
 3 30 66.7 45 100.0

Using the subsetting if statement as follows, yields the same result.

DATA auto2;
 SET auto;
IF (rep78 <= 3);

The results from proc freq confirm this.

PROC FREQ DATA = auto2;
 TABLES rep78 / MISSING;
RUN;
 Cumulative Cumulative
 REP78 Frequency Percent Frequency Percent

 . 5 11.1 5 11.1
 1 2 4.4 7 15.6
 2 8 17.8 15 33.3
 3 30 66.7 45 100.0

Note that missing values are included, since missing values are smaller than any other value. To delete
missing values, change the program as follows.

DATA auto2;
 SET auto;
 IF (rep78 <= 3) AND (rep78 ^= .);
run;

Proc freq confirms that missing values have been deleted.

PROC FREQ DATA = auto2;
 TABLES rep78 / MISSING ;
RUN;
 REP78 Frequency Percent Frequency Percent

 1 2 5.0 2 5.0
 2 8 20.0 10 25.0
 3 30 75.0 40 100.0

4. Problems to look out for

• When you create a subset of your original data, sometimes you may drop variables or cases that
you did not intend to drop. If you find variables or cases are gone that should not be gone,
double check your subsetting commands.

Labeling

 97

1. Introduction

This module illustrates how to create and use labels in SAS. There are two main items that can be
labeled, variables and values. Once created these labels will appear in the output of statistical
procedures and reports that you may produce from SAS. They are also displayed by some of the
SAS/GRAPH procedures.

The program below reads the data and creates a temporary data file called auto. The labeling shown in
this module are all applied to this data file called auto.

DATA auto ;
 INPUT make $ mpg rep78 weight foreign ;
CARDS;
AMC 22 3 2930 0
AMC 17 3 3350 0
AMC 22 . 2640 0
Audi 17 5 2830 1
Audi 23 3 2070 1
BMW 25 4 2650 1
Buick 20 3 3250 0
Buick 15 4 4080 0
Buick 18 3 3670 0
Buick 26 . 2230 0
Buick 20 3 3280 0
Buick 16 3 3880 0
Buick 19 3 3400 0
Cad. 14 3 4330 0
Cad. 14 2 3900 0
Cad. 21 3 4290 0
Chev. 29 3 2110 0
Chev. 16 4 3690 0
Chev. 22 3 3180 0
Chev. 22 2 3220 0
Chev. 24 2 2750 0
Chev. 19 3 3430 0
Datsun 23 4 2370 1
Datsun 35 5 2020 1
Datsun 24 4 2280 1
Datsun 21 4 2750 1
;
RUN;
PROC CONTENTS DATA=auto;
RUN;

The output of the proc contents is shown below. You can see in this portion of the output of the proc
contents that there are no labels attached to the variables in this file.

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos

5 FOREIGN Num 8 32
1 MAKE Char 8 0
2 MPG Num 8 8
3 REP78 Num 8 16
4 WEIGHT Num 8 24

 98

2. Creating variable labels

We use the label statement in the data step to assign labels to the variables. You could also assign
labels to variables in proc steps, but then the labels only exist for that step. When labels are assigned in
the data step they are available for all procedures that use that data set.

The following program assigns variable labels to rep78, mpg and foreign.

DATA auto2;
 SET auto;
 LABEL rep78 ="1978 Repair Record"
 mpg ="Miles Per Gallon"
 foreign="Where Car Was Made";
RUN;

PROC CONTENTS DATA=auto2;
RUN;

Looking at the output produced by the proc contents step shows that the labels were indeed
assigned. The relevant part of this output follows.

 -----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Label

5 FOREIGN Num 8 32 Where Car Was Made
1 MAKE Char 8 0
2 MPG Num 8 8 Miles Per Gallon
3 REP78 Num 8 16 1978 Repair Record
4 WEIGHT Num 8 24

These labels will also appear on the output of other procedures giving a fuller description of the
variables involved. This is demonstrated in the proc means below.

PROC MEANS DATA=auto2;
RUN;

Looking at the output produced by the proc means shows that the labels were indeed assigned. Look at
the column titled Label. The relevant part of this output follows.

Variable Label N Mean Std Dev Minimum
--
MPG Miles Per Gallon 26 20.9230769 4.7575042 14
REP78 1978 Repair Record 24 3.2916667 0.8064504 2
WEIGHT 26 3099.23 695.0794089 2020
FOREIGN Where Car Was Made 26 0.2692308 0.4523443 0

3. Creating and using value labels

Labeling values is a two step process. First, you must create the label formats with proc format using a
value statement. Next, you attach the label format to the variable with a format statement. This

 99

format statement can be used in either proc or data steps. An example of the proc format step for
creating the value formats, forgnf and $makef follows.

PROC FORMAT;
 VALUE forgnf 0="domestic"
 1="foreign" ;
 VALUE $makef "AMC" ="American Motors"
 "Buick" ="Buick (GM)"
 "Cad." ="Cadallac (GM)"
 "Chev." ="Cheverolet (GM)"
 "Datsun" ="Datsun (Nissan)";
RUN;

You may include any number of value statements to create label formats as needed. Since make is a
variable that contains character values, when you define the formats for it you have to precede the
format name with a $ so the format name becomes $makef. Additionally, for character variables the
values of the variables must be enclosed in quotes.

Now that the formats forgnf and $makef have been created, they must be linked to the variables,
foreign and make. This is accomplished by including a format statement in either a proc or a data
step. In the program below the format statement is used in a proc freq.

PROC FREQ DATA=auto2;
 FORMAT foreign forgnf.
 make $makef.;
 TABLES foreign make;
RUN;

Notice that the formats forgnf. and $makef. are each followed by a period in the format
statement. This is the way that SAS tells the difference between the name of a format and the name of a
variable in a format statement.

The output of the frequencies procedure for foreign displays the newly defined labels instead of the
values of the variable.

 Where Car Was Made

 Cumulative Cumulative
 FOREIGN Frequency Percent Frequency Percent
--
domestic 19 73.1 19 73.1
foreign 7 26.9 26 100.0

The output of the frequencies procedure for make displays the newly defined labels instead of the
values of the variable. Values for which formats haven't been defined (Audi and BMW) appear in the
table without modification.

MAKE Frequency Percent Frequency Percent

American Motors 3 11.5 3 11.5
Audi 2 7.7 5 19.2
BMW 1 3.8 6 23.1
Buick (GM) 7 26.9 13 50.0
Cadallac (GM) 3 11.5 16 61.5

 100

Cheverolet (GM) 6 23.1 22 84.6
Datsun (Nissan) 4 15.4 26 100.0

If you link formats to variables in a data step where a permanent file is created, then every time you use
that file SAS expects to find the formats. Thus you will have to supply the proc format code in each
program that uses the file. Since this can make each of your programs much longer than you might like,
I would like to provide a tip for accomplishing this task without repeating the code for the proc format
in every program. Assuming that a small program containing only the proc format is stored in a file
called fmats.sas in a directory on your C: drive called myfiles, the following statement will bring that
code into your current program:

%INCLUDE 'C:\myfiles\fmats.sas';

This should save time and make maintenance of your programs easier. The remainder of your program
would follow this statement.

4. Problems to look out for

• Common errors in dealing with value labels are; 1) leaving off the period at the end of the
format in a format statement, and 2) leaving off the dollar sign before a character format.

• If you leave out the proc format code in a program using a permanent file where formats are
defined SAS will require the formats be available fro use. In this case you can either follow the
instructions for including code (%include) above, or copy the proc format code into your
current program. You can also include the nofmterr option to allow the program to run with
out errors.

• Another common error is to reference the format with a format statement before defining the
format with proc format code. Simply move your proc format code to the beginning of the
program to fix this problem.

Using proc sort and by statements

1. Introduction

This module will examine the use of proc sort and use of the by statement with SAS procedures. The
program below creates a data file called auto that we will use in our examples. Note that this file has a
duplicate record for the BMW.

DATA auto ;
 INPUT make $ mpg rep78 weight foreign ;
CARDS ;
AMC 22 3 2930 0
AMC 17 3 3350 0
AMC 22 . 2640 0
Audi 17 5 2830 1
Audi 23 3 2070 1
BMW 25 4 2650 1
BMW 25 4 2650 1
Buick 20 3 3250 0
Buick 15 4 4080 0

 101

Buick 18 3 3670 0
Buick 26 . 2230 0
Buick 20 3 3280 0
Buick 16 3 3880 0
Buick 19 3 3400 0
Cad. 14 3 4330 0
Cad. 14 2 3900 0
Cad. 21 3 4290 0
Chev. 29 3 2110 0
Chev. 16 4 3690 0
Chev. 22 3 3180 0
Chev. 22 2 3220 0
Chev. 24 2 2750 0
Chev. 19 3 3430 0
Datsun 23 4 2370 1
Datsun 35 5 2020 1
Datsun 24 4 2280 1
Datsun 21 4 2750 1
;
RUN ;

PROC PRINT DATA=auto ;
RUN ;

The output from the program is shown below. The proc print shows that the data file has been
successfully created.

OBS MAKE MPG REP78 WEIGHT FOREIGN

 1 AMC 22 3 2930 0
 2 AMC 17 3 3350 0
 3 AMC 22 . 2640 0
 4 Audi 17 5 2830 1
 5 Audi 23 3 2070 1
 6 BMW 25 4 2650 1
 7 BMW 25 4 2650 1
 8 Buick 20 3 3250 0
 9 Buick 15 4 4080 0
 10 Buick 18 3 3670 0
 11 Buick 26 . 2230 0
 12 Buick 20 3 3280 0
 13 Buick 16 3 3880 0
 14 Buick 19 3 3400 0
 15 Cad. 14 3 4330 0
 16 Cad. 14 2 3900 0
 17 Cad. 21 3 4290 0
 18 Chev. 29 3 2110 0
 19 Chev. 16 4 3690 0
 20 Chev. 22 3 3180 0
 21 Chev. 22 2 3220 0
 22 Chev. 24 2 2750 0
 23 Chev. 19 3 3430 0
 24 Datsun 23 4 2370 1
 25 Datsun 35 5 2020 1
 26 Datsun 24 4 2280 1
 27 Datsun 21 4 2750 1

2. Sorting data with proc sort

 102

We can use proc sort to sort this data file. The program below sorts the auto data file on the variable
foreign (1=foreign car, 0=domestic car) and saves the sorted file as auto2. The original file remains
unchanged since we used out=auto2 to specify that the sorted data should be placed in auto2.

PROC SORT DATA=auto OUT=auto2 ;
 BY foreign ;
RUN ;

PROC PRINT DATA=auto2 ;
RUN ;

From the proc print below, you can see that auto2 is indeed sorted on foreign. The observations where
foreign is 0 precede all of the observations where foreign is 1. Note that the order of the observations
within each group remain unchanged, (i.e., the observations where foreign is 0 remain in the same
order).

OBS MAKE MPG REP78 WEIGHT FOREIGN

 1 AMC 22 3 2930 0
 2 AMC 17 3 3350 0
 3 AMC 22 . 2640 0
 4 Buick 20 3 3250 0
 5 Buick 15 4 4080 0
 6 Buick 18 3 3670 0
 7 Buick 26 . 2230 0
 8 Buick 20 3 3280 0
 9 Buick 16 3 3880 0
 10 Buick 19 3 3400 0
 11 Cad. 14 3 4330 0
 12 Cad. 14 2 3900 0
 13 Cad. 21 3 4290 0
 14 Chev. 29 3 2110 0
 15 Chev. 16 4 3690 0
 16 Chev. 22 3 3180 0
 17 Chev. 22 2 3220 0
 18 Chev. 24 2 2750 0
 19 Chev. 19 3 3430 0
 20 Audi 17 5 2830 1
 21 Audi 23 3 2070 1
 22 BMW 25 4 2650 1
 23 BMW 25 4 2650 1
 24 Datsun 23 4 2370 1
 25 Datsun 35 5 2020 1
 26 Datsun 24 4 2280 1
 27 Datsun 21 4 2750 1

Suppose you wanted the data sorted, but with the foreign cars (foreign=1) first and the domestic cars
(foreign=0) second. The example below shows the use of the descending keyword to tell SAS that you
want to sort by foreign, but you want the sort order reversed (i.e., largest to smallest).

PROC SORT DATA=auto OUT=auto3 ;
 BY DESCENDING foreign ;
RUN ;

PROC PRINT DATA=auto3 ;
RUN ;

 103

You can see in the proc print below that the data is now ordered by foreign, but highest to lowest.

OBS MAKE MPG REP78 WEIGHT FOREIGN

 1 Audi 17 5 2830 1
 2 Audi 23 3 2070 1
 3 BMW 25 4 2650 1
 4 BMW 25 4 2650 1
 5 Datsun 23 4 2370 1
 6 Datsun 35 5 2020 1
 7 Datsun 24 4 2280 1
 8 Datsun 21 4 2750 1
 9 AMC 22 3 2930 0
 10 AMC 17 3 3350 0
 11 AMC 22 . 2640 0
 12 Buick 20 3 3250 0
 13 Buick 15 4 4080 0
 14 Buick 18 3 3670 0
 15 Buick 26 . 2230 0
 16 Buick 20 3 3280 0
 17 Buick 16 3 3880 0
 18 Buick 19 3 3400 0
 19 Cad. 14 3 4330 0
 20 Cad. 14 2 3900 0
 21 Cad. 21 3 4290 0
 22 Chev. 29 3 2110 0
 23 Chev. 16 4 3690 0
 24 Chev. 22 3 3180 0
 25 Chev. 22 2 3220 0
 26 Chev. 24 2 2750 0
 27 Chev. 19 3 3430 0

It is also possible to sort on more than one variable at a time. Perhaps you would like the data sorted on
foreign (this time we will go back to the normal sort order for foreign) and then sorted by rep78 within
each level of foreign. The example below shows how this can be done.

PROC SORT DATA=auto OUT=auto4 ;
 BY foreign rep78 ;
RUN ;

PROC PRINT DATA=auto4 ;
RUN ;

You can see in the proc print below that the data is now ordered by foreign, domestic cars (foreign=0)
followed by foreign (foreign=1) cars. Within the domestic cars, the data is sorted by rep78 and within
foreign cars the data is also sorted by rep78.

OBS MAKE MPG REP78 WEIGHT FOREIGN

 1 AMC 22 . 2640 0
 2 Buick 26 . 2230 0
 3 Cad. 14 2 3900 0
 4 Chev. 22 2 3220 0
 5 Chev. 24 2 2750 0
 6 AMC 22 3 2930 0
 7 AMC 17 3 3350 0
 8 Buick 20 3 3250 0

 104

 9 Buick 18 3 3670 0
 10 Buick 20 3 3280 0
 11 Buick 16 3 3880 0
 12 Buick 19 3 3400 0
 13 Cad. 14 3 4330 0
 14 Cad. 21 3 4290 0
 15 Chev. 29 3 2110 0
 16 Chev. 22 3 3180 0
 17 Chev. 19 3 3430 0
 18 Buick 15 4 4080 0
 19 Chev. 16 4 3690 0
 20 Audi 23 3 2070 1
 21 BMW 25 4 2650 1
 22 BMW 25 4 2650 1
 23 Datsun 23 4 2370 1
 24 Datsun 24 4 2280 1
 25 Datsun 21 4 2750 1
 26 Audi 17 5 2830 1
 27 Datsun 35 5 2020 1

In the output above, note how the missing values of rep78 were treated. Since a missing value is
treated as the lowest value possible (e.g., negative infinity), the missing values come before all other
values of rep78.

3. Removing duplicates with proc sort

At the beginning of this page, we noted that there was a duplicate observation in auto, that there were
two identical records for BMW. We can use proc sort to remove the duplicate observations from our
data file using the noduuplicates option, as long as the duplicate observations are next to each
other. The example below sorts the data by foreign and removes the duplicates at the same time. Note
that it did not matter what variable we chose for sorting the data. As you see in the output below, the
extra observation for BMW was deleted.

OBS MAKE MPG REP78 WEIGHT FOREIGN

 1 AMC 22 . 2640 0
 2 Buick 26 . 2230 0
 3 Cad. 14 2 3900 0
 4 Chev. 22 2 3220 0
 5 Chev. 24 2 2750 0
 6 AMC 22 3 2930 0
 7 AMC 17 3 3350 0
 8 Buick 20 3 3250 0
 9 Buick 18 3 3670 0
 10 Buick 20 3 3280 0
 11 Buick 16 3 3880 0
 12 Buick 19 3 3400 0
 13 Cad. 14 3 4330 0
 14 Cad. 21 3 4290 0
 15 Chev. 29 3 2110 0
 16 Chev. 22 3 3180 0
 17 Chev. 19 3 3430 0
 18 Buick 15 4 4080 0
 19 Chev. 16 4 3690 0
 20 Audi 23 3 2070 1
 21 BMW 25 4 2650 1

 105

 22 BMW 25 4 2650 1
 23 Datsun 23 4 2370 1
 24 Datsun 24 4 2280 1
 25 Datsun 21 4 2750 1
 26 Audi 17 5 2830 1
 27 Datsun 35 5 2020 1

When you use the noduplicates option, the SAS Log displays a note telling you how many duplicates
were removed. As you see below, SAS informs us that 1 duplicate observation was deleted.

PROC SORT DATA=auto OUT=auto5 NODUPLICATES ;
 BY foreign ;
RUN ;

NOTE: 1 duplicate observations were deleted.
NOTE: The data set WORK.AUTO3 has 26 observations and 5 variables.

It is common for duplicate observations to be next to each other in the same file, but if the duplicate
observations are not next to each other, there is another strategy you can use to remove the
duplicates. You can sort the data file by all of the variables (which can be indicated with the special
keyword _ALL_), which would force the duplicate observations to be next to each other. This is
illustrated below.

PROC SORT DATA=auto OUT=auto6 NODUPLICATES ;
 BY _all_ ;
RUN ;

4. Obtaining separate analyses with sorted data

Sometimes you would like to obtain results separately for different groups. For example, you might
want to get the mean mpg and weight separately for foreign and domestic cars. As you see below, it is
possible to use proc means with the class statement to get these results.

PROC MEANS DATA=auto ;
 CLASS foreign ;
 VAR foreign weight ;
RUN ;

However, what if you wanted to obtain the correlation of weight and mpg separately for foreign and
domestic cars? Proc corr does not support a class statement like proc means does, but you can use the
by statement as in the example below.

PROC SORT DATA=auto OUT=auto6 ;
 BY foreign ;
RUN ;

PROC CORR DATA=auto6 ;
 BY foreign ;
 VAR weight mpg ;
RUN ;

 106

As you see in the output below, using the by statement resulted in getting a proc corr for the domestic
cars and a proc corr for the foreign cars. In general, using the by statement requests that the proc be
performed for every level of the by variable (in this case, for every level of foreign).

FOREIGN=0
Correlation Analysis
 2 'VAR' Variables: WEIGHT MPG

 Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
WEIGHT 19 3347.894737 627.176911 63610 2110.000000 4330.000000
MPG 19 19.789474 4.035660 376.000000 14.000000 29.000000

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 19

 WEIGHT MPG
WEIGHT 1.00000 -0.86236
 0.0 0.0001

MPG -0.86236 1.00000
 0.0001 0.0

FOREIGN=1

Correlation Analysis

 2 'VAR' Variables: WEIGHT MPG
 Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
WEIGHT 8 2452.500000 311.436763 19620 2020.000000 2830.000000
MPG 8 24.125000 5.111262 193.000000 17.000000 35.000000

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 8

 WEIGHT MPG
WEIGHT 1.00000 -0.66702
 0.0 0.0708

MPG -0.66702 1.00000
 0.0708 0.0

Here are other examples of where you might use a by statement with the auto data file. (Note that
some of these analyses are not very practical because of the small size of the auto data file, so please
imagine that we would be analyzing a larger version of the auto data file.)

• You might use a by statement with proc univariate to request univariate statistics for mpg
separately for foreign and domestic cars so you can seen if mpg is normally distributed for
foreign cars and normally distributed for domestic cars. This also allows you to generate side
by side box and whisker plots allowing you to compare the distributions of mpg for the
separate groups.

• You might use a by statement with proc reg if you would like to do separate regression analyses
for foreign and domestic cars.

 107

• You might use a by statement with proc means even though it has the class statement. If you
wanted the means displayed on separate pages, then using the by statement would give you the
kind of output you desire.

5. Problems to look out for

• If you use a BY statement in a procedure, make sure the data has been sorted first. For example,
if you use by foreign then be sure that you have first sorted the file by foreign.

• If you want to delete duplicate observations and the duplicate observations are not next to each
other, be sure to sort the data on all of the variables (i.e., using by _ALL_;) so the
noduplicates option will work properly and indeed remove duplicate observations.

Making and using permanent SAS data files (version 8)

This will illustrate how to make and use SAS data files in version 8. If you have used SAS version 6.xx,
you will notice it is much easier to create and use permanent SAS data files in SAS version 8.
Consider this simple example. This shows how you can make a SAS version 8 file the traditional way
using a libname statement. The file salary will be stored in the directory c:\dissertation\.
libname diss 'c:\dissertation\';

data diss.salary;
 input sal1996-sal2000 ;
 cards;
10000 10500 11000 12000 12700
14000 16500 18000 22000 29000
;
run;
Below we use proc print and proc contents to look at the file that we have created.
proc print data=diss.salary;
run;

proc contents data=diss.salary;
run;
We can see the data from the proc print and the proc contents shows us the data file that has been
created, called c:\dissertation\salary.sas7bdat.
Obs sal1996 sal1997 sal1998 sal1999 sal2000
 1 10000 10500 11000 12000 12700
 2 14000 16500 18000 22000 29000

The CONTENTS Procedure

Data Set Name: DISS.SALARY Observations: 2
Member Type: DATA Variables: 5
Engine: V8 Indexes: 0
Created: 16:53 Thursday, November 16, 2000 Observation Length: 40
Last Modified: 16:53 Thursday, November 16, 2000 Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:
 -----Engine/Host Dependent Information-----
<output edited to save space>
File Name: c:\dissertation\salary.sas7bdat
Release Created: 8.0101M0
Host Created: WIN_NT

 108

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos

1 sal1996 Num 8 0
2 sal1997 Num 8 8
3 sal1998 Num 8 16
4 sal1999 Num 8 24
5 sal2000 Num 8 32
Below we make a file similar to the one above, but we will illustrate some of the new features in SAS
version 8. First, we did not need to use a libname statement. We were able to specify the name of the
data file by directly specifying the path name of the file (i.e., c:\dissertation\salarylong). Also note
that the names of the variables are over 8 characters long. They can be up to 32 characters long. This
step creates a data file named c:\dissertation\salarylong.sas7bdat .
data 'c:\dissertation\salarylong';
 input Salary1996-Salary2000 ;
cards;
10000 10500 11000 12000 12700
14000 16500 18000 22000 29000
;
run;

Below we can do a proc print and proc contents on this data file.

proc print data='c:\dissertation\salarylong';
run;
proc contents data='c:\dissertation\salarylong';
run;
Note the names of the variables in the proc print and proc contents below SAS shows the variable
name as Salary1996 showing that we used an uppercase S. When you first create a variable, SAS will
remember the case of each of the letters and show the variable names using the case you originally
used. However, you do not need to always refer to the variable as Salary1996, you can refer to it as
SALARY1996 or as salary1996 or however you like, as long as the variable is spelled properly. But
this can help make your variable names more readable for outputs.
Obs Salary1996 Salary1997 Salary1998 Salary1999 Salary2000
 1 10000 10500 11000 12000 12700
 2 14000 16500 18000 22000 29000

The CONTENTS Procedure
Data Set Name: c:\dissertation\salarylong Observations: 2
Member Type: DATA Variables: 5
Engine: V8 Indexes: 0
Created: 16:53 Thursday, November 16, 2000 Observation Length: 40
Last Modified: 16:53 Thursday, November 16, 2000 Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:
 -----Engine/Host Dependent Information-----
<output edited to save space>
File Name: c:\dissertation\salarylong.sas7bdat
Release Created: 8.0101M0
Host Created: WIN_NT

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos

 109

1 Salary1996 Num 8 0
2 Salary1997 Num 8 8
3 Salary1998 Num 8 16
4 Salary1999 Num 8 24
5 Salary2000 Num 8 32
When you read and write SAS version 8 files, you can choose whether you wish to use the libname
statement as we showed in our first example, or if you prefer to write out the name of the file as we
showed in our second example. Either will work with SAS version 8 data files. If you are unsure of
whether a SAS data file is a version 8 data file, you can look at the extension of the file. If it ends
with .sas7bdat then it is a version 8 data file that can be used on the PC or on UNIX. However, if the
extension is .sd2 it is a Windows SAS 6.12 file, or if the extension is .ssd01 it is a Unix SAS 6.12 file.

Concatenating data files in SAS

1. Introduction

When you have two data files, you may want to combine them by stacking them one on top of the other
(referred to as concatenating files). Below we have a file called dads and a file containing moms.

dads

famid name inc
2 Art 22000
1 Bill 30000
3 Paul 25000

moms

famid name inc
1 Bess 15000
3 Pat 50000
2 Amy 18000

Below we have stacked (concatenated) these files creating a file we called momdad. These examples
will show how to concatenate files in SAS.

momdad

famid name inc
2 Art 22000
1 Bill 30000
3 Paul 25000
1 Bess 15000
3 Pat 50000
2 Amy 18000

2. Concatenating the moms and dads

The SAS program below creates a SAS data file called dads and a file called moms. It then combines
them (concatenates them) creating a file called dadmom.

* Here is a file with information about dads with their family id name and income ;

 110

DATA dads;
 INPUT famid name $ inc ;
CARDS;
2 Art 22000
1 Bill 30000
3 Paul 25000
;
RUN;

* Here is a file with information about moms with their family id name and income ;

DATA moms;
 INPUT famid name $ inc ;
CARDS;
1 Bess 15000
3 Pat 50000
2 Amy 18000
;
RUN;

* We can combine these files by stacking them one on top the other ;
* by setting them both together in the same data step as shown below ;

DATA dadmom;
 SET dads moms;
RUN;

 * Let's use PROC PRINT to look at the result ;

PROC PRINT DATA=dadmom;
RUN;

The output of this program is shown below.

OBS FAMID NAME INC

1 2 Art 22000
2 1 Bill 30000
3 3 Paul 25000
4 1 Bess 15000
5 3 Pat 50000
6 2 Amy 18000

The output from this program shows that the files were combined properly. The dads and moms are
stacked together in one file. But, there is a little problem. We can't tell the dads from the moms. Let's try
doing this again but in such a way that we can tell which observations are the moms and which are the
dads.

3. Concatenating the moms and dads, a better example

In order to tell the dads from the moms, let's create a variable called momdad in the dads and moms
data files that will contain dad for the dads data file and mom for the moms data file. When we
combine the two files together the momdad variable will tell us who the moms and dads are.

DATA dads;

 111

 INPUT famid name $ inc ;
 momdad = "dad";
CARDS;
2 Art 22000
1 Bill 30000
3 Paul 25000
;
RUN;
DATA moms;
 INPUT famid name $ inc ;
 momdad = "mom";
CARDS;
1 Bess 15000
3 Pat 50000
2 Amy 18000
;
RUN;
DATA dadmom;
 SET dads moms;
RUN;
* Now when we do the proc print you can see the dads from the moms ;
PROC PRINT DATA=dadmom;
RUN;

The output of this program is shown below.

OBS FAMID NAME INC MOMDAD

 1 2 Art 22000 dad
 2 1 Bill 30000 dad
 3 3 Paul 25000 dad
 4 1 Bess 15000 mom
 5 3 Pat 50000 mom
 6 2 Amy 18000 mom

Here we get a more desirable result, because we can tell the dads from the moms by looking at the
variable momdad. This required some thinking ahead because we had to put momdad in both the dads
data file and the moms data file before we merged the data files.

4. Problems to look out for

These above examples cover situations where there are no complications. However, look out for the
following problems.

4.1. The two data files have different variable names for the same thing

For example, income is called dadinc and in the dads file and called mominc in the moms file, as
shown below.
DATA dads;
 INPUT famid name $ dadinc ;
DATALINES;
2 Art 22000
1 Bill 30000
3 Paul 25000
;

 112

RUN;

DATA moms;
 INPUT famid name $ mominc ;
DATALINES;
1 Bess 15000
3 Pat 50000
2 Amy 18000
;
RUN;

DATA momdad;
 SET dads(IN=dad) moms(IN=mom);
 IF dad=1 THEN momdad="dad";
 IF mom=1 THEN momdad="mom";
run;
PROC PRINT DATA=momdad;
RUN;
You can see the problem illustrated below.
 OBS FAMID NAME DADINC MOMINC DAD MOM MOMDAD

 1 2 Art 22000 . 1 0 dad
 2 1 Bill 30000 . 1 0 dad
 3 3 Paul 25000 . 1 0 dad
 4 1 Bess . 15000 0 1 mom
 5 3 Pat . 50000 0 1 mom
 6 2 Amy . 18000 0 1 mom
Solution #1. The most obvious solution is to choose appropriate variable names for the original files
(i.e., name the variable inc in both the moms and dads file). This solution is not always possible since
you might be concatenating files that you did not originally create. To save space, we omit illustrating
this solution.

Solution #2. If solution #1 is not possible, then this problem can be addressed using an if statement in a
data step.

DATA momdad;
 SET dads(IN=dad) moms(IN=mom);
 IF dad=1 THEN
 DO;
 momdad="dad";
 inc=dadinc;
 END;
 IF mom=1 THEN
 DO;
 momdad="mom";
 inc=mominc;
 END;
RUN;

PROC PRINT DATA=momdad;
RUN;
The results are shown below, where inc now has the income for both the moms and dads.
OBS FAMID NAME DADINC MOMINC DAD MOM MOMDAD INC

 1 2 Art 22000 . 1 0 dad 22000
 2 1 Bill 30000 . 1 0 dad 30000
 3 3 Paul 25000 . 1 0 dad 25000

 113

 4 1 Bess . 15000 0 1 mom 15000
 5 3 Pat . 50000 0 1 mom 50000
 6 2 Amy . 18000 0 1 mom 18000
Solution 3. Another way you can fix this is by using the rename option on the set statement of a data
step to rename the variables just before the files are combined.
DATA momdad;
 SET dads(RENAME=(dadinc=inc)) moms(RENAME=(mominc=inc));
RUN;

PROC PRINT DATA=momdad;
RUN;
The output for Solution 3 is below.
OBS FAMID NAME INC

 1 2 Art 22000
 2 1 Bill 30000
 3 3 Paul 25000
 4 1 Bess 15000
 5 3 Pat 50000
 6 2 Amy 18000

4.2 The two data files have different lengths for variables of the same name

In all of the examples above, the variable name was input with the format $ indicating name is an
alphabetic (string) variable with a default length of 8. What would happen if name in the dads file was
input using $3. and name in the moms file was input using $4. ? This is illustrated below.
DATA dads;
 INPUT famid name $3. inc;
DATALINES;
 2 Art 22000
 1 Bob 30000
 3 Tom 25000
 RUN;

DATA moms;
 INPUT famid name $4. inc;
DATALINES;
 1 Bess 15000
 3 Rory 50000
 2 Jane 18000
 RUN;

DATA momdad;
 SET dads moms;
RUN;
PROC PRINT DATA=momdad;
RUN;
The output is below.
OBS FAMID NAME INC
 1 2 Art 22000
 2 1 Bob 30000
 3 3 Tom 25000
 4 1 Bes 15000
 5 3 Ror 50000
 6 2 Jan 18000
Note that the names for the moms are truncated to be length 3. This is because the length for names in
the dads file is 3. To fix this, use the length statement in the data step that merges the two files.

 114

DATA momdad;
 LENGTH name $ 4;
 SET dads moms;
RUN;
PROC PRINT DATA=momdad;
RUN;
The output is below.
OBS NAME FAMID INC
 1 Art 2 22000
 2 Bob 1 30000
 3 Tom 3 25000
 4 Bess 1 15000
 5 Rory 3 50000
 6 Jane 2 18000

4.3 The two data files have variables with the same name but different codes

This problem is similar to the problem above, except that it has an additional wrinkle, illustrated below.
In the dads file there is a variable called fulltime that is coded 1 if the dad is working full time, 0 if he
is not. The moms file also has a variable called fulltime that is coded Y is she is working full time, and
N if she is not. Not only are these variables of different types (numeric and character), but they are
coded differently as well.
DATA dads;
 INPUT famid name $ inc fulltime;
DATALINES;
2 Art 22000 0
1 Bill 30000 1
3 Paul 25000 1
;
RUN;

DATA moms;
 INPUT famid name $ inc fulltime $1.;
DATALINES;
1 Bess 15000 N
3 Pat 50000 Y
2 Amy 18000 N
;
RUN;
Solution #1. Code the variables in the two files in the same way. For example, code fulltime using 0/1
for both files with 1 indicating working fulltime. This is the simplest solution if you are creating the
files yourself. We will omit illustrating this solution to save space.

Solution #2. You may not have created the original raw data files, so solution #1 may not be possible
for you. In that case, you can create a new variable in each file that has the same coding and will be
compatible when you merge the files. Below we illustrate this strategy.

For the dads file, we make a variable called full that is the same as fulltime, and save the file as dads2,
dropping fulltime. For the moms, we create full by recoding fulltime, and save the file as moms2, also
dropping fulltime. The files dads2 and moms2 both have the variable full coded the same way (0/1
where 1=works full time) so we can combine those files together.

DATA dads;
 SET dads;

 115

 full=fulltime;
 DROP fulltime;
RUN;

DATA moms;
 SET moms;
 IF fulltime="Y" THEN full=1;
 IF fulltime="N" THEN full=0;
 DROP fulltime;
RUN;

DATA momdad;
 SET dads moms;
RUN;
PROC PRINT DATA=momdad;
RUN;
The results are shown below.
OBS FAMID NAME INC FULL

 1 2 Art 22000 0
 2 1 Bill 30000 1
 3 3 Paul 25000 1
 4 1 Bess 15000 0
 5 3 Pat 50000 1
 6 2 Amy 18000 0

Working across variables

1. Introduction

This module illustrates (1) how to compute variables manually in a data step and (2) how to work
across variables using the array statement in a data step.

Consider the sample program below, which reads in family income data for twelve months.

DATA faminc;
 INPUT famid faminc1-faminc12 ;
CARDS;
1 3281 3413 3114 2500 2700 3500 3114 3319 3514 1282 2434 2818
2 4042 3084 3108 3150 3800 3100 1531 2914 3819 4124 4274 4471
3 6015 6123 6113 6100 6100 6200 6186 6132 3123 4231 6039 6215
;
RUN;

PROC PRINT DATA=faminc;
RUN;
The output is shown below
 F F
F
 F F F F F F F F F A A
A
 A A A A A A A A A M M
M

 116

 F M M M M M M M M M I I
I
 A I I I I I I I I I N N
N
O M N N N N N N N N N C C
C
B I C C C C C C C C C 1 1
1
S D 1 2 3 4 5 6 7 8 9 0 1
2
1 1 3281 3413 3114 2500 2700 3500 3114 3319 3514 1282 2434
2818
2 2 4042 3084 3108 3150 3800 3100 1531 2914 3819 4124 4274
4471
3 3 6015 6123 6113 6100 6100 6200 6186 6132 3123 4231 6039
6215

2. Computing variables (manually)

Computing variables in a data step can be accomplished a number of ways in SAS. For example, if one
wanted to compute the amount of tax (10%) paid for each month, the simplest way to do this is to
compute 12 variables (taxinc1-taxinc12) by multiplying each of the (faminc1-faminc12) by .10 as
illustrated below. As you see, this requires entering a command computing the tax for each month of
data (for months 1 to 12).

DATA faminc1a;
 SET faminc;
 taxinc1 = faminc1 * .10 ;
 taxinc2 = faminc2 * .10 ;
 taxinc3 = faminc3 * .10 ;
 taxinc4 = faminc4 * .10 ;
 taxinc5 = faminc5 * .10 ;
 taxinc6 = faminc6 * .10 ;
 taxinc7 = faminc7 * .10 ;
 taxinc8 = faminc8 * .10 ;
 taxinc9 = faminc9 * .10 ;
 taxinc10= faminc10 * .10 ;
 taxinc11= faminc11 * .10 ;
 taxinc12= faminc12 * .10 ;
RUN;

PROC PRINT DATA=faminc1a;
RUN;

The output is shown below.

 F F F
 F F F F F F F F F A A A T
 A A A A A A A A A M M M A
 F M M M M M M M M M I I I X
 A I I I I I I I I I N N N I
O M N N N N N N N N N C C C N
B I C C C C C C C C C 1 1 1 C
S D 1 2 3 4 5 6 7 8 9 0 1 2 1

1 1 3281 3413 3114 2500 2700 3500 3114 3319 3514 1282 2434 2818 328.1

 117

2 2 4042 3084 3108 3150 3800 3100 1531 2914 3819 4124 4274 4471 404.2
3 3 6015 6123 6113 6100 6100 6200 6186 6132 3123 4231 6039 6215 601.5
T T T
 T T T T T T T T A A
A
 A A A A A A A A X X
X
 X X X X X X X X I I
I
 I I I I I I I I N N
N
O N N N N N N N N C C
C
B C C C C C C C C 1 1
1
S 2 3 4 5 6 7 8 9 0 1
2
1 341.3 311.4 250 270 350 311.4 331.9 351.4 128.2 243.4
281.8
2 308.4 310.8 315 380 310 153.1 291.4 381.9 412.4 427.4
447.1
3 612.3 611.3 610 610 620 618.6 613.2 312.3 423.1 603.9
621.5

3. Computing variables (using the array statement)

Another way to compute 12 variables representing the amount of tax paid (10%) for each month is to
use the array statement. In the example below, two "arrays" are declared: Afaminc and Ataxinc. The
elements of Afaminc are the variables faminc1-faminc12 and the elements of Ataxinc are the
variables taxinc1-taxinc12. You can refer to the variables faminc1-faminc12 by referring to the
elements of the array Afaminc. For example, Afaminc(3) refers to faminc3.

Note that the array Afaminc is defined using the existing variables faminc1-faminc12 from the dataset
faminc, whereas the values of the array Ataxinc (taxinc1-taxinc12) are created by multiplying
Afaminc (faminc1-faminc12) by .10 in the do loop shown below.

DATA faminc1b;
 SET faminc ;

 ARRAY Afaminc(12) faminc1-faminc12 ;
 ARRAY Ataxinc(12) taxinc1-taxinc12 ;

 DO month = 1 TO 12;
 Ataxinc(month) = Afaminc(month) * .10 ;
 END;
RUN;

PROC PRINT DATA=faminc1b;
 VAR faminc1-faminc12 taxinc1-taxinc12;
RUN;

 The output is shown below:

 118

F F F
 F F F F F F F F F A A
A T
 A A A A A A A A A M M
M A
 M M M M M M M M M I I
I X
 I I I I I I I I I N N
N I
O N N N N N N N N N C C
C N
B C C C C C C C C C 1 1
1 C
S 1 2 3 4 5 6 7 8 9 0 1
2 1
1 3281 3413 3114 2500 2700 3500 3114 3319 3514 1282 2434
2818 328.1
2 4042 3084 3108 3150 3800 3100 1531 2914 3819 4124 4274
4471 404.2
3 6015 6123 6113 6100 6100 6200 6186 6132 3123 4231 6039
6215 601.5
 T T
T
 T T T T T T T T A A
A
 A A A A A A A A X X
X
 X X X X X X X X I I
I
 I I I I I I I I N N
N
O N N N N N N N N C C
C
B C C C C C C C C 1 1
1
S 2 3 4 5 6 7 8 9 0 1
2
1 341.3 311.4 250 270 350 311.4 331.9 351.4 128.2
243.4 281.8
2 308.4 310.8 315 380 310 153.1 291.4 381.9 412.4
427.4 447.1
3 612.3 611.3 610 610 620 618.6 613.2 312.3 423.1
603.9 621.5

In summary, the new variables become new columns of the dataset faminc1b and one can compute new
variables as transformations of these variables, just like any other variables.

Note that the array statement cannot loop over observations for any one variable. If your data are in
this "long" form, and you need to loop over observations, you must reshape the data to "wide" form in
order to use the array statement. (See our SAS macros page for "wide to long" and "long to wide"
conversion macros). Another option for looping across observations in the "long" form is to read the
variable into a vector array using proc iml (Interactive Matrix Language), loop over the elements of the
vector, and then append the results back to the SAS dataset using proc append.

4. Collapsing across variables (manually)

http://www.ats.ucla.edu/stat/sas/macros/default.htm

 119

Often one needs to sum across variables (also known as collapsing across variables). For example, let's
say the quarterly income for each family is desired. In order to get this information, four quarterly
variables incqtr1-incqtr4 need to be computed. Again, this can be achieved manually or by using the
array statement. Below is an example of how to compute four quarterly income variables incqtr1-
incqtr4 by simply adding together the months that comprise a quarter.

DATA faminc2a;
 SET faminc;
 incqtr1 = faminc1+faminc2+faminc3 ;
 incqtr2 = faminc4+faminc5+faminc6 ;
 incqtr3 = faminc7+faminc8+faminc9 ;
 incqtr4 = faminc10+faminc11+faminc12 ;
RUN;

PROC PRINT DATA=faminc2a;
 var faminc1-faminc12 incqtr1-incqtr4;
RUN;

The output is shown below.

 F F F
 F F F F F F F F F A A A I I I I
 A A A A A A A A A M M M N N N N
 M M M M M M M M M I I I C C C C
 I I I I I I I I I N N N Q Q Q Q
O N N N N N N N N N C C C T T T T
B C C C C C C C C C 1 1 1 R R R R
S 1 2 3 4 5 6 7 8 9 0 1 2 1 2 3 4
1 3281 3413 3114 2500 2700 3500 3114 3319 3514 1282 2434 2818 9808 8700 9947
6534
2 4042 3084 3108 3150 3800 3100 1531 2914 3819 4124 4274 4471 10234 10050 8264
12869
3 6015 6123 6113 6100 6100 6200 6186 6132 3123 4231 6039 6215 18251 18400 15441
16485

5. Collapsing across variables (using the array statement)

This same result as above can be achieved using the array statement. The example below illustrates
how to compute the quarterly income variables incqtr1-incqtr4 using the array statement in a more
elegant fashion. The array Aincqtr has four elements which are computed in the do loop as the sum of
sets of three months. The trick here is that the quarterly intervals begin with months 1,4,7 and 10
respectively, which can be indexed as (month3 - 2) where month3 is the set of numbers
{3,6,9,12}during the execution of the do loop. Hence, the first element of the array Aincqtr is equal to
the sum of the first three elements of Afaminc, the second element of the array Aincqtr is equal to the
sum of the next three elements of Afaminc, etc., until the do loop is finished, as shown below.

DATA faminc2b;
 SET faminc ;

 ARRAY Afaminc(12) faminc1-faminc12 ;
 ARRAY Aincqtr(4) incqtr1-incqtr4 ;

 DO qtr = 1 TO 4 ;
 month3 = 3*qtr;
 Aincqtr(qtr) = Afaminc(month3-2) + Afaminc(month3-1) + Afaminc(month3) ;

 120

 END;
RUN;

PROC PRINT DATA=faminc2b;
 var faminc1-faminc12 incqtr1-incqtr4;
RUN;

The output is shown below.

 F F F
 F F F F F F F F F A A A I I I I
 A A A A A A A A A M M M N N N N
 M M M M M M M M M I I I C C C C
 I I I I I I I I I N N N Q Q Q Q
O N N N N N N N N N C C C T T T T
B C C C C C C C C C 1 1 1 R R R R
S 1 2 3 4 5 6 7 8 9 0 1 2 1 2 3 4
1 3281 3413 3114 2500 2700 3500 3114 3319 3514 1282 2434 2818 9808 8700 9947
6534
2 4042 3084 3108 3150 3800 3100 1531 2914 3819 4124 4274 4471 10234 10050 8264
12869
3 6015 6123 6113 6100 6100 6200 6186 6132 3123 4231 6039 6215 18251 18400 15441
16485

6. Identifying patterns across variables (using the array statement)

The array statement can also be used to identify patterns across variables of a dataset. Let's say, for
example, that one needs to know which months had income that was less than half of the income of the
previous month. To obtain this information, dummy indicators can be created to indicate in which
months this occurred. In the example below, two arrays are defined, Afaminc and Alowinc, and the
elements of Afaminc and Alowinc are the variables faminc1-faminc12 and lowinc2-lowinc12,
respectively, in the SAS dataset faminc4.

Note that only 11 dummy indicators are needed for a 12 month period because the interest is in the
change from one month to the next. In the DO loop, when a month has income that is less than half of
the income of the previous month, the dummy indicators lowinc2-lowinc12 get assigned a "1". When
this is not the case, they are assigned a "0".

Lastly, a character variable named ever is created (with help from the array statement) indicating
whether or not there were any months where income was less than half of the income of the previous
month. This is accomplished by summing up all of the elements of Alowinc (which contains 1's and
0's). If the sum of the elements of Alowinc is greater than zero, than there was at least one month
where income was less than half of the previous month, and ever equals "Y". Otherwise, if there were
no months where income was less than half of the previous month, the sum of the elements of Alowinc
is zero, and ever equals "N".

DATA faminc4;
 SET faminc ;

 ARRAY Afaminc(12) faminc1-faminc12 ;
 ARRAY Alowinc(2:12) lowinc2-lowinc12 ;

 DO month = 2 to 12 ;

 121

 IF Afaminc(month) < (Afaminc(month-1) / 2) THEN Alowinc(month) = 1;
 ELSE Alowinc(month) = 0;
 END;

 sum_low=0; /*THIS INITIALIZES sum_low TO ZERO AT THE BEGINNING OF THE LOOP*/;
 DO month = 2 to 12 ;
 sum_low =sum_low + Alowinc(month) ;
 END;

 IF sum_low GT 0 THEN ever='Y';
 IF sum_low EQ 0 THEN ever='N';
RUN;

PROC PRINT DATA=faminc4;
 VAR famid faminc1-faminc12 lowinc2-lowinc12 ever;
RUN;

The output is shown below.

 F F F L L
L
 F F F F F F F F F A A A L L L L L L L L O O
O
 A A A A A A A A A M M M O O O O O O O O W W
W
 F M M M M M M M M M I I I W W W W W W W W I I
I
 A I I I I I I I I I N N N I I I I I I I I N N
N E
O M N N N N N N N N N C C C N N N N N N N N C C
C V
B I C C C C C C C C C 1 1 1 C C C C C C C C 1 1
1 E
S D 1 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1
2 R
1 1 3281 3413 3114 2500 2700 3500 3114 3319 3514 1282 2434 2818 0 0 0 0 0 0 0 0 1 0
0 Y
2 2 4042 3084 3108 3150 3800 3100 1531 2914 3819 4124 4274 4471 0 0 0 0 0 1 0 0 0 0
0 Y
3 3 6015 6123 6113 6100 6100 6200 6186 6132 3123 4231 6039 6215 0 0 0 0 0 0 0 0 0 0
0 N

Match merging data files in SAS

1. Introduction

When you have two data files, you can combine them by merging them side by side, matching up
observations based on an identifier. For example, below we have a data file containing information on
dads and we have a file containing information on family income called faminc. We would like to
match merge the files together so we have the dads observation on the same line with the faminc
observation based on the key variable famid.

dads

 122

famid name inc
2 Art 22000
1 Bill 30000
3 Paul 25000
faminc

famid faminc96 faminc97 faminc98
3 75000 76000 77000
1 40000 40500 41000
2 45000 45400 45800

After match merging the files, they would look like this.

famid name inc faminc96 faminc97 faminc98
 1 Bill 30000 40000 40500 41000
 2 Art 22000 45000 45400 45800
 3 Paul 25000 75000 76000 77000

2. One-to-one merge

There are three steps to match merge the dads file with the faminc file (this is called a one-to-one
merge because there is a one to one correspondence between the dads and faminc records). These three
steps are illustrated in the SAS program merge1.sas below.

1. Use proc sort to sort dads on famid and save that file (we will call it dads2)
2. Use proc sort to sort faminc on famid and save that file (we will call it faminc2)
3. merge the dads2 and faminc2 files based on famid

These three steps are illustrated in the program below.

* We first created the dads and faminc data files below ;

DATA dads;
 INPUT famid name $ inc ;
CARDS;
2 Art 22000
1 Bill 30000
3 Paul 25000
;
RUN;
DATA faminc;
 INPUT famid faminc96 faminc97 faminc98 ;
CARDS;
3 75000 76000 77000
1 40000 40500 41000
2 45000 45400 45800
* 1. Sort the dads file by "famid" & save sorted file as dads2 ;
PROC SORT DATA=dads OUT=dads2;
 BY famid;
RUN;
* 2. Sort faminc by "famid" & save sorted file as faminc2 ;
PROC SORT DATA=faminc OUT=faminc2;
 BY famid;
RUN;
* 3. Merge dads2 and faminc2 by famid in a data step ;
DATA dadfam ;

 123

 MERGE dads2 faminc2;
 BY famid;
RUN:
* Let's do a proc print and look at the results. ;
PROC PRINT DATA=dadfam;
RUN;

The output of the program is shown below.

OBS FAMID NAME INC FAMINC96 FAMINC97 FAMINC98

 1 1 Bill 30000 40000 40500 41000
 2 2 Art 22000 45000 45400 45800
 3 3 Paul 25000 75000 76000 77000

The output from shows that the match merge worked properly. The dad and faminc are merged side by
side. The next example considers a one-to-many merge where one observation in one file may have
multiple matching records in another file. We will see that kind of merge is really no different from the
one-to-one merge we saw here.

3. One-to-many merge

Imagine that we had a file with dads like we saw in the previous example, and we had a file with kids
where a dad could have more than one kid. Matching up the "dads" with the "kids" is called a "one-to-
many" merge since you are matching one dad observation to possibly many kids records. The dads and
kids records are shown below.

dads

famid name inc
2 Art 22000
1 Bill 30000
3 Paul 25000
kids

famid kidname birth age wt sex
1 Beth 1 9 60 f
1 Bob 2 6 40 m
1 Barb 3 3 20 f
2 Andy 1 8 80 m
2 Al 2 6 50 m
2 Ann 3 2 20 f
3 Pete 1 6 60 m
3 Pam 2 4 40 f
3 Phil 3 2 20 m

After matching the dads with the kids you get a file that looks like the one below. Bill is matched up
with his kids Beth, Bob and Barb; Art is matched up with Andy Al, and Ann; and Paul is matched up
with Pete, Pam and Phil.

dadkid

FAMID NAME INC MOMDAD KIDNAME BIRTH AGE WT SEX

 1 Bill 30000 dad Beth 1 9 60 f

 124

 1 Bill 30000 dad Bob 2 6 40 m
 1 Bill 30000 dad Barb 3 3 20 f
 2 Art 22000 dad Andy 1 8 80 m
 2 Art 22000 dad Al 2 6 50 m
 2 Art 22000 dad Ann 3 2 20 f
 3 Paul 25000 dad Pete 1 6 60 m
 3 Paul 25000 dad Pam 2 4 40 f
 3 Paul 25000 dad Phil 3 2 20 m

Just like the "one-to-one" merge, we follow the same three steps for a "one-to-many" merge. These
three steps are illustrated in the SAS program merge2.sas below.

1. Use proc sort to sort dads on famid and save that file (we will call it dads2)
2. Use proc sort to sort kids on famid and save that file (we will call it kids2)
3. merge the dads2 and kids2 files based on famid

The program below illustrates these steps.

* first we make the "dads" data file ;
DATA dads;
 INPUT famid name $ inc ;
CARDS;
2 Art 22000
1 Bill 30000
3 Paul 25000
;
RUN;
* Next we make the "kids" data file ;
DATA kids;
 INPUT famid kidname $ birth age wt sex $;
CARDS;
1 Beth 1 9 60 f
1 Bob 2 6 40 m
1 Barb 3 3 20 f
2 Andy 1 8 80 m
2 Al 2 6 50 m
2 Ann 3 2 20 f
3 Pete 1 6 60 m
3 Pam 2 4 40 f
3 Phil 3 2 20 m
;
RUN;
* 1. sort "dads" on famid and save the sorted file as "dads2" ;
PROC SORT DATA=dads OUT=dads2;
 BY famid;
RUN;
* 2. sort "kids" on famid and save the sorted file as "kids2" ;
PROC SORT DATA=kids OUT=kids2;
 BY famid;
RUN;
* 3. merge "dads2" and "kids2" based on famid, creating "dadkid" ;
DATA dadkid;
 MERGE dads2 kids2;
 BY famid;
RUN;
* Let's do a PROC PRINT of "dadkid" to see if the merge worked ;
PROC PRINT DATA=dadkid;

 125

RUN;

The output of the program is shown below.

OBS FAMID NAME INC MOMDAD KIDNAME BIRTH AGE WT SEX

 1 1 Bill 30000 dad Beth 1 9 60 f
 2 1 Bill 30000 dad Bob 2 6 40 m
 3 1 Bill 30000 dad Barb 3 3 20 f
 4 2 Art 22000 dad Andy 1 8 80 m
 5 2 Art 22000 dad Al 2 6 50 m
 6 2 Art 22000 dad Ann 3 2 20 f
 7 3 Paul 25000 dad Pete 1 6 60 m
 8 3 Paul 25000 dad Pam 2 4 40 f
 9 3 Paul 25000 dad Phil 3 2 20 m

The output shows just what we hoped to see, the dads merged along side of their kids. You might have
wondered what would have happened if the merge statement had reversed the order of the files, had we
changed step 3 to look like below.

* 3. merge "dads2" and "kids2" based on famid, creating "dadkid" ;
DATA dadkid;
 MERGE kids2 dads2;
 BY famid;
RUN;
* Let's do a PROC PRINT of "dadkid" see what happens ;
PROC PRINT DATA=dadkid;
RUN;

The output with the modified step 3 is shown below.

OBS FAMID KIDNAME BIRTH AGE WT SEX NAME INC MOMDAD

 1 1 Beth 1 9 60 f Bill 30000 dad
 2 1 Bob 2 6 40 m Bill 30000 dad
 3 1 Barb 3 3 20 f Bill 30000 dad
 4 2 Andy 1 8 80 m Art 22000 dad
 5 2 Al 2 6 50 m Art 22000 dad
 6 2 Ann 3 2 20 f Art 22000 dad
 7 3 Pete 1 6 60 m Paul 25000 dad
 8 3 Pam 2 4 40 f Paul 25000 dad
 9 3 Phil 3 2 20 m Paul 25000 dad

This output shows what happened when we switched the order of kids2 and dads2 in the merge
statement. The merge results are basically the same, except that the order of the variables is modified --
the kids variables are on the left and the dads variables are at the right. Other than that, the results are
the same.

4. Problems to look out for

These examples cover situations where there are no complications. We show some examples of
complications that can arise and how you can solve them below.

4.1 Mismatching records in one-to-one merge

 126

The two data files have may have records that do not match. Below we illustrate this by including an
extra dad (Karl in famid 4) that does not have a corresponding family, and there are two extra families
(5 and 6) in the family file that do not have a corresponding dad.
DATA dads;
 INPUT famid name $ inc;
DATALINES;
2 Art 22000
1 Bill 30000
3 Paul 25000
4 Karl 95000
;
RUN;

DATA faminc;
 INPUT famid faminc96 faminc97 faminc98;
DATALINES;
3 75000 76000 77000
1 40000 40500 41000
2 45000 45400 45800
5 55000 65000 70000
6 22000 24000 28000
;
RUN;

PROC SORT DATA=dads;
 BY famid;
RUN;

PROC SORT DATA=faminc;
 BY famid;
RUN;

DATA merge121;
 MERGE dads(IN=fromdadx) faminc(IN=fromfamx);
 BY famid;
 fromdad = fromdadx;
 fromfam = fromfamx;
RUN;
As you see above, we use the in option to create a 0/1 variable fromdadx that indicates whether the
resulting file contains a record with data from the dads file. Likewise, we use IN option to create a 0/1
variable fromfamx that indicates if the observation came from the faminc file. The fromdadx and
fromfamx variables are temporary, so we make copies of them in fromdad and fromfam so we have
copies of these variables that stay with the file. We can then use proc print and proc freq to identify
the mismatching records.
PROC PRINT DATA=merge121;
RUN;

PROC FREQ DATA=merge121;
TABLES fromdad*fromfam;
RUN;

The output below illustrates that there were mismatching records. For famid 4, the value of fromdad is
1 and fromfam is 0, as we would expect since there was data from dads for famid 4, but no data from
faminc. Also, as we expect, this record has valid data for the variables from the dads file (name and
inc) and missing data for the variables from faminc (faminc96 faminc97 and faminc98). We see the
reverse pattern for famid's5 and 6.

 127

OBS FAMID NAME INC FAMINC96 FAMINC97 FAMINC98 FROMDAD FROMFAM

 1 1 Bill 30000 40000 40500 41000 1 1
 2 2 Art 22000 45000 45400 45800 1 1
 3 3 Paul 25000 75000 76000 77000 1 1
 4 4 Karl 95000 . . . 1 0
 5 5 . 55000 65000 70000 0 1
 6 6 . 22000 24000 28000 0 1
A closer look at the fromdad and fromfam variables reveals that there are three records that have
matching data: one that has data from the dads only, and two records that have data from the faminc
file only. The crosstab table below confirms this.
TABLE OF FROMDAD BY FROMFAM

FROMDAD FROMFAM

Frequency|
Percent |
Row Pct |
Col Pct | 0| 1| Total
---------+--------+--------+
 0 | 0 | 2 | 2
 | 0.00 | 33.33 | 33.33
 | 0.00 | 100.00 |
 | 0.00 | 40.00 |
---------+--------+--------+
 1 | 1 | 3 | 4
 | 16.67 | 50.00 | 66.67
 | 25.00 | 75.00 |
 | 100.00 | 60.00 |
---------+--------+--------+
Total 1 5 6
 16.67 83.33 100.00
You may want to use this strategy to check the matching of the two files. If there are unexpected
mismatched records, then you should investigate to understand the cause of the mismatched records.

Use the where statement in a proc print to eliminate some of the non-matching records.

4.2 Variables with the same name, but different information

Below we have the files with the information about the dads and family, but look more closely at the
names of the variables. In the dads file, there is a variable called inc98, and in the family file there are
variables inc96, inc97 and inc98. Let's attempt to merge these files and see what happens.
DATA dads;
 INPUT famid name $ inc98;
DATALINES;
2 Art 22000
1 Bill 30000
3 Paul 25000
;
RUN;

DATA faminc;
 INPUT famid inc96 inc97 inc98;
DATALINES;
3 75000 76000 77000
1 40000 40500 41000

 128

2 45000 45400 45800
;
RUN;

PROC SORT DATA=dads;
 BY famid;
RUN;

PROC SORT DATA=faminc;
 BY famid;
RUN;

DATA merge121;
 MERGE faminc dads;
 BY famid;
RUN;
PROC PRINT DATA=merge121;
RUN;
The results are shown below. As you see, the variable inc98 has the data from the dads file, the file that
appears last on the merge statement. When you merge files that have the same variable, SAS will use
the values from the file that appears last on the merge statement.
OBS FAMID INC96 INC97 INC98 NAME

 1 1 40000 40500 30000 Bill
 2 2 45000 45400 22000 Art
 3 3 75000 76000 25000 Paul
There are a couple of ways you can solve this problem.

Solution #1. The most obvious solution is to choose variable names in the original files that will not
conflict with each other. However, you may have files where the names have already been chosen.

Solution #2. You can rename the variables in a data step using the rename option (which renames the
variables before doing the merging). This allows you to select variable names that do not conflict with
each other, as illustrated below.

DATA merge121;
MERGE faminc(RENAME=(inc96=faminc96 inc97=faminc97 inc98=faminc98))
dads(RENAME=(inc98=dadinc98));
BY famid;
RUN;

PROC PRINT DATA=merge121;
RUN;

As you can see below, the variables were renamed as specified.
OBS FAMID FAMINC96 FAMINC97 FAMINC98 NAME DADINC98

 1 1 40000 40500 41000 Bill 30000
 2 2 45000 45400 45800 Art 22000
 3 3 75000 76000 77000 Paul 25000

 129

Regression with SAS
Chapter 1 - Simple and Multiple Regression

Chapter Outline
 1.0 Introduction
 1.1 A First Regression Analysis
 1.2 Examining Data
 1.3 Simple linear regression
 1.4 Multiple regression
 1.5 Transforming variables
 1.6 Summary
 1.7 For more information

1.0 Introduction

This web book is composed of four chapters covering a variety of topics about using SAS for regression.
We should emphasize that this book is about "data analysis" and that it demonstrates how SAS can be
used for regression analysis, as opposed to a book that covers the statistical basis of multiple
regression. We assume that you have had at least one statistics course covering regression analysis and
that you have a regression book that you can use as a reference (see the Regression With SAS page and
our Statistics Books for Loan page for recommended regression analysis books). This book is designed
to apply your knowledge of regression, combine it with instruction on SAS, to perform, understand and
interpret regression analyses.

This first chapter will cover topics in simple and multiple regression, as well as the supporting tasks that
are important in preparing to analyze your data, e.g., data checking, getting familiar with your data file,
and examining the distribution of your variables. We will illustrate the basics of simple and multiple
regression and demonstrate the importance of inspecting, checking and verifying your data before
accepting the results of your analysis. In general, we hope to show that the results of your regression
analysis can be misleading without further probing of your data, which could reveal relationships that a
casual analysis could overlook.

In this chapter, and in subsequent chapters, we will be using a data file that was created by randomly
sampling 400 elementary schools from the California Department of Education's API 2000
dataset. This data file contains a measure of school academic performance as well as other attributes of
the elementary schools, such as, class size, enrollment, poverty, etc.

You can access this data file over the web by clicking on elemapi.sas7bdat, or by visiting the
Regression with SAS page where you can download all of the data files used in all of the chapters of
this book. The examples will assume you have stored your files in a folder called c:\sasreg, but
actually you can store the files in any folder you choose, but if you run these examples be sure to
change c:\sasreg\ to the name of the folder you have selected.

1.1 A First Regression Analysis

http://www.ats.ucla.edu/stat/sas/webbooks/reg/default.htm
http://www.ats.ucla.edu/stat/sas/webbooks/reg/default.htm
http://www.ats.ucla.edu/stat/books/
http://www.ats.ucla.edu/stat/sas/webbooks/reg/elemapi.sas7bdat
http://www.ats.ucla.edu/stat/sas/webbooks/reg/default.htm

 130

Let's dive right in and perform a regression analysis using the variables api00, acs_k3, meals and full.
These measure the academic performance of the school (api00), the average class size in kindergarten
through 3rd grade (acs_k3), the percentage of students receiving free meals (meals) - which is an
indicator of poverty, and the percentage of teachers who have full teaching credentials (full). We expect
that better academic performance would be associated with lower class size, fewer students receiving
free meals, and a higher percentage of teachers having full teaching credentials. Below, we use proc
reg for running this regression model followed by the SAS output.

proc reg data="c:\sasreg\elemapi";
 model api00 = acs_k3 meals full;
run;

The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr >
F

Model 3 2634884 878295 213.41
<.0001
Error 309 1271713 4115.57673
Corrected Total 312 3906597

Root MSE 64.15276 R-Square 0.6745
Dependent Mean 596.40575 Adj R-Sq 0.6713
Coeff Var 10.75656

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t
Value Pr > |t|

Intercept Intercept 1 906.73916 28.26505
32.08 <.0001
acs_k3 avg class size k-3 1 -2.68151 1.39399 -
1.92 0.0553
meals pct free meals 1 -3.70242 0.15403 -
24.04 <.0001
full pct full credential 1 0.10861 0.09072
1.20 0.2321

Let's focus on the three predictors, whether they are statistically significant and, if so, the direction of
the relationship. The average class size (acs_k3, b=-2.68), is not significant (p=0.0553), but only just so,
and the coefficient is negative which would indicate that larger class sizes is related to lower academic
performance -- which is what we would expect. Next, the effect of meals (b=-3.70, p<.0001) is
significant and its coefficient is negative indicating that the greater the proportion students receiving
free meals, the lower the academic performance. Please note, that we are not saying that free meals are
causing lower academic performance. The meals variable is highly related to income level and
functions more as a proxy for poverty. Thus, higher levels of poverty are associated with lower

 131

academic performance. This result also makes sense. Finally, the percentage of teachers with full
credentials (full, b=0.11, p=.2321) seems to be unrelated to academic performance. This would seem to
indicate that that the percentage of teachers with full credentials is not an important factor in predicting
academic performance -- this result was somewhat unexpected.

Should we take these results and write them up for publication? From these results, we would conclude
that lower class sizes are related to higher performance, that fewer students receiving free meals is
associated with higher performance, and that the percentage of teachers with full credentials was not
related to academic performance in the schools. Before we write this up for publication, we should do a
number of checks to make sure we can firmly stand behind these results. We start by getting more
familiar with the data file, doing preliminary data checking, looking for errors in the data.

1.2 Examining data

First, let's use proc contents to learn more about this data file. We can verify how many observations it
has and see the names of the variables it contains.

proc contents data="c:\sasreg\elemapi" ;
run;
The CONTENTS Procedure

Data Set Name: c:\sasreg\elemapi Observations:
400
Member Type: DATA Variables:
21
Engine: V8 Indexes:
0
Created: 4:58 Saturday, January 9, 1960 Observation Length:
83
Last Modified: 4:58 Saturday, January 9, 1960 Deleted Observations:
0
Protection: Compressed:
NO
Data Set Type: Sorted:
NO
Label:

 -----Engine/Host Dependent Information-----

Data Set Page Size: 8192
Number of Data Set Pages: 5
First Data Page: 1
Max Obs per Page: 98
Obs in First Data Page: 56
Number of Data Set Repairs: 0
File Name: c:\sasreg\elemapi.sas7bdat
Release Created: 7.0000M0
Host Created: WIN_NT

 -----Alphabetic List of Variables and Attributes-----

 # Variable Type Len Pos Label

11 acs_46 Num 3 39 avg class size 4-6

 132

10 acs_k3 Num 3 36 avg class size k-3
 3 api00 Num 4 12 api 2000
 4 api99 Num 4 16 api 1999
17 avg_ed Num 8 57 avg parent ed
15 col_grad Num 3 51 parent college grad
 2 dnum Num 4 8 district number
 7 ell Num 3 27 english language learners
19 emer Num 3 73 pct emer credential
20 enroll Num 4 76 number of students
18 full Num 8 65 pct full credential
16 grad_sch Num 3 54 parent grad school
 5 growth Num 4 20 growth 1999 to 2000
13 hsg Num 3 45 parent hsg
21 mealcat Num 3 80 Percentage free meals in 3 categories
 6 meals Num 3 24 pct free meals
 9 mobility Num 3 33 pct 1st year in school
12 not_hsg Num 3 42 parent not hsg
 1 snum Num 8 0 school number
14 some_col Num 3 48 parent some college
 8 yr_rnd Num 3 30 year round school

We will not go into all of the details of this output. Note that there are 400 observations and 21
variables. We have variables about academic performance in 2000 and 1999 and the change in
performance, api00, api99 and growth respectively. We also have various characteristics of the schools,
e.g., class size, parents education, percent of teachers with full and emergency credentials, and number
of students. Note that when we did our original regression analysis it said that there were 313
observations, but the proc contents output indicates that we have 400 observations in the data file.

If you want to learn more about the data file, you could use proc print to show some of the
observations. For example, below we proc print to show the first five observations.

proc print data="c:\sasreg\elemapi"(obs=5) ;
run;
 m s c g
 o n o o r m
 g y b a a o m l a a e e
 a a r m r i c c t e _ d v n a
 s d p p o e _ l s s _ _ g _ g f e r l
 O n n i i w a e r i _ _ h h c r s _ u m o c
 b u u 0 9 t l l n t k 4 s s o a c e l e l a
 s m m 0 9 h s l d y 3 6 g g l d h d l r l t

 1 906 41 693 600 93 67 9 0 11 16 22 0 0 0 0 0 . 76 24 247 2
 2 889 41 570 501 69 92 21 0 33 15 32 0 0 0 0 0 . 79 19 463 3
 3 887 41 546 472 74 97 29 0 36 17 25 0 0 0 0 0 . 68 29 395 3
 4 876 41 571 487 84 90 27 0 27 20 30 36 45 9 9 0 1.91000 87 11 418 3
 5 888 41 478 425 53 89 30 0 44 18 31 50 50 0 0 0 1.50000 87 13 520 3

This takes up lots of space on the page, but does not give us a lot of information. Listing our data can
be very helpful, but it is more helpful if you list just the variables you are interested in. Let's list the
first 10 observations for the variables that we looked at in our first regression analysis.

proc print data="c:\sasreg\elemapi"(obs=10) ;
 var api00 acs_k3 meals full;
run;
Obs api00 acs_k3 meals full

 133

 1 693 16 67 76
 2 570 15 92 79
 3 546 17 97 68
 4 571 20 90 87
 5 478 18 89 87
 6 858 20 . 100
 7 918 19 . 100
 8 831 20 . 96
 9 860 20 . 100
 10 737 21 29 96

We see that among the first 10 observations, we have four missing values for meals. It is likely that the
missing data for meals had something to do with the fact that the number of observations in our first
regression analysis was 313 and not 400.

Another useful tool for learning about your variables is proc means. Below we use proc means to learn
more about the variables api00, acs_k3, meals, and full.

proc means data="c:\sasreg\elemapi";
 var api00 acs_k3 meals full;
run;
The MEANS Procedure

Variable Label N Mean Std Dev Minimum
--
api00 api 2000 400 647.6225000 142.2489610 369.0000000
acs_k3 avg class size k-3 398 18.5477387 5.0049328 -21.0000000
meals pct free meals 315 71.9936508 24.3855697 6.0000000
full pct full credential 400 66.0568000 40.2979258 0.4200000
--

Variable Label Maximum

api00 api 2000 940.0000000
acs_k3 avg class size k-3 25.0000000
meals pct free meals 100.0000000
full pct full credential 100.0000000

We see that the api00 scores don't have any missing values (because the N is 400) and the scores range
from 369-940. This makes sense since the api scores can range from 200 to 1000. We see that the
average class size (acs_k3) had 398 valid values ranging from -21 to 25 and 2 are missing. It seems odd
for a class size to be -21. The percent receiving free meals (meals) ranges from 6 to 100, but there are
only 315 valid values (85 are missing). This seems like a large number of missing values. The percent
with full credentials (full) ranges from .42 to 100 with no missing.

We can also use proc freq to learn more about any categorical variables, such as yr_rnd, as shown
below.

proc freq data="c:\sasreg\elemapi";
 tables yr_rnd;
run;
 year round school

 Cumulative Cumulative

 134

yr_rnd Frequency Percent Frequency Percent

 0 308 77.00 308 77.00
 1 92 23.00 400 100.00

The variable yr_rnd is coded 0=No (not year round) and 1=Yes (year round). Of the 400 schools, 308
are non-year round and 92 are year round, and none are missing.

The above commands have uncovered a number of peculiarities worthy of further examination. For
example, let us look further into the average class size by getting more detailed summary statistics for
acs_k3 using proc univariate.

proc univariate data="c:\sasreg\elemapi";
 var acs_k3;
run;
The UNIVARIATE Procedure
Variable: acs_k3 (avg class size k-3)

 Moments
N 398 Sum Weights 398
Mean 18.5477387 Sum Observations 7382
Std Deviation 5.00493282 Variance 25.0493526
Skewness -7.1055928 Kurtosis 53.0136683
Uncorrected SS 146864 Corrected SS 9944.59296
Coeff Variation 26.9840594 Std Error Mean 0.25087461

 Basic Statistical Measures

 Location Variability
Mean 18.54774 Std Deviation 5.00493
Median 19.00000 Variance 25.04935
Mode 19.00000 Range 46.00000
 Interquartile Range 2.00000

 Tests for Location: Mu0=0

Test -Statistic- -----p Value------
Student's t t 73.93231 Pr > |t| <.0001
Sign M 193 Pr >= |M| <.0001
Signed Rank S 37839 Pr >= |S| <.0001

Quantiles (Definition 5)

Quantile Estimate
100% Max 25
99% 23
95% 21
90% 21
75% Q3 20
50% Median 19
25% Q1 18
10% 17
5% 16
1% -20
0% Min -21

 Extreme Observations

----Lowest---- ----Highest---

 135

Value Obs Value Obs
 -21 43 22 365
 -21 42 23 36
 -21 41 23 79
 -20 40 23 361
 -20 38 25 274

 Missing Values

 -----Percent Of-----
Missing Missing
 Value Count All Obs Obs
 . 2 0.50 100.00

Looking in the section labeled Extreme Observations, we see some of the class sizes are -21 and -20, so
it seems as though some of the class sizes somehow became negative, as though a negative sign was
incorrectly typed in front of them. Let's do a proc freq for class size to see if this seems plausible.

proc freq data="c:\sasreg\elemapi";
 tables acs_k3;
run;
 avg class size k-3

 Cumulative Cumulative
acs_k3 Frequency Percent Frequency Percent

 -21 3 0.75 3 0.75
 -20 2 0.50 5 1.26
 -19 1 0.25 6 1.51
 14 2 0.50 8 2.01
 15 1 0.25 9 2.26
 16 14 3.52 23 5.78
 17 20 5.03 43 10.80
 18 64 16.08 107 26.88
 19 143 35.93 250 62.81
 20 97 24.37 347 87.19
 21 40 10.05 387 97.24
 22 7 1.76 394 98.99
 23 3 0.75 397 99.75
 25 1 0.25 398 100.00

Frequency Missing = 2

Indeed, it seems that some of the class sizes somehow got negative signs put in front of them. Let's
look at the school and district number for these observations to see if they come from the same
district. Indeed, they all come from district 140.

proc print data="c:\sasreg\elemapi";
 where (acs_k3 < 0);
 var snum dnum acs_k3;
run;
Obs snum dnum acs_k3
 38 600 140 -20
 39 596 140 -19
 40 611 140 -20
 41 595 140 -21
 42 592 140 -21

 136

 43 602 140 -21
 85 116 294 .
306 4534 630 .

Notice that when we looked at the observations where (acs_k3 < 0) this also included observations
where acs_k3 is missing (represented as a period). To be more precise, the above command should
exclude such observations like this.

proc print data="c:\sasreg\elemapi";
 where (acs_k3 < 0) and (acs_k3 ^= .);
 var snum dnum acs_k3;
run;
Obs snum dnum acs_k3
 38 600 140 -20
 39 596 140 -19
 40 611 140 -20
 41 595 140 -21
 42 592 140 -21
 43 602 140 -21

Now, let's look at all of the observations for district 140.

proc print data="c:\sasreg\elemapi";
 where (dnum == 140);
 var snum dnum acs_k3;
run;
Obs snum dnum acs_k3
 38 600 140 -20
 39 596 140 -19
 40 611 140 -20
 41 595 140 -21
 42 592 140 -21
 43 602 140 -21

All of the observations from district 140 seem to have this problem. When you find such a problem,
you want to go back to the original source of the data to verify the values. We have to reveal that we
fabricated this error for illustration purposes, and that the actual data had no such problem. Let's pretend
that we checked with district 140 and there was a problem with the data there, a hyphen was
accidentally put in front of the class sizes making them negative. We will make a note to fix this! Let's
continue checking our data.

Let's take a look at some graphical methods for inspecting data. For each variable, it is useful to inspect
them using a histogram, boxplot, and stem-and-leaf plot. These graphs can show you information about
the shape of your variables better than simple numeric statistics can. We already know about the
problem with acs_k3, but let's see how these graphical methods would have revealed the problem with
this variable.

First, we show a histogram for acs_k3. This shows us the observations where the average class size is
negative.

proc univariate data="c:\sasreg\elemapi";
 var acs_k3 ;
 histogram / cfill=gray;
run;

 137

Likewise, a boxplot and stem-and-leaf plot would have called these observations to our attention as
well. In SAS you can use the plot option with proc univariate to request a boxplot and stem and leaf
plot. Below we show just the combined boxplot and stem and leaf plot from this output. You can see the
outlying negative observations way at the bottom of the boxplot.

proc univariate data="c:\sasreg\elemapi" plot;
 var acs_k3;
run;

 Histogram # Boxplot
 25+* 1 0
 .** 10 |
 .**************************** 137 +-----+
 .** 207 *--+--*
 .******* 34 |
 .* 3 0
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

 138

 .
 .
 .* 3 *
 -21+* 3 *
 ----+----+----+----+----+----+----+----+--
 * may represent up to 5 counts

We recommend plotting all of these graphs for the variables you will be analyzing. We will omit, due to
space considerations, showing these graphs for all of the variables. However, in examining the variables,
the stem-and-leaf plot for full seemed rather unusual. Up to now, we have not seen anything
problematic with this variable, but look at the stem and leaf plot for full below. It shows 104
observations where the percent with a full credential that is much lower than all other
observations. This is over 25% of the schools and seems very unusual.

proc univariate data="c:\sasreg\elemapi" plot;
 var full;
run;
 Histogram # Boxplot
 102.5+*************************** 81 |
 .****************** 54 +-----+
 92.5+**************** 46 | |
 .************ 36 *-----*
 82.5+********** 30 | |
 .****** 17 | |
 72.5+*** 8 | |
 .** 6 | + |
 62.5+** 4 | |
 .** 5 | |
 52.5+* 1 | |
 .** 4 | |
 42.5+* 3 | |
 .* 1 | |
 32.5+ | |
 . | |
 22.5+ | |
 . | |
 12.5+ | |
 . | |
 2.5+*********************************** 104 +-----+
 ----+----+----+----+----+----+----+
 * may represent up to 3 counts

Let's look at the frequency distribution of full to see if we can understand this better. The values go
from 0.42 to 1.0, then jump to 37 and go up from there. It appears as though some of the percentages
are actually entered as proportions, e.g., 0.42 was entered instead of 42 or 0.96 which really should have
been 96.

proc freq data="c:\sasreg\elemapi" ;
 tables full;
run;

 pct full credential

 Cumulative Cumulative
 full Frequency Percent Frequency Percent

 139

0.4199999869 1 0.25 1 0.25
0.4499999881 1 0.25 2 0.50
0.4600000083 1 0.25 3 0.75
0.4699999988 1 0.25 4 1.00
0.4799999893 1 0.25 5 1.25
 0.5 3 0.75 8 2.00
0.5099999905 1 0.25 9 2.25
0.5199999809 1 0.25 10 2.50
0.5299999714 1 0.25 11 2.75
0.5400000215 1 0.25 12 3.00
0.5600000024 2 0.50 14 3.50
0.5699999928 2 0.50 16 4.00
0.5799999833 1 0.25 17 4.25
0.5899999738 3 0.75 20 5.00
0.6000000238 1 0.25 21 5.25
0.6100000143 4 1.00 25 6.25
0.6200000048 2 0.50 27 6.75
0.6299999952 1 0.25 28 7.00
0.6399999857 3 0.75 31 7.75
0.6499999762 3 0.75 34 8.50
0.6600000262 2 0.50 36 9.00
0.6700000167 6 1.50 42 10.50
0.6800000072 2 0.50 44 11.00
0.6899999976 3 0.75 47 11.75
0.6999999881 1 0.25 48 12.00
0.7099999785 1 0.25 49 12.25
0.7200000286 2 0.50 51 12.75
0.7300000191 6 1.50 57 14.25
 0.75 4 1.00 61 15.25
0.7599999905 2 0.50 63 15.75
0.7699999809 2 0.50 65 16.25
0.7900000215 3 0.75 68 17.00
0.8000000119 5 1.25 73 18.25
0.8100000024 8 2.00 81 20.25
0.8199999928 2 0.50 83 20.75
0.8299999833 2 0.50 85 21.25
0.8399999738 2 0.50 87 21.75
0.8500000238 3 0.75 90 22.50
0.8600000143 2 0.50 92 23.00
0.8999999762 3 0.75 95 23.75
0.9200000167 1 0.25 96 24.00
0.9300000072 1 0.25 97 24.25
0.9399999976 2 0.50 99 24.75
0.9499999881 2 0.50 101 25.25
0.9599999785 1 0.25 102 25.50
 1 2 0.50 104 26.00
 37 1 0.25 105 26.25
 41 1 0.25 106 26.50
 44 2 0.50 108 27.00
 45 2 0.50 110 27.50
 46 1 0.25 111 27.75
 48 1 0.25 112 28.00
 53 1 0.25 113 28.25
 57 1 0.25 114 28.50
 58 3 0.75 117 29.25
 59 1 0.25 118 29.50
 61 1 0.25 119 29.75
 63 2 0.50 121 30.25
 64 1 0.25 122 30.50

 140

 65 1 0.25 123 30.75
 68 2 0.50 125 31.25
 69 3 0.75 128 32.00
 70 1 0.25 129 32.25
 71 3 0.75 132 33.00
 72 1 0.25 133 33.25
 73 2 0.50 135 33.75
 74 1 0.25 136 34.00
 75 4 1.00 140 35.00
 76 4 1.00 144 36.00
 77 2 0.50 146 36.50
 78 4 1.00 150 37.50
 79 3 0.75 153 38.25
 80 10 2.50 163 40.75
 81 4 1.00 167 41.75
 82 3 0.75 170 42.50
 83 9 2.25 179 44.75
 84 4 1.00 183 45.75
 85 8 2.00 191 47.75
 86 5 1.25 196 49.00
 87 12 3.00 208 52.00
 88 6 1.50 214 53.50
 89 5 1.25 219 54.75
 90 9 2.25 228 57.00
 91 8 2.00 236 59.00
 92 7 1.75 243 60.75
 93 12 3.00 255 63.75
 94 10 2.50 265 66.25
 95 17 4.25 282 70.50
 96 17 4.25 299 74.75
 97 11 2.75 310 77.50
 98 9 2.25 319 79.75
 100 81 20.25 400 100.00

Let's see which district(s) these data came from.

proc freq data="c:\sasreg\elemapi" ;
 where (full <= 1);
 tables dnum;
run;
 district number

 Cumulative Cumulative
dnum Frequency Percent Frequency Percent

 401 104 100.00 104 100.00

We note that all 104 observations in which full was less than or equal to one came from district
401. Let's see if this accounts for all of the observations that come from district 401.

proc freq data="c:\sasreg\elemapi" ;
 where (dnum = 401);
 tables dnum;
run;
 district number

 Cumulative Cumulative
dnum Frequency Percent Frequency Percent

 141

 401 104 100.00 104 100.00

All of the observations from this district seem to be recorded as proportions instead of
percentages. Again, let us state that this is a pretend problem that we inserted into the data for
illustration purposes. If this were a real life problem, we would check with the source of the data and
verify the problem. We will make a note to fix this problem in the data as well.

Another useful graphical technique for screening your data is a scatterplot matrix. While this is
probably more relevant as a diagnostic tool searching for non-linearities and outliers in your data, it can
also be a useful data screening tool, possibly revealing information in the joint distributions of your
variables that would not be apparent from examining univariate distributions. Let's look at the
scatterplot matrix for the variables in our regression model. This reveals the problems we have already
identified, i.e., the negative class sizes and the percent full credential being entered as proportions.

proc insight data="c:\sasreg\elemapi";
 scatter api00 acs_k3 meals full * api00 acs_k3 meals full;
run;

 142

We have identified three problems in our data. There are numerous missing values for meals, there
were negatives accidentally inserted before some of the class sizes (acs_k3) and over a quarter of the
values for full were proportions instead of percentages. The corrected version of the data is called
elemapi2. Let's use that data file and repeat our analysis and see if the results are the same as our
original analysis. First, let's repeat our original regression analysis below.

proc reg data="c:\sasreg\elemapi"
 model api00 = acs_k3 meals full;
run;

 143

Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 2634884 878295 213.41 <.0001
Error 309 1271713 4115.57673
Corrected Total 312 3906597

Root MSE 64.15276 R-Square 0.6745
Dependent Mean 596.40575 Adj R-Sq 0.6713
Coeff Var 10.75656

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value
Pr > |t|

Intercept Intercept 1 906.73916 28.26505 32.08
<.0001
acs_k3 avg class size k-3 1 -2.68151 1.39399 -1.92
0.0553
meals pct free meals 1 -3.70242 0.15403 -24.04
<.0001
full pct full credential 1 0.10861 0.09072 1.20
0.2321

Now, let's use the corrected data file and repeat the regression analysis. We see quite a difference in the
results! In the original analysis (above), acs_k3 was nearly significant, but in the corrected analysis
(below) the results show this variable to be not significant, perhaps due to the cases where class size
was given a negative value. Likewise, the percentage of teachers with full credentials was not
significant in the original analysis, but is significant in the corrected analysis, perhaps due to the cases
where the value was given as the proportion with full credentials instead of the percent. Also, note that
the corrected analysis is based on 398 observations instead of 313 observations, due to getting the
complete data for the meals variable which had lots of missing values.

proc reg data="c:\sasreg\elemapi2";
 model api00 = acs_k3 meals full ;
run;

Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr >
F
Model 3 6604966 2201655 615.55
<.0001
Error 394 1409241 3576.75370
Corrected Total 397 8014207

Root MSE 59.80597 R-Square 0.8242

 144

Dependent Mean 648.46985 Adj R-Sq 0.8228
Coeff Var 9.22263

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr >
|t|
Intercept Intercept 1 771.65811 48.86071 15.79
<.0001
acs_k3 avg class size k-3 1 -0.71706 2.23882 -0.32
0.7489
meals pct free meals 1 -3.68626 0.11178 -32.98
<.0001
full pct full credential 1 1.32714 0.23887 5.56
<.0001

From this point forward, we will use the corrected, elemapi2, data file.

So far we have covered some topics in data checking/verification, but we have not really discussed
regression analysis itself. Let's now talk more about performing regression analysis in SAS.

1.3 Simple Linear Regression

Let's begin by showing some examples of simple linear regression using SAS. In this type of regression,
we have only one predictor variable. This variable may be continuous, meaning that it may assume all
values within a range, for example, age or height, or it may be dichotomous, meaning that the variable
may assume only one of two values, for example, 0 or 1. The use of categorical variables with more
than two levels will be covered in Chapter 3. There is only one response or dependent variable, and it is
continuous.

In SAS, the dependent variable is listed immediately after the model statement followed by an equal
sign and then one or more predictor variables. Let's examine the relationship between the size of school
and academic performance to see if the size of the school is related to academic performance. For this
example, api00 is the dependent variable and enroll is the predictor.

proc reg data="c:\sasreg\elemapi2";
 model api00 = enroll;
run;
Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr >
F
Model 1 817326 817326 44.83
<.0001
Error 398 7256346 18232
Corrected Total 399 8073672

Root MSE 135.02601 R-Square 0.1012
Dependent Mean 647.62250 Adj R-Sq 0.0990
Coeff Var 20.84949

 145

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr >
|t|
Intercept Intercept 1 744.25141 15.93308 46.71
<.0001
enroll number of students 1 -0.19987 0.02985 -6.70
<.0001

Let's review this output a bit more carefully. First, we see that the F-test is statistically significant,
which means that the model is statistically significant. The R-squared is .1012 means that
approximately 10% of the variance of api00 is accounted for by the model, in this case, enroll. The t-
test for enroll equals -6.70 , and is statistically significant, meaning that the regression coefficient for
enroll is significantly different from zero. Note that (-6.70)2 = 44.89, which is the same as the F-statistic
(with some rounding error). The coefficient for enroll is -.19987, or approximately -0.2, meaning that
for a one unit increase in enroll, we would expect a 0.2-unit decrease in api00. In other words, a school
with 1100 students would be expected to have an api score 20 units lower than a school with 1000
students. The constant is 744.2514, and this is the predicted value when enroll equals zero. In most
cases, the constant is not very interesting. We have prepared an annotated output which shows the
output from this regression along with an explanation of each of the items in it.

In addition to getting the regression table, it can be useful to see a scatterplot of the predicted and
outcome variables with the regression line plotted. SAS makes this very easy for you by using the plot
statement as part of proc reg. For example, below we show how to make a scatterplot of the outcome
variable, api00 and the predictor, enroll. Note that the graph also includes the predicted values in the
form of the regression line.

proc reg data="c:\sasreg\elemapi2";
 model api00 = enroll ;
 plot api00 * enroll ;
run;

http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter1/annotated1.htm

 146

As you see, this one command produces a scatterplot and regression line, and it also includes the
regression model with the correlation of the two variables in the title. We could include a 95%
prediction interval using the pred option on the plot statement as illustrated below.

proc reg data="c:\sasreg\elemapi2" ;
 model api00 = enroll ;
 plot api00 * enroll / pred;
run;
quit;

 147

Another kind of graph that you might want to make is a residual versus fitted plot. As shown below, we
can use the plot statement to make this graph. The keywords residual. and predicted. in this context
refer to the residual value and predicted value from the regression analysis and can be abbreviated as r.
and p. .

proc reg data="c:\sasreg\elemapi2";
 model api00 = enroll ;
 plot residual. * predicted. ;
run;

 148

The table below shows a number of other keywords that can be used with the plot statement and the
statistics they display.

Keyword Statistic
COOKD. Cook's D influence statistics
COVRATIO. standard influence of observation on covariance of betas
DFFITS. standard influence of observation on predicted value
H. leverage
LCL.

lower bound of % confidence interval for individual prediction
LCLM.

lower bound of % confidence interval for the mean of the
dependent variable

PREDICTED.
| PRED. | P.

predicted values

PRESS. residuals from refitting the model with current observation deleted
RESIDUAL. | R. residuals
RSTUDENT. studentized residuals with the current observation deleted
STDI. standard error of the individual predicted value
STDP. standard error of the mean predicted value
STDR. standard error of the residual
STUDENT. residuals divided by their standard errors

 149

UCL.
upper bound of % confidence interval for individual prediction

UCLM.
upper bound of % confidence interval for the mean of the
dependent variables

1.4 Multiple Regression

Now, let's look at an example of multiple regression, in which we have one outcome (dependent)
variable and multiple predictors. For this multiple regression example, we will regress the dependent
variable, api00, on all of the predictor variables in the data set.

proc reg data="c:\sasreg\elemapi2" ;
 model api00 = ell meals yr_rnd mobility acs_k3 acs_46 full emer enroll ;
run;

Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr >
F
Model 9 6740702 748967 232.41
<.0001
Error 385 1240708 3222.61761
Corrected Total 394 7981410

Root MSE 56.76810 R-Square 0.8446
Dependent Mean 648.65063 Adj R-Sq 0.8409
Coeff Var 8.75172

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value
Pr > |t|
Intercept Intercept 1 758.94179 62.28601 12.18
<.0001
ell english language learners 1 -0.86007 0.21063 -4.08
<.0001
meals pct free meals 1 -2.94822 0.17035 -17.31
<.0001
yr_rnd year round school 1 -19.88875 9.25844 -2.15
0.0323
mobility pct 1st year in school 1 -1.30135 0.43621 -2.98
0.0030
acs_k3 avg class size k-3 1 1.31870 2.25268 0.59
0.5586
acs_46 avg class size 4-6 1 2.03246 0.79832 2.55
0.0113
full pct full credential 1 0.60972 0.47582 1.28
0.2008
emer pct emer credential 1 -0.70662 0.60541 -1.17
0.2439

 150

enroll number of students 1 -0.01216 0.01679 -0.72
0.4693

Let's examine the output from this regression analysis. As with the simple regression, we look to the p-
value of the F-test to see if the overall model is significant. With a p-value of zero to four decimal
places, the model is statistically significant. The R-squared is 0.8446, meaning that approximately 84%
of the variability of api00 is accounted for by the variables in the model. In this case, the adjusted R-
squared indicates that about 84% of the variability of api00 is accounted for by the model, even after
taking into account the number of predictor variables in the model. The coefficients for each of the
variables indicates the amount of change one could expect in api00 given a one-unit change in the value
of that variable, given that all other variables in the model are held constant. For example, consider the
variable ell. We would expect a decrease of 0.86 in the api00 score for every one unit increase in ell,
assuming that all other variables in the model are held constant. The interpretation of much of the
output from the multiple regression is the same as it was for the simple regression. We have prepared
an annotated output that more thoroughly explains the output of this multiple regression analysis.

You may be wondering what a 0.86 change in ell really means, and how you might compare the
strength of that coefficient to the coefficient for another variable, say meals. To address this problem,
we can use the stb option on the model statement to request that in addition to the standard output that
SAS also display a table of the standardized values, sometimes called beta coefficients. Below we show
just the portion of the output that includes these standardized values. The beta coefficients are used by
some researchers to compare the relative strength of the various predictors within the model. Because
the beta coefficients are all measured in standard deviations, instead of the units of the variables, they
can be compared to one another. In other words, the beta coefficients are the coefficients that you would
obtain if the outcome and predictor variables were all transformed to standard scores, also called z-
scores, before running the regression.

proc reg data="c:\sasreg\elemapi2" ;
 model api00 = ell meals yr_rnd mobility acs_k3 acs_46 full emer enroll /
stb;
run;
 Parameter Estimates

 Standardized
Variable Label DF Estimate

Intercept Intercept 1 0
ell english language learners 1 -0.14958
meals pct free meals 1 -0.66070
yr_rnd year round school 1 -0.05914
mobility pct 1st year in school 1 -0.06864
acs_k3 avg class size k-3 1 0.01273
acs_46 avg class size 4-6 1 0.05498
full pct full credential 1 0.06380
emer pct emer credential 1 -0.05801
enroll number of students 1 -0.01936

Because these standardized coefficients are all in the same standardized units you can compare these
coefficients to assess the relative strength of each of the predictors. In this example, meals has the
largest Beta coefficient, -0.66, and acs_k3 has the smallest Beta, 0.013. Thus, a one standard deviation
increase in meals leads to a 0.66 standard deviation decrease in predicted api00, with the other

http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter1/annotated2.htm

 151

variables held constant. And, a one standard deviation increase in acs_k3, in turn, leads to a 0.013
standard deviation increase api00 with the other variables in the model held constant.

In interpreting this output, remember that the difference between the regular coefficients (from the prior
output) and the standardized coefficients above is the units of measurement. For example, to describe
the raw coefficient for ell you would say "A one-unit decrease in ell would yield a .86-unit increase in
the predicted api00." However, for the standardized coefficient (Beta) you would say, "A one standard
deviation decrease in ell would yield a .15 standard deviation increase in the predicted api00."

So far, we have concerned ourselves with testing a single variable at a time, for example looking at the
coefficient for ell and determining if that is significant. We can also test sets of variables, using the test
command, to see if the set of variables are significant. First, let's start by testing a single variable, ell,
using the test statement. Note that the part before the test command, test1:, is merely a label to identify
the output of the test command. This label could be any short label to identify the output.

proc reg data="c:\sasreg\elemapi2" ;
 model api00 = ell meals yr_rnd mobility acs_k3 acs_46 full emer enroll ;
 test1: test ell =0;
run;

 Test TEST1 Results for Dependent Variable api00

 Mean
Source DF Square F Value Pr > F

Numerator 1 53732 16.67 <.0001
Denominator 385 3222.61761

If you compare this output with the output from the last regression you can see that the result of the F-
test, 16.67, is the same as the square of the result of the t-test in the regression (-4.083^2 = 16.67). Note
that you could get the same results if you typed the following since SAS defaults to comparing the
term(s) listed to 0.

proc reg data="c:\sasreg\elemapi2" ;
 model api00 = ell meals yr_rnd mobility acs_k3 acs_46 full emer enroll /
stb;
 test2: test ell;
run;

 Test TEST2 Results for Dependent Variable api00

 Mean
Source DF Square F Value Pr > F

Numerator 1 53732 16.67 <.0001
Denominator 385 3222.61761

Perhaps a more interesting test would be to see if the contribution of class size is significant. Since the
information regarding class size is contained in two variables, acs_k3 and acs_46, so we include both of
these separated by a comma on the test command. Below we show just the output from the test
command.

proc reg data="c:\sasreg\elemapi2" ;
 model api00 = ell meals yr_rnd mobility acs_k3 acs_46 full emer enroll ;

 152

 test_class_size: test acs_k3, acs_46;
run;
Test TEST_CLASS_SIZE Results for Dependent Variable api00

 Mean
Source DF Square F Value Pr > F

Numerator 2 12742 3.95 0.0200
Denominator 385 3222.61761

The significant F-test, 3.95, means that the collective contribution of these two variables is
significant. One way to think of this, is that there is a significant difference between a model with
acs_k3 and acs_46 as compared to a model without them, i.e., there is a significant difference between
the "full" model and the "reduced" models.

Finally, as part of doing a multiple regression analysis you might be interested in seeing the correlations
among the variables in the regression model. You can do this with proc corr as shown below.

proc corr data="c:\sasreg\elemapi2" ;
 var api00 ell meals yr_rnd mobility acs_k3 acs_46 full emer enroll ;
run;
 Pearson Correlation Coefficients
 Prob > |r| under H0: Rho=0
 Number of Observations

 api00 ell meals yr_rnd
mobility

api00 1.00000 -0.76763 -0.90070 -0.47544
-0.20641
api 2000 <.0001 <.0001 <.0001
<.0001
 400 400 400 400
399

ell -0.76763 1.00000 0.77238 0.49793
-0.02046
english language learners <.0001 <.0001 <.0001
0.6837
 400 400 400 400
399

meals -0.90070 0.77238 1.00000 0.41845
0.21665
pct free meals <.0001 <.0001 <.0001
<.0001
 400 400 400 400
399

yr_rnd -0.47544 0.49793 0.41845 1.00000
0.03479
year round school <.0001 <.0001 <.0001
0.4883
 400 400 400 400
399

 153

mobility -0.20641 -0.02046 0.21665 0.03479
1.00000
pct 1st year in school <.0001 0.6837 <.0001 0.4883
 399 399 399 399
399

acs_k3 0.17100 -0.05565 -0.18797 0.02270
0.04014
avg class size k-3 0.0006 0.2680 0.0002 0.6517
0.4245
 398 398 398 398
398

acs_46 0.23291 -0.17330 -0.21309 -0.04207
0.12769
avg class size 4-6 <.0001 0.0005 <.0001 0.4032
0.0110
 397 397 397 397
396

full 0.57441 -0.48476 -0.52756 -0.39771
0.02521
pct full credential <.0001 <.0001 <.0001 <.0001
0.6156
 400 400 400 400
399

emer -0.58273 0.47218 0.53304 0.43472
0.05961
pct emer credential <.0001 <.0001 <.0001 <.0001
0.2348
 400 400 400 400
399

enroll -0.31817 0.40302 0.24103 0.59182
0.10502
number of students <.0001 <.0001 <.0001 <.0001
0.0360
 400 400 400 400
399

 Pearson Correlation Coefficients
 Prob > |r| under H0: Rho=0
 Number of Observations

 acs_k3 acs_46 full emer
enroll

api00 0.17100 0.23291 0.57441 -0.58273
-0.31817
api 2000 0.0006 <.0001 <.0001 <.0001
<.0001
 398 397 400 400
400

ell -0.05565 -0.17330 -0.48476 0.47218
0.40302
english language learners 0.2680 0.0005 <.0001 <.0001
<.0001

 154

 398 397 400 400
400

meals -0.18797 -0.21309 -0.52756 0.53304
0.24103
pct free meals 0.0002 <.0001 <.0001 <.0001
<.0001
 398 397 400 400
400

yr_rnd 0.02270 -0.04207 -0.39771 0.43472
0.59182
year round school 0.6517 0.4032 <.0001 <.0001
<.0001
 398 397 400 400
400

mobility 0.04014 0.12769 0.02521 0.05961
0.10502
pct 1st year in school 0.4245 0.0110 0.6156 0.2348
0.0360
 398 396 399 399
399

acs_k3 1.00000 0.27078 0.16057 -0.11033
0.10890
avg class size k-3 <.0001 0.0013 0.0277
0.0298
 398 395 398 398
398

acs_46 0.27078 1.00000 0.11773 -0.12446
0.02829
avg class size 4-6 <.0001 0.0190 0.0131
0.5741
 395 397 397 397
397

full 0.16057 0.11773 1.00000 -0.90568
-0.33769
pct full credential 0.0013 0.0190 <.0001
<.0001
 398 397 400 400
400

emer -0.11033 -0.12446 -0.90568 1.00000
0.34309
pct emer credential 0.0277 0.0131 <.0001
<.0001
 398 397 400 400
400

enroll 0.10890 0.02829 -0.33769 0.34309
1.00000
number of students 0.0298 0.5741 <.0001 <.0001
 398 397 400 400
400

 155

We can see that the strongest correlation with api00 is meals with a correlation in excess of -0.9. The
variables ell and emer are also strongly correlated with api00. All three of these correlations are
negative, meaning that as the value of one variable goes down, the value of the other variable tends to
go up. Knowing that these variables are strongly associated with api00, we might predict that they
would be statistically significant predictor variables in the regression model. Note that the number of
cases used for each correlation is determined on a "pairwise" basis, for example there are 398 valid
pairs of data for enroll and acs_k3, so that correlation of .1089 is based on 398 observations.

1.5 Transforming Variables

Earlier we focused on screening your data for potential errors. In the next chapter, we will focus on
regression diagnostics to verify whether your data meet the assumptions of linear regression. Here, we
will focus on the issue of normality. Some researchers believe that linear regression requires that the
outcome (dependent) and predictor variables be normally distributed. We need to clarify this issue. In
actuality, it is the residuals that need to be normally distributed. In fact, the residuals need to be normal
only for the t-tests to be valid. The estimation of the regression coefficients do not require normally
distributed residuals. As we are interested in having valid t-tests, we will investigate issues concerning
normality.

A common cause of non-normally distributed residuals is non-normally distributed outcome and/or
predictor variables. So, let us explore the distribution of our variables and how we might transform
them to a more normal shape. Let's start by making a histogram of the variable enroll, which we
looked at earlier in the simple regression.

proc univariate data="c:\sasreg\elemapi2";
 var enroll ;
 histogram / cfill=gray;
run;

 156

We can use the normal option to superimpose a normal curve on this graph and the midpoints option
to indicate that we want bins with midpoints from 100 to 1500 going in increments of 100.

proc univariate data="c:\sasreg\elemapi2";
 var enroll ;
 histogram / cfill=gray normal midpoints=100 to 1500 by 100;
run;

Because histograms are sensitive to the number of bins or columns that are used in the display. An
alternative to histograms is the kernel density plot, which approximates the probability density of the
variable. Kernel density plots have the advantage of being smooth and of being independent of the
choice of origin, unlike histograms. You can add a kernal density plot to the above plot with he kernel
option as illustrated below.

proc univariate data="c:\sasreg\elemapi2";
 var enroll ;
 histogram / cfill=gray normal midpoints=100 to 1500 by 100 kernel;
run;

 157

Not surprisingly, the kdensity plot also indicates that the variable enroll does not look normal.

There are two other types of graphs that are often used to examine the distribution of variables;
quantile-quantile plots and normal probability plots.

A quantile-quantile plot graphs the quantiles of a variable against the quantiles of a normal (Gaussian)
distribution. Such plots are sensitive to non-normality near the tails, and indeed we see considerable
deviations from normal, the diagonal line, in the tails. This plot is typical of variables that are strongly
skewed to the right.

proc univariate data="c:\sasreg\elemapi2";
 var enroll ;
 qqplot / normal;
run;

 158

The normal probability plot is also useful for examining the distribution of variables and is sensitive to
deviations from normality nearer to the center of the distribution. We will use SAS proc capability to
get the normal probability plot. Again, we see indications non-normality in enroll.

proc capability data="c:\sasreg\elemapi2" noprint;
 ppplot enroll ;
run;

 159

Given the skewness to the right in enroll, let us try a log transformation to see if that makes it more
normal. Below we create a variable lenroll that is the natural log of enroll and then we repeat some of
the above commands to see if lenroll is more normally distributed.

data elemapi3;
 set "c:\sasreg\elemapi2";
 lenroll = log(enroll);
run;

Now let's try showing a histogram for lenroll with a normal overlay and a kernel density estimate.

proc univariate data=elemapi3 noprint;
 var lenroll ;
 histogram / cfill=grayd0 normal kernel (color = red);
run;

We can see that lenroll looks quite normal. We could then create a quantile-quantile plot and a normal
probability plot to further assess whether lenroll seems normal, as well as seeing how lenroll impacts
the residuals, which is really the important consideration.

1.6 Summary

In this lecture we have discussed the basics of how to perform simple and multiple regressions, the
basics of interpreting output, as well as some related commands. We examined some tools and
techniques for screening for bad data and the consequences such data can have on your results. Finally,
we touched on the assumptions of linear regression and illustrated how you can check the normality of
your variables and how you can transform your variables to achieve normality. The next chapter will
pick up where this chapter has left off, going into a more thorough discussion of the assumptions of
linear regression and how you can use SAS to assess these assumptions for your data. In particular, the
next lecture will address the following issues.

• Checking for points that exert undue influence on the coefficients
• Checking for constant error variance (homoscedasticity)

 160

• Checking for linear relationships
• Checking model specification
• Checking for multicollinearity
• Checking normality of residuals

Regression with SAS
Chapter 2 - Regression Diagnostics

Chapter Outline
 2.0 Regression Diagnostics
 2.1 Unusual and Influential data
 2.2 Tests on Normality of Residuals
 2.3 Tests on Nonconstant Error of Variance
 2.4 Tests on Multicollinearity
 2.5 Tests on Nonlinearity
 2.6 Model Specification
 2.7 Issues of Independence
 2.8 Summary
 2.9 For more information

2.0 Regression Diagnostics

In our last chapter, we learned how to do ordinary linear regression with SAS, concluding with methods
for examining the distribution of variables to check for non-normally distributed variables as a first look
at checking assumptions in regression. Without verifying that your data have met the regression
assumptions, your results may be misleading. This chapter will explore how you can use SAS to test
whether your data meet the assumptions of linear regression. In particular, we will consider the
following assumptions.

• Linearity - the relationships between the predictors and the outcome variable should be linear
• Normality - the errors should be normally distributed - technically normality is necessary only

for the t-tests to be valid, estimation of the coefficients only requires that the errors be
identically and independently distributed

• Homogeneity of variance (homoscedasticity) - the error variance should be constant
• Independence - the errors associated with one observation are not correlated with the errors of

any other observation
• Errors in variables - predictor variables are measured without error (we will cover this in

Chapter 4)
• Model specification - the model should be properly specified (including all relevant variables,

and excluding irrelevant variables)

Additionally, there are issues that can arise during the analysis that, while strictly speaking, are not
assumptions of regression, are none the less, of great concern to regression analysts.

• Influence - individual observations that exert undue influence on the coefficients

http://www.ats.ucla.edu/stat/sas/

 161

• Collinearity - predictors that are highly collinear, i.e. linearly related, can cause problems in
estimating the regression coefficients.

Many graphical methods and numerical tests have been developed over the years for regression
diagnostics. In this chapter, we will explore these methods and show how to verify regression
assumptions and detect potential problems using SAS.

2.1 Unusual and Influential data

A single observation that is substantially different from all other observations can make a large
difference in the results of your regression analysis. If a single observation (or small group of
observations) substantially changes your results, you would want to know about this and investigate
further. There are three ways that an observation can be unusual.

Outliers: In linear regression, an outlier is an observation with large residual. In other words, it is an
observation whose dependent-variable value is unusual given its values on the predictor variables. An
outlier may indicate a sample peculiarity or may indicate a data entry error or other problem.

Leverage: An observation with an extreme value on a predictor variable is called a point with high
leverage. Leverage is a measure of how far an independent variable deviates from its mean. These
leverage points can have an effect on the estimate of regression coefficients.

Influence: An observation is said to be influential if removing the observation substantially changes the
estimate of coefficients. Influence can be thought of as the product of leverage and outlierness.

How can we identify these three types of observations? Let's look at an example dataset called crime.
This dataset appears in Statistical Methods for Social Sciences, Third Edition by Alan Agresti and
Barbara Finlay (Prentice Hall, 1997). The variables are state id (sid), state name (state), violent crimes
per 100,000 people (crime), murders per 1,000,000 (murder), the percent of the population living in
metropolitan areas (pctmetro), the percent of the population that is white (pctwhite), percent of
population with a high school education or above (pcths), percent of population living under poverty
line (poverty), and percent of population that are single parents (single). Below we use proc contents
and proc means to learn more about this data file.

proc contents data="c:\sasreg\crime";
run;
The CONTENTS Procedure

Data Set Name: c:\sasreg\crime Observations: 51
Member Type: DATA Variables: 9
Engine: V8 Indexes: 0
Created: 4:58 Saturday, January 9, 1960 Observation Length: 63
Last Modified: 4:58 Saturday, January 9, 1960 Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:

< some output omitted to save space>

 -----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Label

 162

3 crime Num 4 8 violent crime rate
4 murder Num 8 12 murder rate
7 pcths Num 8 36 pct hs graduates
5 pctmetro Num 8 20 pct metropolitan
6 pctwhite Num 8 28 pct white
8 poverty Num 8 44 pct poverty
1 sid Num 8 0
9 single Num 8 52 pct single parent
2 state Char 3 60
proc means data="c:\sasreg\crime";
 var crime murder pctmetro pctwhite pcths poverty single;
run;
The MEANS Procedure

Variable Label N Mean Std Dev Minimum

crime violent crime rate 51 612.8431373 441.1003229 82.0000000
murder murder rate 51 8.7274510 10.7175758 1.6000000
pctmetro pct metropolitan 51 67.3901959 21.9571331 24.0000000
pctwhite pct white 51 84.1156860 13.2583917 31.7999992
pcths pct hs graduates 51 76.2235293 5.5920866 64.3000031
poverty pct poverty 51 14.2588235 4.5842416 8.0000000
single pct single parent 51 11.3254902 2.1214942 8.3999996

Variable Label Maximum
--
crime violent crime rate 2922.00
murder murder rate 78.5000000
pctmetro pct metropolitan 100.0000000
pctwhite pct white 98.5000000
pcths pct hs graduates 86.5999985
poverty pct poverty 26.3999996
single pct single parent 22.1000004
--

Let's say that we want to predict crime by pctmetro, poverty, and single. That is to say, we want to
build a linear regression model between the response variable crime and the independent variables
pctmetro, poverty and single. We will first look at the scatter plots of crime against each of the
predictor variables before the regression analysis so we will have some ideas about potential problems.
We can create a scatterplot matrix of these variables as shown below.

proc insight data="c:\sasreg\crime";
 scatter crime pctmetro poverty single*
 crime pctmetro poverty single;
run;
quit;

 163

The graphs of crime with other variables show some potential problems. In every plot, we see a data
point that is far away from the rest of the data points. Let's make individual graphs of crime with
pctmetro and poverty and single so we can get a better view of these scatterplots. We will add the
pointlabel = ("#state") option in the symbol statement to plot the state name instead of a point.

goptions reset=all;
axis1 label=(r=0 a=90);
symbol1 pointlabel = ("#state") font=simplex value=none;
proc gplot data="c:\sasreg\crime";
 plot crime*pctmetro=1 / vaxis=axis1;
run;
quit;

 164

proc gplot data="c:\sasreg\crime";
 plot crime*poverty=1 / vaxis=axis1;
run;
quit;

 165

proc gplot data="c:\sasreg\crime";
 plot crime*single=1 / vaxis=axis1;
run;
quit;

 166

All the scatter plots suggest that the observation for state = dc is a point that requires extra attention
since it stands out away from all of the other points. We will keep it in mind when we do our regression
analysis.

Now let's try the regression command predicting crime from pctmetro, poverty and single. We will
go step-by-step to identify all the potentially unusual or influential points afterwards. We will output
several statistics that we will need for the next few analyses to a dataset called crime1res, and we will
explain each statistic in turn. These statistics include the studentized residual (called r), leverage
(called lev), Cook's D (called cd) and DFFITS (called dffit). We are requesting all of these statistics
now so that they can be placed in a single dataset that we will use for the next several
examples. Otherwise, we could have to rerun the proc reg each time we wanted a new statistic and
save that statistic to another output data file.

proc reg data="c:\sasreg\crime";
 model crime=pctmetro poverty single;
 output out=crime1res(keep=sid state crime pctmetro poverty single
 r lev cd dffit)
 rstudent=r h=lev cookd=cd dffits=dffit;
run;
quit;

The REG Procedure
Model: MODEL1
Dependent Variable: crime violent crime rate

 Analysis of Variance

 167

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 8170480 2723493 82.16 <.0001
Error 47 1557995 33149
Corrected Total 50 9728475

Root MSE 182.06817 R-Square 0.8399
Dependent Mean 612.84314 Adj R-Sq 0.8296
Coeff Var 29.70877

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 -1666.43589 147.85195 -11.27 <.0001
pctmetro pct metropolitan 1 7.82893 1.25470 6.24 <.0001
poverty pct poverty 1 17.68024 6.94093 2.55 0.0142
single pct single parent 1 132.40805 15.50322 8.54 <.0001

Let's examine the studentized residuals as a first means for identifying outliers. We requested the
studentized residuals in the above regression in the output statement and named them r. We can choose
any name we like as long as it is a legal SAS variable name. Studentized residuals are a type of
standardized residual that can be used to identify outliers. Let's examine the residuals with a stem and
leaf plot. We see three residuals that stick out, -3.57, 2.62 and 3.77.

proc univariate data=crime1res plots plotsize=30;
 var r;
run;
The UNIVARIATE Procedure
Variable: r (Studentized Residual without Current Obs)

 Moments

N 51 Sum Weights 51
Mean 0.0184024 Sum Observations 0.93852247
Std Deviation 1.1331258 Variance 1.28397408
Skewness 0.2243412 Kurtosis 3.05611851
Uncorrected SS 64.215975 Corrected SS 64.198704
Coeff Variation 6157.48877 Std Error Mean 0.15866935

 Basic Statistical Measures

 Location Variability

Mean 0.018402 Std Deviation 1.13313
Median 0.052616 Variance 1.28397
Mode . Range 7.33664
 Interquartile Range 1.19867

 Tests for Location: Mu0=0

Test -Statistic- -----p Value------

Student's t t 0.11598 Pr > |t| 0.9081

 168

Sign M 0.5 Pr >= |M| 1.0000
Signed Rank S -1 Pr >= |S| 0.9926

Quantiles (Definition 5)

Quantile Estimate

100% Max 3.7658467
99% 3.7658467
95% 1.5896441
90% 1.0767182
75% Q3 0.6374511
50% Median 0.0526162
25% Q1 -0.5612179
10% -1.1293398
5% -1.6855980
1% -3.5707892
0% Min -3.5707892

 Extreme Observations

------Lowest----- -----Highest-----

 Value Obs Value Obs

-3.57079 25 1.15170 14
-1.83858 18 1.29348 13
-1.68560 39 1.58964 12
-1.30392 47 2.61952 9
-1.14833 35 3.76585 51

 Stem Leaf # Boxplot
 3 8 1 0
 3
 2 6 1 0
 2
 1 6 1 |
 1 000123 6 |
 0 5566788 7 +-----+
 0 1111333344 10 *--+--*
 -0 4433210 7 | |
 -0 9976655555 10 +-----+
 -1 31100 5 |
 -1 87 2 |
 -2
 -2
 -3
 -3 6 1 0
 ----+----+----+----+

 Normal Probability Plot
 3.75+ *
 |
 | * ++++
 2.25+ ++++
 | ++*+
 | +**** *
 0.75+ +****
 | *******

 169

 | ******
 -0.75+ *****+
 | * ****+
 | * +*++
 -2.25+ +++++
 |+++
 |
 -3.75+ *
 +----+----+----+----+----+----+----+----+----+----+
 -2 -1 0 +1 +2

The stem and leaf display helps us see some potential outliers, but we cannot see which state (which
observations) are potential outliers. Let's sort the data on the residuals and show the 10 largest and 10
smallest residuals along with the state id and state name.

proc sort data=crime1res;
 by r;
run;

proc print data=crime1res(obs=10);
run;

Obs sid state r

 1 25 ms -3.57079
 2 18 la -1.83858
 3 39 ri -1.68560
 4 47 wa -1.30392
 5 35 oh -1.14833
 6 48 wi -1.12934
 7 6 co -1.04495
 8 22 mi -1.02273
 9 4 az -0.86992
 10 44 ut -0.85205

proc print data=crime1res(firstobs=42 obs=51);
 var sid state r;
run;

Obs sid state r

 42 24 mo 0.82117
 43 20 md 1.01299
 44 29 ne 1.02887
 45 40 sc 1.03034
 46 16 ks 1.07672
 47 14 il 1.15170
 48 13 id 1.29348
 49 12 ia 1.58964
 50 9 fl 2.61952
 51 51 dc 3.76585

We should pay attention to studentized residuals that exceed +2 or -2, and get even more concerned
about residuals that exceed +2.5 or -2.5 and even yet more concerned about residuals that exceed +3 or -
3. These results show that DC and MS are the most worrisome observations, followed by FL.

Let's show all of the variables in our regression where the studentized residual exceeds +2 or -2, i.e.,
where the absolute value of the residual exceeds 2. We see the data for the three potential outliers we
identified, namely Florida, Mississippi and Washington D.C. Looking carefully at these three

 170

observations, we couldn't find any data entry errors, though we may want to do another regression
analysis with the extreme point such as DC deleted. We will return to this issue later.

proc print data=crime1res;
 var r crime pctmetro poverty single;
 where abs(r)>2;
run;

Obs r crime pctmetro poverty single

 1 -3.57079 434 30.700 24.7000 14.7000
 50 2.61952 1206 93.000 17.8000 10.6000
 51 3.76585 2922 100.000 26.4000 22.1000

Now let's look at the leverage's to identify observations that will have potential great influence on
regression coefficient estimates.

proc univariate data=crime1res plots plotsize=30;
 var lev;
run;

The UNIVARIATE Procedure
Variable: lev (Leverage)

 Moments

N 51 Sum Weights 51
Mean 0.07843137 Sum Observations 4
Std Deviation 0.0802847 Variance 0.00644563
Skewness 4.16424136 Kurtosis 21.514892
Uncorrected SS 0.63600716 Corrected SS 0.32228167
Coeff Variation 102.362995 Std Error Mean 0.01124211

 Basic Statistical Measures

 Location Variability

Mean 0.078431 Std Deviation 0.08028
Median 0.061847 Variance 0.00645
Mode . Range 0.51632
 Interquartile Range 0.04766

 Tests for Location: Mu0=0

Test -Statistic- -----p Value------

Student's t t 6.976572 Pr > |t| <.0001
Sign M 25.5 Pr >= |M| <.0001
Signed Rank S 663 Pr >= |S| <.0001

Quantiles (Definition 5)

Quantile Estimate

100% Max 0.5363830
99% 0.5363830
95% 0.1910120
90% 0.1362576
75% Q3 0.0851089
50% Median 0.0618474

 171

25% Q1 0.0374442
10% 0.0292452
5% 0.0242659
1% 0.0200613
0% Min 0.0200613

 Extreme Observations

-------Lowest------ ------Highest-----

 Value Obs Value Obs

 0.0200613 38 0.165277 2
 0.0241210 6 0.180201 15
 0.0242659 22 0.191012 1
 0.0276638 17 0.260676 32
 0.0287552 5 0.536383 51

 Stem Leaf # Boxplot
 52 6 1 *
 50
 48
 46
 44
 42
 40
 38
 36
 34
 32
 30
 28
 26 1 1 *
 24
 22
 20
 18 01 2 0
 16 5 1 0
 14
 12 6 1 |
 10 02 2 |
 8 2355515 7 +-----+
 6 0123344722366 13 *--+--*
 4 35567907 8 | |
 2 044899112245789 15 +-----+
 ----+----+----+----+
 Multiply Stem.Leaf by 10**-2

 Normal Probability Plot
 0.53+ *
 |
 |
 |
 |
 0.43+
 |
 |
 |
 |

 172

 0.33+
 |
 |
 | * +++
 | ++
 0.23+ +++
 | ++
 | ++**
 | ++*
 | +++
 0.13+ ++ *
 | +++ *
 | ++ *****
 | +*******
 | *****
 0.03+ * * ** ********+
 +----+----+----+----+----+----+----+----+----+----+
 -2 -1 0 +1 +2

proc sort data=crime1res;
 by lev;
run;

proc print data=crime1res (firstobs=42 obs=51);
 var lev state;
run;

Obs lev state

 42 0.09114 ky
 43 0.09478 nj
 44 0.09983 mt
 45 0.10220 fl
 46 0.13626 vt
 47 0.16528 la
 48 0.18020 wv
 49 0.19101 ms
 50 0.26068 ak
 51 0.53638 dc

Generally, a point with leverage greater than (2k+2)/n should be carefully examined, were k is the
number of predictors and n is the number of observations. In our example this works out to (2*3+2)/51
= .15686275, so we can do the following.

proc print data=crime1res;
 var crime pctmetro poverty single state;
 where lev > .156;
run;

Obs crime pctmetro poverty single state

 47 1062 75.000 26.4000 14.9000 la
 48 208 41.800 22.2000 9.4000 wv
 49 434 30.700 24.7000 14.7000 ms
 50 761 41.800 9.1000 14.3000 ak
 51 2922 100.000 26.4000 22.1000 dc

As we have seen, DC is an observation that both has a large residual and large leverage. Such points
are potentially the most influential. We can make a plot that shows the leverage by the residual squared
and look for observations that are jointly high on both of these measures. We can do this using a

 173

leverage versus residual-squared plot. Using residual squared instead of residual itself, the graph is
restricted to the first quadrant and the relative positions of data points are preserved. This is a quick way
of checking potential influential observations and outliers at the same time. Both types of points are of
great concern for us.

proc sql;
 create table crimeres5 as
 select *, r**2/sum(r) as rsquared
 from crime1res;
quit;

goptions reset=all;
axis1 label=(r=0 a=90);
symbol1 pointlabel = ("#state") font=simplex value=none;
proc gplot data=crimeres5;
 plot lev*rsquared / vaxis=axis1;
run;
quit;

The point for DC catches our attention having both the highest residual squared and highest leverage,
suggesting it could be very influential. The point for MS has almost as large a residual squared, but does
not have the same leverage. We'll look at those observations more carefully by listing them below.

proc print data="c:\sasreg\crime";
 where state="dc" or state="ms";
 var state crime pctmetro poverty single;
run;

Obs state crime pctmetro poverty single

 174

 25 ms 434 30.700 24.7000 14.7000
 51 dc 2922 100.000 26.4000 22.1000

Now let's move on to overall measures of influence. Specifically, let's look at Cook's D and
DFITS. These measures both combine information on the residual and leverage. Cook's D and DFITS
are very similar except that they scale differently, but they give us similar answers.

The lowest value that Cook's D can assume is zero, and the higher the Cook's D is, the more influential
the point is. The conventional cut-off point is 4/n. We can list any observation above the cut-off point
by doing the following. We do see that the Cook's D for DC is by far the largest.

proc print data=crime1res;
 where cd > (4/51);
 var crime pctmetro poverty single state cd;
run;

Obs crime pctmetro poverty single state cd

 45 1206 93.000 17.8000 10.6000 fl 0.17363
 47 1062 75.000 26.4000 14.9000 la 0.15926
 49 434 30.700 24.7000 14.7000 ms 0.60211
 51 2922 100.000 26.4000 22.1000 dc 3.20343

Now let's take a look at DFITS. The conventional cut-off point for DFITS is 2*sqrt(k/n). DFITS can be
either positive or negative, with numbers close to zero corresponding to the points with small or zero
influence. As we see, DFITS also indicates that DC is, by far, the most influential observation.

proc print data=crime1res;
 where abs(dffit)> (2*sqrt(3/51));
 var crime pctmetro poverty single state dffit;
run;

Obs crime pctmetro poverty single state dffit

 45 1206 93.000 17.8000 10.6000 fl 0.88382
 47 1062 75.000 26.4000 14.9000 la -0.81812
 49 434 30.700 24.7000 14.7000 ms -1.73510
 51 2922 100.000 26.4000 22.1000 dc 4.05061

The above measures are general measures of influence. You can also consider more specific measures
of influence that assess how each coefficient is changed by deleting the observation. This measure is
called DFBETA and is created for each of the predictors. Apparently this is more computationally
intensive than summary statistics such as Cook's D because the more predictors a model has, the more
computation it may involve. We can restrict our attention to only those predictors that we are most
concerned with and to see how well behaved those predictors are. In SAS, we need to use the ods
output OutStatistics statement to produce the DFBETAs for each of the predictors. The names for the
new variables created are chosen by SAS automatically and begin with DFB_.

proc reg data="c:\sasreg\crime";
 model crime=pctmetro poverty single / influence;
 ods output OutputStatistics=crimedfbetas;
 id state;
run;
quit;
< output omitted >

 175

This created three variables, DFB_pctmetro, DFB_poverty and DFB_single. Let's look at the first 5
values.

proc print data=crimedfbetas (obs=5);
 var state DFB_pctmetro DFB_poverty DFB_single;
run;
 DFB_ DFB_ DFB_
Obs state pctmetro poverty single

 1 ak -0.1062 -0.1313 0.1452
 2 al 0.0124 0.0553 -0.0275
 3 ar -0.0687 0.1753 -0.1053
 4 az -0.0948 -0.0309 0.0012
 5 ca 0.0126 0.0088 -0.0036

The value for DFB_single for Alaska is 0.14, which means that by being included in the analysis (as
compared to being excluded), Alaska increases the the coefficient for single by 0.14 standard errors, i.e.,
0.14 times the standard error for BSingle or by (0.14 * 15.5). Because the inclusion of an observation
could either contribute to an increase or decrease in a regression coefficient, DFBETAs can be either
positive or negative. A DFBETA value in excess of 2/sqrt(n) merits further investigation. In this
example, we would be concerned about absolute values in excess of 2/sqrt(51) or 0.28.

We can plot all three DFBETA values against the state id in one graph shown below. We add a line at
0.28 and -0.28 to help us see potentially troublesome observations. We see the largest value is about
3.0 for DFsingle.

data crimedfbetas1;
 set crimedfbetas;
 rename HatDiagonal=lev;
run;

proc sort data=crimedfbetas1;
 by lev;

proc sort data=crime1res;
 by lev;
run;

data crimedfbetas2;
 merge crime1res crimedfbetas1;
 by lev;
run;

goptions reset=all;
symbol1 v=circle c=red;
symbol2 v=plus c=green;
symbol3 v=star c=blue;
axis1 order=(1 51);
axis2 order=(-1 to 3.5 by .5);
proc gplot data=crimedfbetas2;
 plot DFB_pctmetro*sid=1 DFB_poverty*sid=2 DFB_single*sid=3
 / overlay haxis=axis1 vaxis=axis2 vref=-.28 .28;
run;
quit;

 176

We can repeat this graph with the pointlabel = ("#state") option on the symbol1 statement to label the
points. With the graph above we can identify which DFBeta is a problem, and with the graph below we
can associate that observation with the state that it originates from.

goptions reset=all;
axis1 label=(r=0 a=90);
symbol1 pointlabel = ("#state") font=simplex value=none;
proc gplot data=crimedfbetas2;
 plot DFB_pctmetro*sid=1 DFB_poverty*sid=2 DFB_single*sid=3
 / overlay vaxis=axis1 vref=-.28 .28;
run;
quit;

 177

Now let's list those observations with DFB_single larger than the cut-off value. Again, we see that DC
is the most problematic observation.

proc print data=crimedfbetas2;
 where abs(DFB_single) > 2/sqrt(51);
 var DFB_single state crime pctmetro poverty single;
run;

 DFB_
Obs single state crime pctmetro poverty single

 45 -0.5606 fl 1206 93.000 17.8000 10.6000
 49 -0.5680 ms 434 30.700 24.7000 14.7000
 51 3.1391 dc 2922 100.000 26.4000 22.1000

The following table summarizes the general rules of thumb we use for these measures to identify
observations worthy of further investigation (where k is the number of predictors and n is the number of
observations).

Measure Value
leverage >(2k+2)/n
abs(rstu) > 2
Cook's D > 4/n
abs(DFITS) > 2*sqrt(k/n)

 178

abs(DFBETA) > 2/sqrt(n)

Washington D.C. has appeared as an outlier as well as an influential point in every analysis. Because
Washington D.C. is really not a state, we can use this to justify omitting it from the analysis, saying that
we really wish to just analyze states. First, let's repeat our analysis including DC.

proc reg data="c:\sasreg\crime";
 model crime=pctmetro poverty single;
run;
quit;

The REG Procedure
Model: MODEL1
Dependent Variable: crime violent crime rate

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 8170480 2723493 82.16 <.0001
Error 47 1557995 33149
Corrected Total 50 9728475

Root MSE 182.06817 R-Square 0.8399
Dependent Mean 612.84314 Adj R-Sq 0.8296
Coeff Var 29.70877

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 -1666.43589 147.85195 -11.27 <.0001
pctmetro pct metropolitan 1 7.82893 1.25470 6.24 <.0001
poverty pct poverty 1 17.68024 6.94093 2.55 0.0142
single pct single parent 1 132.40805 15.50322 8.54 <.0001

Now, let's run the analysis omitting DC by including a where statement (here ne stands for "not equal
to" but you could also use ~= to mean the same thing). As we expect, deleting DC made a large change
in the coefficient for single. The coefficient for single dropped from 132.4 to 89.4. After having
deleted DC, we would repeat the process we have illustrated in this section to search for any other
outlying and influential observations.

proc reg data="c:\sasreg\crime";
 model crime=pctmetro poverty single;
 where state ne "dc";
run;
quit;
The REG Procedure
Model: MODEL1
Dependent Variable: crime violent crime rate

 Analysis of Variance

 179

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 3098767 1032922 39.90 <.0001
Error 46 1190858 25888
Corrected Total 49 4289625

Root MSE 160.89817 R-Square 0.7224
Dependent Mean 566.66000 Adj R-Sq 0.7043
Coeff Var 28.39413

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 -1197.53807 180.48740 -6.64 <.0001
pctmetro pct metropolitan 1 7.71233 1.10924 6.95 <.0001
poverty pct poverty 1 18.28265 6.13596 2.98 0.0046
single pct single parent 1 89.40078 17.83621 5.01 <.0001

Summary

In this section, we explored a number of methods of identifying outliers and influential points. In a
typical analysis, you would probably use only some of these methods. Generally speaking, there are two
types of methods for assessing outliers: statistics such as residuals, leverage, Cook's D and DFITS, that
assess the overall impact of an observation on the regression results, and statistics such as DFBETA that
assess the specific impact of an observation on the regression coefficients.

In our example, we found that DC was a point of major concern. We performed a regression with it and
without it and the regression equations were very different. We can justify removing it from our
analysis by reasoning that our model is to predict crime rate for states, not for metropolitan areas.

2.2 Tests for Normality of Residuals

One of the assumptions of linear regression analysis is that the residuals are normally distributed. This
assumption assures that the p-values for the t-tests will be valid. As before, we will generate the
residuals (called r) and predicted values (called fv) and put them in a dataset (called elem1res). We
will also keep the variables api00, meals, ell and emer in that dataset.

Let's use the elemapi2 data file we saw in Chapter 1 for these analyses. Let's predict academic
performance (api00) from percent receiving free meals (meals), percent of English language learners
(ell), and percent of teachers with emergency credentials (emer).

proc reg data="c:\sasreg\elemapi2";
 model api00=meals ell emer;
 output out=elem1res (keep= api00 meals ell emer r fv) residual=r
predicted=fv;
run;
quit;

 Analysis of Variance

 Sum of Mean

 180

Source DF Squares Square F Value Pr > F

Model 3 6749783 2249928 673.00 <.0001
Error 396 1323889 3343.15467
Corrected Total 399 8073672

Root MSE 57.82002 R-Square 0.8360
Dependent Mean 647.62250 Adj R-Sq 0.8348
Coeff Var 8.92804

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value

Intercept Intercept 1 886.70326 6.25976 141.65
meals pct free meals 1 -3.15919 0.14974 -21.10
ell english language learners 1 -0.90987 0.18464 -4.93
emer pct emer credential 1 -1.57350 0.29311 -5.37

 Parameter Estimates

Variable Label DF Pr > |t|

Intercept Intercept 1 <.0001
meals pct free meals 1 <.0001
ell english language learners 1 <.0001
emer pct emer credential 1 <.0001

Below we use proc kde to produce a kernel density plot. kde stands for kernel density estimate. It can
be thought as a histogram with narrow bins and a moving average.

proc kde data=elem1res out=den;
 var r;
run;

proc sort data=den;
 by r;
run;

goptions reset=all;
symbol1 c=blue i=join v=none height=1;
proc gplot data=den;
 plot density*r=1;
run;
quit;

 181

Proc univariate will produce a normal quantile graph. qqplot plots the quantiles of a variable against the
quantiles of a normal distribution. qqplotis most sensitive to non-normality near two tails. and probplot
As you see below, the qqplot command shows a slight deviation from normal at the upper tail, as can
be seen in the kde above. We can accept that the residuals are close to a normal distribution.

goptions reset=all;
proc univariate data=elem1res normal;
 var r;
 qqplot r / normal(mu=est sigma=est);
run;

The UNIVARIATE Procedure
Variable: r (Residual)

 Moments

N 400 Sum Weights 400
Mean 0 Sum Observations 0
Std Deviation 57.602241 Variance 3318.01817
Skewness 0.17092898 Kurtosis 0.13532745
Uncorrected SS 1323889.25 Corrected SS 1323889.25
Coeff Variation . Std Error Mean 2.88011205

 Basic Statistical Measures

 Location Variability

Mean 0.00000 Std Deviation 57.60224
Median -3.65729 Variance 3318

 182

Mode . Range 363.95555
 Interquartile Range 76.47440

 Tests for Location: Mu0=0

Test -Statistic- -----p Value------

Student's t t 0 Pr > |t| 1.0000
Sign M -10 Pr >= |M| 0.3421
Signed Rank S -631 Pr >= |S| 0.7855

 Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.996406 Pr < W 0.5101
Kolmogorov-Smirnov D 0.032676 Pr > D >0.1500
Cramer-von Mises W-Sq 0.049036 Pr > W-Sq >0.2500
Anderson-Darling A-Sq 0.340712 Pr > A-Sq >0.2500

Quantiles (Definition 5)

Quantile Estimate

100% Max 178.48224
99% 153.32833
95% 95.19177
90% 72.60901
75% Q3 36.50031
50% Median -3.65729
25% Q1 -39.97409
10% -72.36437
5% -89.25117
1% -129.60545
0% Min -185.47331

 Extreme Observations

------Lowest----- -----Highest-----

 Value Obs Value Obs

-185.473 226 151.684 228
-146.908 346 154.972 327
-145.515 234 161.737 188
-133.233 227 167.168 271
-125.978 259 178.482 93

 183

Severe outliers consist of those points that are either 3 inter-quartile-ranges below the first quartile or 3
inter-quartile-ranges above the third quartile. The presence of any severe outliers should be sufficient
evidence to reject normality at a 5% significance level. Mild outliers are common in samples of any size.
In our case, we don't have any severe outliers and the distribution seems fairly symmetric. The residuals
have an approximately normal distribution. (See the output of the proc univariate above.)

In the Shapiro-Wilk W test for normality, the p-value is based on the assumption that the distribution is
normal. In our example, the p-value is very large (0.51), indicating that we cannot reject that r is
normally distributed. (See the output of the proc univariate above.)

2.3 Tests for Heteroscedasticity

One of the main assumptions for the ordinary least squares regression is the homogeneity of variance of
the residuals. If the model is well-fitted, there should be no pattern to the residuals plotted against the
fitted values. If the variance of the residuals is non-constant, then the residual variance is said to be
"heteroscedastic." There are graphical and non-graphical methods for detecting heteroscedasticity. A
commonly used graphical method is to plot the residuals versus fitted (predicted) values. Below we use
a plot statement in the proc reg. The r. and p. tell SAS to calculate the residuals (r.) and predicted
values (p.) for use in the plot. We see that the pattern of the data points is getting a little narrower
towards the right end, which is an indication of mild heteroscedasticity.

proc reg data='c:\sasreg\elemapi2';
 model api00 = meals ell emer;
 plot r.*p.;
run;
quit;

 184

Now let's look at a test for heteroscedasticity, the White test. The White test tests the null hypothesis
that the variance of the residuals is homogenous. Therefore, if the p-value is very small, we would have
to reject the hypothesis and accept the alternative hypothesis that the variance is not homogenous. We
use the / spec option on the model statement to obtain the White test.

proc reg data='c:\sasreg\elemapi2';
 model api00 = meals ell emer / spec;
run;
quit;

<some output omitted to save space>

 Test of First and Second
 Moment Specification

 DF Chi-Square Pr > ChiSq

 9 22.16 0.0084

Please see http://saspdf.ats.ucla.edu/sasdoc/sashtml/stat/chap55/sect40.htm for more information on the
White test. While the White test is significant, the distribution of the residuals in the residual versus
fitted plot did not seem overly heteroscedastic.

Consider another example where we use enroll as a predictor. Recall that we found enroll to be skewed
to the right in Chapter 1. As you can see, this example shows much more serious heteroscedasticity.

http://saspdf.ats.ucla.edu/sasdoc/sashtml/stat/chap55/sect40.htm

 185

proc reg data='c:\sasreg\elemapi2';
 model api00 = enroll;
 plot r.*p.;
run;
quit;

The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 817326 817326 44.83 <.0001
Error 398 7256346 18232
Corrected Total 399 8073672

Root MSE 135.02601 R-Square 0.1012
Dependent Mean 647.62250 Adj R-Sq 0.0990
Coeff Var 20.84949

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 744.25141 15.93308 46.71 <.0001
enroll number of students 1 -0.19987 0.02985 -6.70 <.0001

 186

As we saw in Chapter 1, the variable enroll was skewed considerably to the right, and we found that by
taking a log transformation, the transformed variable was more normally distributed. Below we
transform enroll, run the regression and show the residual versus fitted plot. The distribution of the
residuals is much improved. Certainly, this is not a perfect distribution of residuals, but it is much
better than the distribution with the untransformed variable.

data elemapi3;
 set 'c:\sasreg\elemapi2';
 lenroll = log(enroll);
run;

proc reg data=elemapi3;
 model api00 = lenroll;
 plot r.*p.;
run;
quit;

The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 609460 609460 32.50 <.0001
Error 398 7464212 18754

 187

Corrected Total 399 8073672

Root MSE 136.94634 R-Square 0.0755
Dependent Mean 647.62250 Adj R-Sq 0.0732
Coeff Var 21.14601

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 1170.42896 91.96567 12.73 <.0001
lenroll 1 -85.99991 15.08605 -5.70 <.0001

Finally, let's revisit the model we used at the start of this section, predicting api00 from meals, ell and
emer. Using this model, the distribution of the residuals looked very nice and even across the fitted
values. What if we add enroll to this model? Will this automatically ruin the distribution of the
residuals? Let's add it and see.

proc reg data='c:\sasreg\elemapi2';
 model api00 = meals ell emer enroll;
 plot r.*p.;
run;
quit;

The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 188

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 4 6765344 1691336 510.63 <.0001
Error 395 1308328 3312.22265
Corrected Total 399 8073672

Root MSE 57.55191 R-Square 0.8380
Dependent Mean 647.62250 Adj R-Sq 0.8363
Coeff Var 8.88665

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value

Intercept Intercept 1 899.14659 8.47225 106.13
meals pct free meals 1 -3.22166 0.15180 -21.22
ell english language learners 1 -0.76770 0.19514 -3.93
emer pct emer credential 1 -1.41824 0.30042 -4.72
enroll number of students 1 -0.03126 0.01442 -2.17

 Parameter Estimates

Variable Label DF Pr > |t|

Intercept Intercept 1 <.0001
meals pct free meals 1 <.0001
ell english language learners 1 <.0001
emer pct emer credential 1 <.0001
enroll number of students 1 0.0308

 189

As you can see, the distribution of the residuals looks fine, even after we added the variable enroll.
When we had just the variable enroll in the model, we did a log transformation to improve the
distribution of the residuals, but when enroll was part of a model with other variables, the residuals
looked good enough so that no transformation was needed. This illustrates how the distribution of the
residuals, not the distribution of the predictor, was the guiding factor in determining whether a
transformation was needed.

2.4 Tests for Collinearity

When there is a perfect linear relationship among the predictors, the estimates for a regression model
cannot be uniquely computed. The term collinearity describes two variables are near perfect linear
combinations of one another. When more than two variables are involved, it is often called
multicollinearity, although the two terms are often used interchangeably.

The primary concern is that as the degree of multicollinearity increases, the regression model estimates
of the coefficients become unstable and the standard errors for the coefficients can get wildly inflated.
In this section, we will explore some SAS options used with the model statement that help to detect
multicollinearity.

We can use the vif option to check for multicollinearity. vif stands for variance inflation factor. As a
rule of thumb, a variable whose VIF values is greater than 10 may merit further investigation. Tolerance,
defined as 1/VIF, is used by many researchers to check on the degree of collinearity. A tolerance value
lower than 0.1 is comparable to a VIF of 10. It means that the variable could be considered as a linear

 190

combination of other independent variables. The tol option on the model statement gives us these values.
Let's first look at the regression we did from the last section, the regression model predicting api00
from meals, ell and emer, and use the vif and tol options with the model statement.

proc reg data='c:\sasreg\elemapi2';
 model api00 = meals ell emer / vif tol;
run;
quit;

The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 6749783 2249928 673.00 <.0001
Error 396 1323889 3343.15467
Corrected Total 399 8073672

Root MSE 57.82002 R-Square 0.8360
Dependent Mean 647.62250 Adj R-Sq 0.8348
Coeff Var 8.92804

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value

Intercept Intercept 1 886.70326 6.25976 141.65
meals pct free meals 1 -3.15919 0.14974 -21.10
ell english language learners 1 -0.90987 0.18464 -4.93
emer pct emer credential 1 -1.57350 0.29311 -5.37

 Parameter Estimates

 Variance
Variable Label DF Pr > |t| Tolerance Inflation

Intercept Intercept 1 <.0001 . 0
meals pct free meals 1 <.0001 0.36696 2.72506
ell english language learners 1 <.0001 0.39833 2.51051
emer pct emer credential 1 <.0001 0.70681 1.4148

The VIFs look fine here. Here is an example where the VIFs are more worrisome.

proc reg data='c:\sasreg\elemapi2';
 model api00 = acs_k3 avg_ed grad_sch col_grad some_col / vif tol;
run;
quit;

The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Analysis of Variance

 191

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 5056269 1011254 143.79 <.0001
Error 373 2623191 7032.68421
Corrected Total 378 7679460

Root MSE 83.86110 R-Square 0.6584
Dependent Mean 647.63588 Adj R-Sq 0.6538
Coeff Var 12.94880

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 -82.60913 81.84638 -1.01 0.3135
acs_k3 avg class size k-3 1 11.45725 3.27541 3.50 0.0005
avg_ed avg parent ed 1 227.26382 37.21960 6.11 <.0001
grad_sch parent grad school 1 -2.09090 1.35229 -1.55 0.1229
col_grad parent college grad 1 -2.96783 1.01781 -2.92 0.0038
some_col parent some college 1 -0.76045 0.81097 -0.94 0.3490

 Parameter Estimates

 Variance
Variable Label DF Tolerance Inflation

Intercept Intercept 1 . 0
acs_k3 avg class size k-3 1 0.97187 1.02895
avg_ed avg parent ed 1 0.02295 43.57033
grad_sch parent grad school 1 0.06727 14.86459
col_grad parent college grad 1 0.06766 14.77884
some_col parent some college 1 0.24599 4.06515

In this example, the VIF and tolerance (1/VIF) values for avg_ed grad_sch and col_grad are
worrisome. All of these variables measure education of the parents and the very high VIF values
indicate that these variables are possibly redundant. For example, after you know grad_sch and
col_grad, you probably can predict avg_ed very well. In this example, multicollinearity arises because
we have put in too many variables that measure the same thing: parent education.

Let's omit one of the parent education variables, avg_ed. Note that the VIF values in the analysis below
appear much better. Also, note how the standard errors are reduced for the parent education variables,
grad_sch and col_grad. This is because the high degree of collinearity caused the standard errors to be
inflated. With the multicollinearity eliminated, the coefficient for grad_sch, which had been non-
significant, is now significant.

proc reg data='c:\sasreg\elemapi2';
 model api00 =acs_k3 grad_sch col_grad some_col / vif tol;
run;
quit;

The REG Procedure
Model: MODEL1

 192

Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 4 4180144 1045036 107.12 <.0001
Error 393 3834063 9755.88497
Corrected Total 397 8014207

Root MSE 98.77188 R-Square 0.5216
Dependent Mean 648.46985 Adj R-Sq 0.5167
Coeff Var 15.23153

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 283.74462 70.32475 4.03 <.0001
acs_k3 avg class size k-3 1 11.71260 3.66487 3.20 0.0015
grad_sch parent grad school 1 5.63476 0.45820 12.30 <.0001
col_grad parent college grad 1 2.47992 0.33955 7.30 <.0001
some_col parent some college 1 2.15827 0.44388 4.86 <.0001

 Parameter Estimates

 Variance
Variable Label DF Tolerance Inflation

Intercept Intercept 1 . 0
acs_k3 avg class size k-3 1 0.97667 1.02389
grad_sch parent grad school 1 0.79213 1.26242
col_grad parent college grad 1 0.78273 1.27759
some_col parent some college 1 0.96670 1.03445

Let's introduce another option regarding collinearity. The collinoint option displays several different
measures of collinearity. For example, we can test for collinearity among the variables we used in the
two examples above. Note that if you use the collin option, the intercept will be included in the
calculation of the collinearity statistics, which is not usually what you want. The collinoint option
excludes the intercept from those calculations, but it is still included in the calculation of the regression.

proc reg data='c:\sasreg\elemapi2';
 model api00 = acs_k3 avg_ed grad_sch col_grad some_col / vif tol collinoint;
run;
quit;

The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

 193

Model 5 5056269 1011254 143.79 <.0001
Error 373 2623191 7032.68421
Corrected Total 378 7679460

Root MSE 83.86110 R-Square 0.6584
Dependent Mean 647.63588 Adj R-Sq 0.6538
Coeff Var 12.94880

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 -82.60913 81.84638 -1.01 0.3135
acs_k3 avg class size k-3 1 11.45725 3.27541 3.50 0.0005
avg_ed avg parent ed 1 227.26382 37.21960 6.11 <.0001
grad_sch parent grad school 1 -2.09090 1.35229 -1.55 0.1229
col_grad parent college grad 1 -2.96783 1.01781 -2.92 0.0038
some_col parent some college 1 -0.76045 0.81097 -0.94 0.3490

 Parameter Estimates

 Variance
Variable Label DF Tolerance Inflation

Intercept Intercept 1 . 0
acs_k3 avg class size k-3 1 0.97187 1.02895
avg_ed avg parent ed 1 0.02295 43.57033
grad_sch parent grad school 1 0.06727 14.86459
col_grad parent college grad 1 0.06766 14.77884
some_col parent some college 1 0.24599 4.06515

 Collinearity Diagnostics(intercept
 adjusted)

 Condition
 Number Eigenvalue Index

 1 2.41355 1.00000
 2 1.09168 1.48690
 3 0.92607 1.61438
 4 0.55522 2.08495
 5 0.01350 13.37294

 Collinearity Diagnostics(intercept adjusted)

 ----------------------Proportion of Variation----------------------
 Number acs_k3 avg_ed grad_sch col_grad some_col

 1 0.00271 0.00389 0.00770 0.00783 0.00292
 2 0.43827 6.909873E-8 0.00072293 0.00283 0.10146
 3 0.47595 0.00012071 0.00517 0.00032642 0.12377
 4 0.08308 0.00001556 0.05501 0.05911 0.00583
 5 1.900448E-7 0.99597 0.93140 0.92990 0.76603

We now remove avg_ed and see the collinearity diagnostics improve considerably.

proc reg data='c:\sasreg\elemapi2';
 model api00 = acs_k3 grad_sch col_grad some_col / vif tol collinoint;

 194

run;
quit;

The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 4 4180144 1045036 107.12 <.0001
Error 393 3834063 9755.88497
Corrected Total 397 8014207

Root MSE 98.77188 R-Square 0.5216
Dependent Mean 648.46985 Adj R-Sq 0.5167
Coeff Var 15.23153

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 283.74462 70.32475 4.03 <.0001
acs_k3 avg class size k-3 1 11.71260 3.66487 3.20 0.0015
grad_sch parent grad school 1 5.63476 0.45820 12.30 <.0001
col_grad parent college grad 1 2.47992 0.33955 7.30 <.0001
some_col parent some college 1 2.15827 0.44388 4.86 <.0001

 Parameter Estimates

 Variance
Variable Label DF Tolerance Inflation

Intercept Intercept 1 . 0
acs_k3 avg class size k-3 1 0.97667 1.02389
grad_sch parent grad school 1 0.79213 1.26242
col_grad parent college grad 1 0.78273 1.27759
some_col parent some college 1 0.96670 1.03445

 Collinearity Diagnostics(intercept
 adjusted)

 Condition
 Number Eigenvalue Index

 1 1.50947 1.00000
 2 1.04069 1.20435
 3 0.92028 1.28071
 4 0.52957 1.68830

 Collinearity Diagnostics(intercept adjusted)

 -----------------Proportion of Variation----------------
 Number acs_k3 grad_sch col_grad some_col

 195

 1 0.01697 0.22473 0.22822 0.06751
 2 0.62079 0.02055 0.05660 0.21947
 3 0.28967 0.08150 0.00153 0.66238
 4 0.07258 0.67322 0.71365 0.05064

The condition number is a commonly used index of the global instability of the regression coefficients -
- a large condition number, 10 or more, is an indication of instability.

 2.5 Tests on Nonlinearity

When we do linear regression, we assume that the relationship between the response variable and the
predictors is linear. This is the assumption of linearity. If this assumption is violated, the linear
regression will try to fit a straight line to data that does not follow a straight line. Checking the linear
assumption in the case of simple regression is straightforward, since we only have one predictor. All we
have to do is a scatter plot between the response variable and the predictor to see if nonlinearity is
present, such as a curved band or a big wave-shaped curve. For example, let us use a data file called
nations.sav that has data about a number of nations around the world. Below we look at the proc
contents for this file to see the variables in the file (Note that the position option tells SAS to list the
variables in the order that they are in the data file.)

proc contents data='c:\sasreg\nations' position;
run;
The CONTENTS Procedure

Data Set Name: c:\sasreg\nations Observations: 109
Member Type: DATA Variables: 15
Engine: V8 Indexes: 0
Created: 4:59 Saturday, January 9, 1960 Observation Length: 65
Last Modified: 4:59 Saturday, January 9, 1960 Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:
 -----Engine/Host Dependent Information-----

Data Set Page Size: 8192
Number of Data Set Pages: 2
First Data Page: 1
Max Obs per Page: 125
Obs in First Data Page: 80
Number of Data Set Repairs: 0
File Name: c:\sasreg\nations.sas7bdat
Release Created: 7.0000M0
Host Created: WIN_NT

 -----Alphabetic List of Variables and Attributes-----

 # Variable Type Len Pos Label

 3 birth Num 3 8 Crude birth rate/1000 people
 5 chldmort Num 3 14 Child (1-4 yr) mortality 1985
 1 country Char 8 57 Country
 4 death Num 3 11 Crude death rate/1000 people
 9 energy Num 4 28 Per cap energy consumed, kg oil
 8 food Num 4 24 Per capita daily calories 1985
10 gnpcap Num 4 32 Per capita GNP 1985

 196

11 gnpgro Num 8 36 Annual GNP growth % 65-85
 6 infmort Num 4 17 Infant (<1 yr) mortality 1985
 7 life Num 3 21 Life expectancy at birth 1985
 2 pop Num 8 0 1985 population in millions
13 school1 Num 4 47 Primary enrollment % age-group
14 school2 Num 3 51 Secondary enroll % age-group
15 school3 Num 3 54 Higher ed. enroll % age-group
12 urban Num 3 44 % population urban 1985

 -----Variables Ordered by Position-----

 # Variable Type Len Pos Label

 1 country Char 8 57 Country
 2 pop Num 8 0 1985 population in millions
 3 birth Num 3 8 Crude birth rate/1000 people
 4 death Num 3 11 Crude death rate/1000 people
 5 chldmort Num 3 14 Child (1-4 yr) mortality 1985
 6 infmort Num 4 17 Infant (<1 yr) mortality 1985
 7 life Num 3 21 Life expectancy at birth 1985
 8 food Num 4 24 Per capita daily calories 1985
 9 energy Num 4 28 Per cap energy consumed, kg oil
10 gnpcap Num 4 32 Per capita GNP 1985
11 gnpgro Num 8 36 Annual GNP growth % 65-85
12 urban Num 3 44 % population urban 1985
13 school1 Num 4 47 Primary enrollment % age-group
14 school2 Num 3 51 Secondary enroll % age-group
15 school3 Num 3 54 Higher ed. enroll % age-group

Let's look at the relationship between GNP per capita (gnpcap) and births (birth). Below if we look at
the scatterplot between gnpcap and birth, we can see that the relationship between these two variables
is quite non-linear. We added a regression line to the chart, and you can see how poorly the line fits this
data. Also, if we look at the residuals by predicted plot, we see that the residuals are not nearly
homoscedastic, due to the non-linearity in the relationship between gnpcap and birth.

proc reg data='c:\sasreg\nations';
 model birth = gnpcap;
 plot rstudent.*p. / noline;
 plot birth*gnpcap;
run;
quit;
The REG Procedure
Model: MODEL1
Dependent Variable: birth Crude birth rate/1000 people

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 7873.99472 7873.99472 69.05 <.0001
Error 107 12202 114.03880
Corrected Total 108 20076

Root MSE 10.67890 R-Square 0.3922
Dependent Mean 32.78899 Adj R-Sq 0.3865
Coeff Var 32.56854

 197

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value

Intercept Intercept 1 38.92418 1.26150 30.86
gnpcap Per capita GNP 1985 1 -0.00192 0.00023124 -8.31

 Parameter Estimates

Variable Label DF Pr > |t|

Intercept Intercept 1 <.0001
gnpcap Per capita GNP 1985 1 <.0001

 198

Now we are going to modify the above scatterplot by adding a lowess (also called "loess") smoothing
line. By default, SAS will make four graphs, one for smoothing of 0.1, 0.2, 0.3 and 0.4. We show only
the graph with the 0.4 smooth.

proc loess data='c:\sasreg\nations';
 model birth = gnpcap / smooth=0.1 0.2 0.3 0.4;
 ods output OutputStatistics=Results;
run;

proc sort data=results;
 by SmoothingParameter gnpcap;
run;

goptions reset=all;
symbol1 v=dot i=none c=black;
symbol2 v=none i=join c=blue;
symbol3 v=none i=r c=red;
proc gplot data=results;
 by SmoothingParameter;
 plot DepVar*gnpcap=1 pred*gnpcap=2 DepVar*gnpcap=3 / overlay;
run;
quit;
The LOESS Procedure

 Independent Variable Scaling

 Scaling applied: None

 199

 Per capita
Statistic GNP 1985

Minimum Value 110.00000
Maximum Value 19270

< some output omitted >

The LOESS Procedure
Smoothing Parameter: 0.4
Dependent Variable: api00

 Fit Summary

Fit Method Interpolation
Number of Observations 400
Number of Fitting Points 17
kd Tree Bucket Size 32
Degree of Local Polynomials 1
Smoothing Parameter 0.40000
Points in Local Neighborhood 160
Residual Sum of Squares 6986406

The lowess line fits much better than the OLS linear regression. In trying to see how to remedy these,
we notice that the gnpcap scores are quite skewed with most values being near 0, and a handful of
values of 10,000 and higher. This suggests to us that some transformation of the variable may be useful.

 200

One of the commonly used transformations is a log transformation. Let's try it below. As you see, the
scatterplot between lgnpcap and birth looks much better with the regression line going through the
heart of the data. Also, the plot of the residuals by predicted values look much more reasonable.

data nations1;
 set 'c:\sasreg\nations';
 lgnpcap = log(gnpcap);
run;

proc reg data=nations1;
 model birth = lgnpcap;
 plot rstudent.*p. noline;
 plot birth*lgnpcap;
run;
quit;
The REG Procedure
Model: MODEL1
Dependent Variable: birth Crude birth rate/1000 people

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 11469 11469 142.58 <.0001
Error 107 8606.89865 80.43831
Corrected Total 108 20076

Root MSE 8.96874 R-Square 0.5713
Dependent Mean 32.78899 Adj R-Sq 0.5673
Coeff Var 27.35290

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value

Intercept Intercept 1 84.27726 4.39668 19.17
lgnpcap 1 -7.23847 0.60619 -11.94

 Parameter Estimates

Variable Label DF Pr > |t|

Intercept Intercept 1 <.0001
lgnpcap 1 <.000

 201

 202

This section has shown how you can use scatterplots to diagnose problems of non-linearity, both by
looking at the scatterplots of the predictor and outcome variable, as well as by examining the residuals
by predicted values. These examples have focused on simple regression; however, similar techniques
would be useful in multiple regression. However, when using multiple regression, it would be more
useful to examine partial regression plots instead of the simple scatterplots between the predictor
variables and the outcome variable.

2.6 Model Specification

A model specification error can occur when one or more relevant variables are omitted from the model
or one or more irrelevant variables are included in the model. If relevant variables are omitted from the
model, the common variance they share with included variables may be wrongly attributed to those
variables, and the error term is inflated. On the other hand, if irrelevant variables are included in the
model, the common variance they share with included variables may be wrongly attributed to them.
Model specification errors can substantially affect the estimate of regression coefficients.

Consider the model below. This regression suggests that as class size increases the academic
performance increases. Before we publish results saying that increased class size is associated with
higher academic performance, let's check the model specification.

proc reg data='c:\sasreg\elemapi2';
 model api00 = acs_k3;
 output out=res1 (keep= api00 acs_k3 fv) predicted=fv;
run;

 203

quit;
The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 234354 234354 11.93 0.0006
Error 396 7779853 19646
Corrected Total 397 8014207

Root MSE 140.16453 R-Square 0.0292
Dependent Mean 648.46985 Adj R-Sq 0.0268
Coeff Var 21.61466

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 308.33716 98.73085 3.12 0.0019
acs_k3 avg class size k-3 1 17.75148 5.13969 3.45 0.0006

There are a couple of methods to detect specification errors. A link test performs a model specification
test for single-equation models. It is based on the idea that if a regression is properly specified, one
should not be able to find any additional independent variables that are significant except by chance. To
conduct this test, you need to obtain the fitted values from your regression and the squares of those
values. The model is then refit using these two variables as predictors. The fitted value should be
significant because it is the predicted value. One the other hand, the fitted values squared shouldn't be
significant, because if our model is specified correctly, the squared predictions should not have much of
explanatory power. That is, we wouldn't expect the fitted value squared to be a significant predictor if
our model is specified correctly. So we will be looking at the p-value for the fitted value squared.

data res1sq;
 set res1;
 fv2 = fv**2;
run;

proc reg data=res1sq;
 model api00 = fv fv2;
run;
quit;

< some output omitted to save space >

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value

Intercept Intercept 1 3884.50651 2617.69642 1.48
fv Predicted Value of api00 1 -11.05014 8.10464 -1.36
fv2 1 0.00933 0.00627 1.49

 204

 Parameter Estimates

Variable Label DF Pr > |t|

Intercept Intercept 1 0.1386
fv Predicted Value of api00 1 0.1735
fv2 1 0.1376

Let's try adding one more variable, meals, to the above model and then run the link test again.

proc reg data='c:\sasreg\elemapi2';
 model api00 = acs_k3 full meals;
 output out=res2 (keep= api00 acs_k3 full fv) predicted=fv;
run;
quit;

< output omitted to save space >

data res2sq;
 set res2;
 fv2 = fv**2;
run;

proc reg data=res2sq;
 model api00 = fv fv2;
run;
quit;

< some output omitted to save space >

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value

Intercept Intercept 1 -136.51045 95.05904 -1.44
fv Predicted Value of api00 1 1.42433 0.29254 4.87
fv2 1 -0.00031721 0.00021800 -1.46

 Parameter Estimates

Variable Label DF Pr > |t|

Intercept Intercept 1 0.1518
fv Predicted Value of api00 1 <.0001
fv2 1 0.1464

The link test is once again non-significant. Note that after including meals and full, the coefficient for
class size is no longer significant. While acs_k3 does have a positive relationship with api00 when no
other variables are in the model, when we include, and hence control for, other important variables,
acs_k3 is no longer significantly related to api00 and its relationship to api00 is no longer positive.

2.7 Issues of Independence

The statement of this assumption is that the errors associated with one observation are not correlated
with the errors of any other observation cover several different situations. Consider the case of

 205

collecting data from students in eight different elementary schools. It is likely that the students within
each school will tend to be more like one another that students from different schools, that is, their
errors are not independent. We will deal with this type of situation in Chapter 4.

Another way in which the assumption of independence can be broken is when data are collected on the
same variables over time. Let's say that we collect truancy data every semester for 12 years. In this
situation it is likely that the errors for observation between adjacent semesters will be more highly
correlated than for observations more separated in time. This is known as autocorrelation. When you
have data that can be considered to be time-series, you should use the dw option that performs a
Durbin-Watson test for correlated residuals.

We don't have any time-series data, so we will use the elemapi2 dataset and pretend that snum
indicates the time at which the data were collected. We will sort the data on snum to order the data
according to our fake time variable and then we can run the regression analysis with the dw option to
request the Durbin-Watson test. The Durbin-Watson statistic has a range from 0 to 4 with a midpoint of
2. The observed value in our example is less than 2, which is not surprising since our data are not truly
time-series.

proc reg data='c:\sasreg\elemapi2';
 model api00 = enroll / dw;
 output out=res3 (keep = snum r) residual=r;
run;
quit;
The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 817326 817326 44.83 <.0001
Error 398 7256346 18232
Corrected Total 399 8073672

Root MSE 135.02601 R-Square 0.1012
Dependent Mean 647.62250 Adj R-Sq 0.0990
Coeff Var 20.84949

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 744.25141 15.93308 46.71 <.0001
enroll number of students 1 -0.19987 0.02985 -6.70 <.0001
Durbin-Watson D 1.342
Number of Observations 400
1st Order Autocorrelation 0.327

goptions reset=all;
proc gplot data=res3;
 plot r*snum;

 206

run;
quit;

2.8 Summary

In this chapter, we have used a number of tools in SAS for determining whether our data meets the
regression assumptions. Below, we list the major commands we demonstrated organized according to
the assumption the command was shown to test.

• Detecting Unusual and Influential Data
o scatterplots of the dependent variables versus the independent variable
o looking at the largest values of the studentized residuals, leverage, Cook's D, DFFITS

and DFBETAs
• Tests for Normality of Residuals Tests for Heteroscedasity

o kernel density plot
o quantile-quantile plots
o standardized normal probability plots
o Shapiro-Wilk W test

• Tests for Multicollinearity
o scatterplot of residuals versus predicted (fitted) values
o White test

• Tests for Non-Linearity
o scatterplot of independent variable versus dependent variable

• Tests for Model Specification

 207

o time series
o Durbin-Watson test

Regression with SAS
Chapter 3 - Regression with Categorical Predictors

Chapter Outline
 3.0 Regression with categorical predictors
 3.1 Regression with a 0/1 variable
 3.2 Regression with a 1/2 variable
 3.3 Regression with a 1/2/3 variable
 3.4 Regression with multiple categorical predictors
 3.5 Categorical predictor with interactions
 3.6 Continuous and categorical variables
 3.7 Interactions of continuous by 0/1 categorical variables
 3.8 Continuous and categorical variables, interaction with 1/2/3 variable
 3.9 Summary
 3.10 For more information

3.0 Introduction

In the previous two chapters, we have focused on regression analyses using continuous variables.
However, it is possible to include categorical predictors in a regression analysis, but it requires some
extra work in performing the analysis and extra work in properly interpreting the results. This chapter
will illustrate how you can use SAS for including categorical predictors in your analysis and describe
how to interpret the results of such analyses.

This chapter will use the elemapi2 data that you have seen in the prior chapters. We assume that you
have put the data files in "c:\sasreg\" directory. We will focus on four variables api00, some_col,
yr_rnd and mealcat, which takes meals and breaks it up into three categories. Let's have a quick look
at these variables.

proc datasets nolist;
 contents data="c:\sasreg\elemapi2" out=elemdesc noprint;
run;
proc print data=elemdesc noobs;
 var name label nobs;
 where name in ('api00', 'some_col', 'yr_rnd', 'mealcat');
run;

NAME LABEL NOBS

api00 api 2000 400
mealcat Percentage free meals in 3 categories 400
some_col parent some college 400
yr_rnd year round school 400

So we have seen the variable label and number of valid observations for each variable. Now let's take a
look at the basic statistics of each variable. We will use proc univariate and make use of the Output

http://www.ats.ucla.edu/stat/sas/webbooks/reg/default.htm
http://www.ats.ucla.edu/stat/sas/webbooks/reg/elemapi2.sas7bdat

 208

Delivery System (ODS) introduced in SAS 8 to get a shorter output. ODS gives us a better control over
the output a SAS procedure.

proc univariate data="c:\sasreg\elemapi2";
 ods output BasicMeasures=varinfo;
run;
proc sort data=varinfo;
 by varName;
proc print data=varinfo noobs;
 by varName;
 where varName in ('api00', 'some_col', 'yr_rnd', 'mealcat');
run;

VarName=api00

 Loc
Measure LocValue VarMeasure VarValue

Mean 647.623 Std Deviation 142.24896
Median 643.000 Variance 20235
Mode 657.000 Range 571.00000
 _ Interquartile Range 239.00000

VarName=mealcat

 Loc
Measure LocValue VarMeasure VarValue

Mean 2.015 Std Deviation 0.81942
Median 2.000 Variance 0.67145
Mode 3.000 Range 2.00000
 _ Interquartile Range 2.00000

VarName=some_col

 Loc
Measure LocValue VarMeasure VarValue

Mean 19.713 Std Deviation 11.33694
Median 19.000 Variance 128.52616
Mode 0.000 Range 67.00000
 _ Interquartile Range 16.00000

VarName=yr_rnd

 Loc
Measure LocValue VarMeasure VarValue

Mean 0.230 Std Deviation 0.42136
Median 0.000 Variance 0.17754
Mode 0.000 Range 1.00000
 _ Interquartile Range 0

We can use proc means to obtain more or less the same type of statistics as above shown below. But we
have to know the names for the statistics and we have less control over the layout of the output.

 209

options nolabel;
proc means data="c:\sasreg\elemapi2" mean median range std var qrange;
 var api00 some_col yr_rnd mealcat;
run;
 Quartile
Variable Mean Median Range Std Dev Variance Range

api00 647.6225000 643.0000 571.0000 142.2489610 20234.77 239
some_col 19.7125000 19.0000 67.0000 11.3369378 128.5261591 16
yr_rnd 0.2300000 0 1.0000 0.4213595 0.1775439 0
mealcat 2.0150000 2.0000 2.0000 0.8194227 0.6714536 2
--

The variable api00 is a measure of the performance of the students. The variable some_col is a
continuous variable that measures the percentage of the parents in the school who have attended college.
The variable yr_rnd is a categorical variable that is coded 0 if the school is not year round, and 1 if year
round. The variable meals is the percentage of students who are receiving state sponsored free meals
and can be used as an indicator of poverty. This was broken into 3 categories (to make equally sized
groups) creating the variable mealcat. The following macro function created for this dataset gives us
codebook type information on a variable that we specify. It gives the information of the number of
unique values that a variable take, which we couldn't get from either proc univariate or proc means.
This macro makes use of proc sql and has very concise output.

%macro codebook(var);
 proc sql;
 title "Codebook for &var";
 select count(&var) label="Total of Obs",
 count(distinct &var) label="Unique Values",
 max(&var) label="Max",
 min(&var) label="Min",
 nmiss(&var) label="Coded Missing",
 mean(&var) label="Mean",
 std(&var) label ="Std. Dev."
 from "c:\sasreg\elemapi2";
 quit;
 title " ";
%mend;

options label formdlim=' ';
%codebook(api00)
%codebook(yr_rnd)
%codebook(some_col)
%codebook(mealcat)
options formdlim='';
Codebook for api00

 Total Unique Coded Std.
 of Obs Values Max Min Missing Mean Dev.
--
 400 271 940 369 0 647.6225 142.249

Codebook for yr_rnd

 Total Unique Coded Std.
 of Obs Values Max Min Missing Mean Dev.
--
 400 2 1 0 0 0.23 0.42136

 210

Codebook for some_col

 Total Unique Coded Std.
 of Obs Values Max Min Missing Mean Dev.
--
 400 49 67 0 0 19.7125 11.33694

Codebook for mealcat

 Total Unique Coded Std.
 of Obs Values Max Min Missing Mean Dev.
--
 400 3 3 1 0 2.015 0.819423

3.1 Regression with a 0/1 variable

The simplest example of a categorical predictor in a regression analysis is a 0/1 variable, also called a
dummy variable or sometimes an indicator variable. Let's use the variable yr_rnd as an example of a
dummy variable. We can include a dummy variable as a predictor in a regression analysis as shown
below.

proc reg data="c:\sasreg\elemapi2";
 model api00 = yr_rnd;
run;
quit;

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 1825001 1825001 116.24 <.0001
Error 398 6248671 15700
Corrected Total 399 8073672

Root MSE 125.30036 R-Square 0.2260
Dependent Mean 647.62250 Adj R-Sq 0.2241
Coeff Var 19.34775

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 684.53896 7.13965 95.88 <.0001
yr_rnd year round school 1 -160.50635 14.88720 -10.78 <.0001

This may seem odd at first, but this is a legitimate analysis. But what does this mean? Let's go back to
basics and write out the regression equation that this model implies.

api00 = Intercept + Byr_rnd * yr_rnd

where Intercept is the intercept (or constant) and we use Byr_rnd to represent the coefficient for
variable yr_rnd. Filling in the values from the regression equation, we get

 211

api00 = 684.539 + -160.5064 * yr_rnd

If a school is not a year-round school (i.e., yr_rnd is 0) the regression equation would simplify to

api00 = constant + 0 * Byr_rnd
api00 = 684.539 + 0 * -160.5064
api00 = 684.539

If a school is a year-round school, the regression equation would simplify to

api00 = constant + 1 * Byr_rnd
api00 = 684.539 + 1 * -160.5064
api00 = 524.0326

We can graph the observed values and the predicted values using the scatter command as shown below.
Although yr_rnd only has two values, we can still draw a regression line showing the relationship
between yr_rnd and api00. Based on the results above, we see that the predicted value for non-year
round schools is 684.539 and the predicted value for the year round schools is 524.032, and the slope of
the line is negative, which makes sense since the coefficient for yr_rnd was negative (-160.5064).

proc reg data="c:\sasreg\elemapi2";
 model api00 = yr_rnd;
run;
plot api00*yr_rnd;
run;
quit;

 212

Let's compare these predicted values to the mean api00 scores for the year-round and non-year-round
students. Let's create a format for variable yr_rnd and mealcat so we can label these categorical
variables. Notice that we use the format statement in proc means below to show value labels for
variable yr_rnd.

options label;
proc format library = library ;
 value yr_rnd /* year round school */
 0='No'
 1='Yes';
 value mealcat /* Percentage free meals in 3 categories */
 1='0-46% free meals'
 2='47-80% free meals'
 3='81-100% free meals';

 format yr_rnd yr_rnd.;
 format mealcat mealcat.;
quit;

proc means data="c:\sasreg\elemapi2" N mean std;
 class yr_rnd ;
 format yr_rnd yr_rnd.;
 var api00;
run;

The MEANS Procedure

 Analysis Variable : api00 api 2000

year
round N
school Obs N Mean Std Dev
--
No 308 308 684.5389610 132.1125339

Yes 92 92 524.0326087 98.9160429
--

As you see, the regression equation predicts that for a school, the value of api00 will be the mean value
of the group determined by the school type.

Let's relate these predicted values back to the regression equation. For the non-year-round schools, their
mean is the same as the intercept (684.539). The coefficient for yr_rnd is the amount we need to add to
get the mean for the year-round schools, i.e., we need to add -160.5064 to get 524.0326, the mean for
the non year-round schools. In other words, Byr_rnd is the mean api00 score for the year-round
schools minus the mean api00 score for the non year-round schools, i.e., mean(year-round) - mean(non
year-round).

It may be surprising to note that this regression analysis with a single dummy variable is the same as
doing a t-test comparing the mean api00 for the year-round schools with the non year-round schools
(see below). You can see that the t value below is the same as the t value for yr_rnd in the regression
above. This is because Byr_rnd compares the non year-rounds and non year-rounds (since the
coefficient is mean(year round)-mean(non year-round)).

proc ttest data="c:\sasreg\elemapi2" ci=none;

 213

 class yr_rnd;
 var api00;
run;

 Statistics

 Lower CL Upper CL
Variable yr_rnd N Mean Mean Mean Std Dev Std Err

api00 0 308 669.73 684.54 699.35 132.11 7.5278
api00 1 92 503.55 524.03 544.52 98.916 10.313
api00 Diff (1-2) 131.24 160.51 189.77 125.3 14.887

 T-Tests

Variable Method Variances DF t Value Pr > |t|

api00 Pooled Equal 398 10.78 <.0001
api00 Satterthwaite Unequal 197 12.57 <.0001

 Equality of Variances

Variable Method Num DF Den DF F Value Pr > F

api00 Folded F 307 91 1.78 0.0013

Since a t-test is the same as doing an anova, we can get the same results using the proc glm for anova
as well.

proc glm data="c:\sasreg\elemapi2";
 class yr_rnd;
 model api00=yr_rnd ;
run;
quit;

The GLM Procedure

Dependent Variable: api00 api 2000

 Sum of
Source DF Squares Mean Square F Value Pr > F

Model 1 1825000.563 1825000.563 116.24 <.0001

Error 398 6248671.435 15700.179

Corrected Total 399 8073671.998

R-Square Coeff Var Root MSE api00 Mean

0.226043 19.34775 125.3004 647.6225

Source DF Type III SS Mean Square F Value Pr > F

yr_rnd 1 1825000.563 1825000.563 116.24 <.0001

 214

If we square the t-value from the t-test, we get the same value as the F-value from the proc glm:
10.78^2=116.21 (with a little rounding error.)

3.2 Regression with a 1/2 variable

A categorical predictor variable does not have to be coded 0/1 to be used in a regression model. It is
easier to understand and interpret the results from a model with dummy variables, but the results from a
variable coded 1/2 yield essentially the same results.

Lets make a copy of the variable yr_rnd called yr_rnd2 that is coded 1/2, 1=non year-round and
2=year-round.

data elem_dummy;
 set "c:\sasreg\elemapi2";
 yr_rnd2=yr_rnd+1;
run;

Let's perform a regression predicting api00 from yr_rnd2.

proc reg data=elem_dummy;
 model api00 = yr_rnd2;
run;
quit;

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 1825001 1825001 116.24 <.0001
Error 398 6248671 15700
Corrected Total 399 8073672

Root MSE 125.30036 R-Square 0.2260
Dependent Mean 647.62250 Adj R-Sq 0.2241
Coeff Var 19.34775

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 845.04531 19.35336 43.66 <.0001
yr_rnd2 1 -160.50635 14.88720 -10.78 <.0001

Note that the coefficient for yr_rnd is the same as yr_rnd2. So, you can see that if you code yr_rnd as
0/1 or as 1/2, the regression coefficient works out to be the same. However the intercept (Intercept) is a
bit less intuitive. When we used yr_rnd, the intercept was the mean for the non year-rounds. When
using yr_rnd2, the intercept is the mean for the non year-rounds minus Byr_rnd2, i.e., 684.539 - (-
160.506) = 845.045

 215

Note that you can use 0/1 or 1/2 coding and the results for the coefficient come out the same, but the
interpretation of constant in the regression equation is different. It is often easier to interpret the
estimates for 0/1 coding.

In summary, these results indicate that the api00 scores are significantly different for the schools
depending on the type of school, year round school versus non-year round school. Non year-round
schools have significantly higher API scores than year-round schools. Based on the regression results,
non year-round schools have scores that are 160.5 points higher than year-round schools.

3.3 Regression with a 1/2/3 variable

3.3.1 Manually creating dummy variables

Say, that we would like to examine the relationship between the amount of poverty and api scores. We
don't have a measure of poverty, but we can use mealcat as a proxy for a measure of poverty. From the
previous section, we have seen that variable mealcat has three unique values. These are the levels of
percent of students on free meals. We can associate a value label to variable mealcat to make it more
meaningful for us when we run SAS procedures with mealcat, for example, proc freq.

proc freq data="c:\sasreg\elemapi2";
 tables mealcat;
 format mealcat mealcat.;
run;

 Percentage free meals in 3 categories

 Cumulative Cumulative
 mealcat Frequency Percent Frequency Percent

0-46% free meals 131 32.75 131 32.75
47-80% free meals 132 33.00 263 65.75
81-100% free meals 137 34.25 400 100.00

You might be tempted to try including mealcat in a regression like this.

proc reg data="c:\sasreg\elemapi2";
 model api00 = mealcat;
run;
quit;

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 6072528 6072528 1207.74 <.0001
Error 398 2001144 5028.00120
Corrected Total 399 8073672

Root MSE 70.90840 R-Square 0.7521
Dependent Mean 647.62250 Adj R-Sq 0.7515
Coeff Var 10.94903

 Parameter Estimates

 216

 Parameter Standard
Variable Label DF Estimate Error t Value

Intercept Intercept 1 950.98740 9.42180 100.93
mealcat Percentage free meals in 3 1 -150.55330 4.33215 -34.75
 categories

 Parameter Estimates

Variable Label DF Pr > |t|

Intercept Intercept 1 <.0001
mealcat Percentage free meals in 3 1 <.0001

This is looking at the linear effect of mealcat with api00, but mealcat is not an interval variable.
Instead, you will want to code the variable so that all the information concerning the three levels is
accounted for. In general, we need to go through a data step to create dummy variables. For example, in
order to create dummy variables for mealcat, we can do the following data step.

data temp_elemapi;
 set "c:\sasreg\elemapi2";
 mealcat1=0;
 mealcat2=0;
 mealcat3=0;
 if mealcat = 1 then mealcat1=1;
 if mealcat = 2 then mealcat2=1;
 if mealcat = 3 then mealcat3=1;
run;

Let's run proc freq to check that our dummy coding is done correctly.

proc freq data=temp_elemapi;
 tables mealcat*mealcat1*mealcat2*mealcat3 /list;
run;

mealcat mealcat1 mealcat2 mealcat3

 1 1 0 0
 2 0 1 0
 3 0 0 1

 Cumulative Cumulative
Frequency Percent Frequency Percent

 131 32.75 131 32.75
 132 33.00 263 65.75
 137 34.25 400 100.00

We now have created mealcat1 that is 1 if mealcat is 1, and 0 otherwise. Likewise, mealcat2 is 1 if
mealcat is 2, and 0 otherwise and likewise mealcat3 was created. We can now use two of these dummy
variables (mealcat2 and mealcat3) in the regression analysis.

proc reg data=temp_elemapi;
 model api00 = mealcat2 mealcat3;
run;

 Analysis of Variance

 217

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 6094198 3047099 611.12 <.0001
Error 397 1979474 4986.08143
Corrected Total 399 8073672

Root MSE 70.61219 R-Square 0.7548
Dependent Mean 647.62250 Adj R-Sq 0.7536
Coeff Var 10.90329

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 805.71756 6.16942 130.60 <.0001
mealcat2 1 -166.32362 8.70833 -19.10 <.0001
mealcat3 1 -301.33800 8.62881 -34.92 <.0001

We can test the overall differences among the three groups by using the test command following proc
reg. Notice that proc reg is an interactive procedure, so we have to issue quit command to finish it. The
test result shows that the overall differences among the three groups are significant.

test mealcat2=mealcat3=0;
run;
quit;

 Test 1 Results for Dependent Variable api00

 Mean
Source DF Square F Value Pr > F

Numerator 2 3047099 611.12 <.0001
Denominator 397 4986.08143

The interpretation of the coefficients is much like that for the binary variables. Group 1 is the omitted
group, so Intercept is the mean for group 1. The coefficient for mealcat2 is the mean for group 2
minus the mean of the omitted group (group 1). And the coefficient for mealcat3 is the mean of group 3
minus the mean of group 1. You can verify this by comparing the coefficients with the means of the
groups.

proc means data=temp_elemapi mean std;
 class mealcat;
 var api00;
run;

 Analysis Variable : api00 api 2000

 Percentage
 free meals
 in 3 N
 categories Obs Mean Std Dev

 1 131 805.7175573 65.6686642

 218

 2 132 639.3939394 82.1351295

 3 137 504.3795620 62.7270149

Based on these results, we can say that the three groups differ in their api00 scores, and that in
particular group 2 is significantly different from group1 (because mealcat2 was significant) and group 3
is significantly different from group 1 (because mealcat3 was significant).

3.3.2 More on dummy coding

In last section, we showed how to create dummy variables for mealcat by manually creating three
dummy variables mealcat1, mealcat2 and mealcat3 since mealcat only has three levels. Apparently
the way we created these variables is not very efficient for a categorical variables with many levels.
Let's try to make use of the array structure to make our coding more efficient.

data array_elemapi;
 set "c:\sasreg\elemapi2";
 array mealdum(3) mealdum1-mealdum3;
 do i = 1 to 3;
 mealdum(i)=(mealcat=i);
 end;
drop i;
run;

We declare an array mealdum of size 3 with each individual named to be mealdum1 to mealdum3,
since mealcat has three levels. Then we do a do loop to repeat the same action three times. (mealcat=i)
is a logical statement and is evaluated to be either true (1) or false (0). We can run proc freq to check if
our coding is done correctly as we did in last section.

proc freq data=array_elemapi;
 tables mealcat*mealdum1*mealdum2*mealdum3 /list;
run;

mealcat mealdum1 mealdum2 mealdum3

 1 1 0 0
 2 0 1 0
 3 0 0 1

 Cumulative Cumulative
Frequency Percent Frequency Percent

 131 32.75 131 32.75
 132 33.00 263 65.75
 137 34.25 400 100.00

3.3.3 Using the proc glm

We can also do this analysis via ANOVA. The benefit of doing anova for our analysis is that it gives us
the test of the overall effect of mealcat without needing to subsequently use the test statement as we did
with the proc reg. In SAS we can use the proc glm for anova. proc glm will generate dummy
variables for a categorical variable on-the-fly so we don't have to code our categorical variable
mealcat manually as we did in last section through a data step.

 219

In our program below, we use class statement to specify that variable mealcat is a categorical variable
we use the option order=freq for proc glm to order the levels of our class variable according to
descending frequency count so that levels with the most observations come first in the order. Thus
dummy variables for mealcat = 2 and mealcat = 3 will be used in the model as they have higher
frequency counts. The solution option used in the model statement gives us the parameter estimates and
the ss3 option specifies that Type III sum of squares is used for hypothesis test. We can see the anova
test of the effect of mealcat is the same as the test command from the regress command.

proc glm data="c:\sasreg\elemapi2" order=freq ;
 class mealcat;
 model api00=mealcat /solution ss3;
run;
quit;

Dependent Variable: api00 api 2000

 Sum of
Source DF Squares Mean Square F Value Pr > F
Model 2 6094197.670 3047098.835 611.12 <.0001
Error 397 1979474.328 4986.081
Corrected Total 399 8073671.998

R-Square Coeff Var Root MSE api00 Mean
0.754824 10.90329 70.61219 647.6225

Source DF Type III SS Mean Square F Value Pr > F
mealcat 2 6094197.670 3047098.835 611.12 <.0001

 Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 805.7175573 B 6.16941572 130.60 <.0001
mealcat 3 -301.3379952 B 8.62881482 -34.92 <.0001
mealcat 2 -166.3236179 B 8.70833132 -19.10 <.0001
mealcat 1 0.0000000 B . . .

NOTE: The X'X matrix has been found to be singular, and a generalized inverse
 was used to solve the normal equations. Terms whose estimates are
 followed by the letter 'B' are not uniquely estimable.

3.3.4 Other coding schemes

It is generally very convenient to use dummy coding but it is not the only kind of coding that can be
used. As you have seen, when you use dummy coding one of the groups becomes the reference group
and all of the other groups are compared to that group. This may not be the most interesting set of
comparisons.

Say you want to compare group 1 with 2, and group 2 with group 3. You need to generate a coding
scheme that forms these 2 comparisons. In SAS, we can first generate the corresponding coding scheme
in a data step shown below and use them in the proc reg step.

We create two dummy variables, one for group 1 and the other for group 3.

 220

data effect_elemapi;
 set "c:\sasreg\elemapi2";

 if mealcat=1 then do;
 mealcat1=2/3;
 mealcat3=1/3;
 end;
 if mealcat=2 then do;
 mealcat1=-1/3;
 mealcat3=1/3;
 end;
 if mealcat=3 then do;
 mealcat1=-1/3;
 mealcat3=-2/3;
 end;
run;

Let's check our coding with proc freq.

proc freq data=effect_elemapi;
 tables mealcat*mealcat1*mealcat3 / nocum nopercent list;
run;

mealcat mealcat1 mealcat3 Frequency
--
 1 0.6666666667 0.3333333333 131
 2 -0.333333333 0.3333333333 132
 3 -0.333333333 -0.666666667 137
We can now do the regression analysis again using our new coding scheme.

proc reg data=effect_elemapi ;
 model api00=mealcat1 mealcat3;
run;
quit;

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 6094198 3047099 611.12 <.0001
Error 397 1979474 4986.08143
Corrected Total 399 8073672

Root MSE 70.61219 R-Square 0.7548
Dependent Mean 647.62250 Adj R-Sq 0.7536
Coeff Var 10.90329

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 649.83035 3.53129 184.02 <.0001
mealcat1 1 166.32362 8.70833 19.10 <.0001
mealcat3 1 135.01438 8.61209 15.68 <.0001

If you compare the parameter estimates with the group means of mealcat you can verify that B1 (i.e. 0-
46% free meals) is the mean of group 1 minus group 2, and B2 (i.e., 47-80% free meals) is the mean of

 221

group 2 minus group 3. Both of these comparisons are significant, indicating that group 1 significantly
differs from group 2, and group 2 significantly differs from group 3.

proc means data=effect_elemapi mean std;
class mealcat;
var api00;

 Analysis Variable : api00 api 2000

 Percentage
 free meals
 in 3 N
 categories Obs Mean Std Dev

 1 131 805.7175573 65.6686642

 2 132 639.3939394 82.1351295

 3 137 504.3795620 62.7270149

And the value of the intercept term Intercept is the unweighted average of the means of the three
groups, (805.71756 +639.39394 +504.37956)/3 = 649.83035.

3.4 Regression with two categorical predictors

3.4.1 Manually creating dummy variables

Previously we looked at using yr_rnd to predict api00 and we have also looked at using mealcat to
predict api00. Let's include the parameter estimates for each model below.

proc reg data=array_elemapi ;
model api00= yr_rnd;
run;
quit;proc reg data=array_elemapi ;
model api00= mealcat1 mealcat2;
run;
quit;

 Parameter Estimates
 (for model with yr_rnd)

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 684.53896 7.13965 95.88 <.0001
yr_rnd year round school 1 -160.50635 14.88720 -10.78 <.0001

 Parameter Estimates
 (for model with mealcat1 and mealcat2)

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 504.37956 6.03281 83.61 <.0001
mealcat1 1 301.33800 8.62881 34.92 <.0001
mealcat2 1 135.01438 8.61209 15.68 <.0001

 222

In the first model with only yr_rnd as the only predictor, the intercept term is the mean api score for the
non-year-round schools. The coefficient for yr_rnd is the difference between the year round and non-
year round group. In the second model, the coefficient for mealcat1 is the difference between
mealcat=1 and mealcat=3, and the coefficient for mealcat2 is the difference between mealcat=2 and
mealcat=3. The intercept is the mean for the mealcat=3.

Of course, we can include both yr_rnd and mealcat together in the same model. Now the question is
how to interpret the coefficients.

data array_elemapi;
 set "c:\sasreg\elemapi2";
 array mealdum(3) mealcat1-mealcat3;
 do i = 1 to 3;
 mealdum(i)=(mealcat=i);
 end;
drop i;
run;
proc reg data=array_elemapi ;
 model api00= yr_rnd mealcat1 mealcat2;
run;
quit;

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 6194144 2064715 435.02 <.0001
Error 396 1879528 4746.28206
Corrected Total 399 8073672

Root MSE 68.89327 R-Square 0.7672
Dependent Mean 647.62250 Adj R-Sq 0.7654
Coeff Var 10.63787

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 526.32996 7.58453 69.40 <.0001
yr_rnd year round school 1 -42.96006 9.36176 -4.59 <.0001
mealcat1 1 281.68318 9.44568 29.82 <.0001
mealcat2 1 117.94581 9.18891 12.84 <.0001

We can test the overall effect of mealcat with the test command, which is significant.

proc reg data=array_elemapi ;
 model api00= yr_rnd mealcat1 mealcat2;
 test mealcat1=mealcat2=0;
run;
quit;

 Test 1 Results for Dependent Variable api00

 Mean
Source DF Square F Value Pr > F

 223

Numerator 2 2184572 460.27 <.0001
Denominator 396 4746.28206

Let's dig below the surface and see how the coefficients relate to the predicted values. Let's view the
cells formed by crossing yr_rnd and mealcat and number the cells from cell1 to cell6.

 mealcat=1 mealcat=2 mealcat=3
 yr_rnd=0 cell1 cell2 cell3
 yr_rnd=1 cell4 cell5 cell6

With respect to mealcat, the group mealcat=3 is the reference category, and with respect to yr_rnd the
group yr_rnd=0 is the reference category. As a result, cell3 is the reference cell. The intercept is the
predicted value for this cell.

The coefficient for yr_rnd is the difference between cell3 and cell6. Since this model has only main
effects, it is also the difference between cell2 and cell5, or from cell1 and cell4. In other words,
Byr_rnd is the amount you add to the predicted value when you go from non-year round to year round
schools.

The coefficient for mealcat1 is the predicted difference between cell1 and cell3. Since this model only
has main effects, it is also the predicted difference between cell4 and cell6. Likewise, Bmealcat2 is the
predicted difference between cell2 and cell3, and also the predicted difference between cell5 and cell6.

So, the predicted values, in terms of the coefficients, would be

 mealcat=1 mealcat=2 mealcat=3

 yr_rnd=0 Intercept Intercept Intercept
 +Bmealcat1 +Bmealcat2

 yr_rnd=1 Intercept Intercept Intercept
 +Byr_rnd +Byr_rnd +Byr_rnd
 +Bmealcat1 +Bmealcat2

We should note that if you computed the predicted values for each cell, they would not exactly match
the means in the six cells. The predicted means would be close to the observed means in the cells, but
not exactly the same. This is because our model only has main effects and assumes that the difference
between cell1 and cell4 is exactly the same as the difference between cells 2 and 5 which is the same as
the difference between cells 3 and 5. Since the observed values don't follow this pattern, there is some
discrepancy between the predicted means and observed means.

3.4.2 Using the proc glm

We can run the same analysis using the proc glm without manually coding the dummy variables.

proc glm data="c:\sasreg\elemapi2";
 class mealcat;
 model api00=yr_rnd mealcat /ss3;
run;
quit;

 Sum of

 224

Source DF Squares Mean Square F Value Pr > F
Model 3 6194144.303 2064714.768 435.02 <.0001
Error 396 1879527.694 4746.282
Corrected Total 399 8073671.998

R-Square Coeff Var Root MSE api00 Mean
0.767203 10.63787 68.89327 647.6225

Source DF Type III SS Mean Square F Value Pr > F
yr_rnd 1 99946.633 99946.633 21.06 <.0001
mealcat 2 4369143.740 2184571.870 460.27 <.0001

Note that we get the same information that we do from manually coding the dummy variables and and
using proc reg followed by the test statement shown in last the previous section. The proc glm doing
anova automatically provides the information provided by the test statement. If we like, we can also
request the parameter estimates by adding the option solution after the model statement.

proc glm data="c:\sasreg\elemapi2";
 class mealcat;
 model api00=yr_rnd mealcat /solution ss3;
run;
quit;

 Sum of
Source DF Squares Mean Square F Value Pr > F
Model 3 6194144.303 2064714.768 435.02 <.0001
Error 396 1879527.694 4746.282
Corrected Total 399 8073671.998

R-Square Coeff Var Root MSE api00 Mean
0.767203 10.63787 68.89327 647.6225

Source DF Type III SS Mean Square F Value Pr > F
yr_rnd 1 99946.633 99946.633 21.06 <.0001
mealcat 2 4369143.740 2184571.870 460.27 <.0001

 Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 526.3299568 B 7.58453252 69.40 <.0001
yr_rnd -42.9600584 9.36176101 -4.59 <.0001
mealcat 1 281.6831760 B 9.44567619 29.82 <.0001
mealcat 2 117.9458074 B 9.18891138 12.84 <.0001
mealcat 3 0.0000000 B . . .

NOTE: The X'X matrix has been found to be singular, and a generalized inverse
 was used to solve the normal equations. Terms whose estimates are
 followed by the letter 'B' are not uniquely estimable.

Recall we used option order=freq before in proc glm to force proc glm to order the levels of a class
variable according to the order of descending frequency count. This time we simply used the default
order of proc glm. The default order for an unformatted numerical variable is simply the order of its
values. Therefore in our case, the natual order is 1 2 and 3. The proc glm will then drop the highest
level.

 225

In summary, these results indicate the differences between year round and non-year round schools is
significant, and the differences among the three mealcat groups are significant.

3.5 Categorical predictor with interactions

3.5.1 Manually creating dummy variables

Let's perform the same analysis that we performed above, this time let's include the interaction of
mealcat by yr_rnd. In this section we show how to do it by manually creating all the dummy variables.
We use the array structure again. This time we have to declare two set of arrays, one for the dummy
variables of mealcat and one for the interaction of yr_rnd and mealcat.

data mealxynd_elemapi;
 set "c:\sasreg\elemapi2";
 array mealdum(3) mealcat1-mealcat3;
 array mealxynd(3) mealxynd1-mealxynd3;
 do i = 1 to 3;
 mealdum(i)=(mealcat=i);
 mealxynd(i)=mealdum(i)*yr_rnd;
 end;
 drop i;
run;

We can check to see if our dummy variables have been created correctly. Notice the option nopercent
and nocum suppress the output on percent and cumulative percent. The option list displays two-way to
n-way tables in a list format rather than as crosstabulation tables. It seems that our coding has been done
correctly.

proc freq data=mealxynd_elemapi;
 tables yr_rnd*mealcat*mealxynd1*mealxynd2*mealxynd3
 /nopercent nocum list;
run;

yr_rnd mealcat mealxynd1 mealxynd2 mealxynd3 Frequency

 0 1 0 0 0 124
 0 2 0 0 0 117
 0 3 0 0 0 67
 1 1 1 0 0 7
 1 2 0 1 0 15
 1 3 0 0 1 70

Now let's add these dummy variables for interaction between yr_rnd and mealcat to our model. We
can all add a test statement to test the overall interaction. The output shows that the interaction effect is
not significant.

proc reg data=mealxynd_elemapi;
 model api00=yr_rnd mealcat1 mealcat2 mealxynd1 mealxynd2;
 test mealxynd1=mealxynd2=0;
run;
quit;

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

 226

Model 5 6204728 1240946 261.61 <.0001
Error 394 1868944 4743.51314
Corrected Total 399 8073672

Root MSE 68.87317 R-Square 0.7685
Dependent Mean 647.62250 Adj R-Sq 0.7656
Coeff Var 10.63477

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|
Intercept Intercept 1 521.49254 8.41420 61.98 <.0001
yr_rnd year round school 1 -33.49254 11.77129 -2.85 0.0047
mealcat1 1 288.19295 10.44284 27.60 <.0001
mealcat2 1 123.78097 10.55185 11.73 <.0001
mealxynd1 1 -40.76438 29.23118 -1.39 0.1639
mealxynd2 1 -18.24763 22.25624 -0.82 0.4128

The REG Procedure
Model: MODEL1

 Test 1 Results for Dependent Variable api00

 Mean
Source DF Square F Value Pr > F
Numerator 2 5291.75936 1.12 0.3288
Denominator 394 4743.51314

It is important to note how the meaning of the coefficients change in the presence of these interaction
terms. For example, in the prior model, with only main effects, we could interpret Byr_rnd as the
difference between the year round and non year round schools. However, now that we have added the
interaction term, the term Byr_rnd represents the difference between cell3 and cell6, or the difference
between the year round and non-year round schools when mealcat=3 (because mealcat=3 was the
omitted group). The presence of an interaction would imply that the difference between year round and
non-year round schools depends on the level of mealcat. The interaction terms Bmealxynd1 and
Bmealxynd2 represent the extent to which the difference between the year round/non year round
schools changes when mealcat=1 and when mealcat=2 (as compared to the reference group,
mealcat=3). For example the term Bmealxynd1 represents the difference between year round and non-
year round for mealcat=1 versus the difference for mealcat=3. In other words, Bmealxynd1 in this
design is (cell1-cell4) - (cell3-cell6), or it represents how much the effect of yr_rnd differs between
mealcat=1 and mealcat=3.

Below we have shown the predicted values for the six cells in terms of the coefficients in the model. If
you compare this to the main effects model, you will see that the predicted values are the same except
for the addition of mealxynd1 (in cell 4) and mealxynd2 (in cell 5).

 mealcat=1 mealcat=2 mealcat=3

 yr_rnd=0 Intercept Intercept Intercept
 +Bmealcat1 +Bmealcat2

 yr_rnd=1 Intercept Intercept Intercept
 +Byr_rnd +Byr_rnd +Byr_rnd

 227

 +Bmealcat1 +Bmealcat2
 +Bmealxynd1 +Bmealxynd2

It can be very tricky to interpret these interaction terms if you wish to form specific comparisons. For
example, if you wanted to perform a test of the simple main effect of yr_rnd when mealcat=1, i.e.,
comparing compare cell1 with cell4, you would want to compare Intercept+ mealcat1 versus
Intercept + mealcat1 + yr_rnd + mealxynd1 and since Intercept and Imealcat1 would drop out, we
would test

proc reg data=mealxynd_elemapi;
 model api00=yr_rnd mealcat1 mealcat2 mealxynd1 mealxynd2;
 test yr_rnd + mealxynd1=0;
run;
quit;

 Test 1 Results for Dependent Variable api00

 Mean
Source DF Square F Value Pr > F

Numerator 1 36536 7.70 0.0058
Denominator 394 4743.51314

This test is significant, indicating that the effect of yr_rnd is significant for the mealcat = 1 group.

As we will see, such tests can be more easily done via anova using proc glm.

3.5.2 Using anova

Constructing these interactions can be easier when using the proc glm. We can also avoid manually
coding our dummy variables. As you see below, the proc glm gives us the test of the overall main
effects and interactions without the need to perform subsequent test commands.

proc glm data="c:\sasreg\elemapi2";
 class mealcat;
 model api00=yr_rnd mealcat yr_rnd*mealcat /ss3;
 run;
quit;

 Sum of
Source DF Squares Mean Square F Value Pr > F
Model 5 6204727.822 1240945.564 261.61 <.0001
Error 394 1868944.176 4743.513
Corrected Total 399 8073671.998

R-Square Coeff Var Root MSE api00 Mean
0.768514 10.63477 68.87317 647.6225

Source DF Type III SS Mean Square F Value Pr > F
yr_rnd 1 99617.371 99617.371 21.00 <.0001
mealcat 2 3903569.804 1951784.902 411.46 <.0001
yr_rnd*mealcat 2 10583.519 5291.759 1.12 0.3288

 228

We can also obtain parameter estimate by using the model option solution, which we will skip as we
have seen before. It is easy to perform tests of simple main effects using the lsmeans statement shown
below.

proc glm data="c:\sasreg\elemapi2";
 class yr_rnd mealcat;
 model api00=yr_rnd mealcat yr_rnd*mealcat /ss3;
 lsmeans yr_rnd*mealcat / slice=mealcat;
run;
quit;

The GLM Procedure
Least Squares Means

 yr_rnd*mealcat Effect Sliced by mealcat for api00

 Sum of
mealcat DF Squares Mean Square F Value Pr > F

1 1 36536 36536 7.70 0.0058
2 1 35593 35593 7.50 0.0064
3 1 38402 38402 8.10 0.0047

The results from above show us the effect of yr_rnd at each of the three levels of mealcat. We can see
that the comparison for mealcat = 1 matches those we computed above using the test statement,
however, it was much easier and less error prone using the lsmeans statement.

Although this section has focused on how to handle analyses involving interactions, these particular
results show no indication of interaction. We could decide to omit interaction terms from future
analyses having found the interactions to be non-significant. This would simplify future analyses,
however including the interaction term can be useful to assure readers that the interaction term is non-
significant.

3.6 Continuous and categorical variables

3.6.1 Using proc reg

Say that we wish to analyze both continuous and categorical variables in one analysis. For example, let's
include yr_rnd and some_col in the same analysis. We can also plot the predicted values against
some_col using plot statement.

proc reg data="c:\sasreg\elemapi2";
 model api00 = yr_rnd some_col;
 run;
 quit;

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 2072202 1036101 68.54 <.0001
Error 397 6001470 15117
Corrected Total 399 8073672

 229

Root MSE 122.95143 R-Square 0.2567
Dependent Mean 647.62250 Adj R-Sq 0.2529
Coeff Var 18.98505

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 637.85807 13.50332 47.24 <.0001
yr_rnd year round school 1 -149.15906 14.87519 -10.03 <.0001
some_col parent some college 1 2.23569 0.55287 4.04 <.0001

proc reg data="c:\sasreg\elemapi2";
 model api00 = yr_rnd some_col;
 output out=pred pred=p;
run;
quit;
symbol1 c=blue v=circle h=.8;
symbol2 c=red c=circle h=.8;
axis1 label=(r=0 a=90) minor=none;
axis2 minor=none;
proc gplot data=pred;
 plot p*some_col=yr_rnd /vaxis=axis1 haxis=axis2;
run;
quit;

 230

The coefficient for some_col indicates that for every unit increase in some_col the api00 score is
predicted to increase by 2.23 units. This is the slope of the lines shown in the above graph. The graph
has two lines, one for the year round schools and one for the non-year round schools. The coefficient for
yr_rnd is -149.16, indicating that as yr_rnd increases by 1 unit, the api00 score is expected to decrease
by about 149 units. As you can see in the graph, the top line is about 150 units higher than the lower
line. You can see that the intercept is 637 and that is where the upper line crosses the Y axis when X is
0. The lower line crosses the line about 150 units lower at about 487.

3.6.2 Using proc glm

We can run this analysis using the proc glm for anova. The proc glm assumes that the independent
variables are continuous. Thus, we need to use the class statement to specify which variables should be
considered as categorical variables.

proc glm data="c:\sasreg\elemapi2";
 class yr_rnd;
 model api00=yr_rnd some_col /solution ss3;
 run;
quit;

 Sum of
Source DF Squares Mean Square F Value Pr > F
Model 2 2072201.839 1036100.919 68.54 <.0001
Error 397 6001470.159 15117.053
Corrected Total 399 8073671.998

R-Square Coeff Var Root MSE api00 Mean
0.256662 18.98505 122.9514 647.6225

Source DF Type III SS Mean Square F Value Pr > F
yr_rnd 1 1519992.669 1519992.669 100.55 <.0001
some_col 1 247201.276 247201.276 16.35 <.0001

 Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 488.6990076 B 15.51331180 31.50 <.0001
yr_rnd 0 149.1590647 B 14.87518847 10.03 <.0001
yr_rnd 1 0.0000000 B . . .
some_col 2.2356887 0.55286556 4.04 <.0001

NOTE: The X'X matrix has been found to be singular, and a generalized inverse
 was used to solve the normal equations. Terms whose estimates are
 followed by the letter 'B' are not uniquely estimable.

If we square the t-values from the proc reg (above), we would find that they match those F-values of
the proc glm. One thing you may notice that the parameter estimates above do not look quite the same
as we did using proc reg. This is due to how proc glm processes a categorical (class) variable. We can
get the same result if we code our class variable differently. This is shown below.

data temp;
 set "c:\sasreg\elemapi2";
 yrn=1-yr_rnd;
run;

proc glm data=temp;

 231

 class yrn;
 model api00=yrn some_col /solution ss3;
 run;
quit;

 Sum of
Source DF Squares Mean Square F Value Pr > F
Model 2 2072201.839 1036100.919 68.54 <.0001
Error 397 6001470.159 15117.053
Corrected Total 399 8073671.998

R-Square Coeff Var Root MSE api00 Mean
0.256662 18.98505 122.9514 647.6225

Source DF Type III SS Mean Square F Value Pr > F
yrn 1 1519992.669 1519992.669 100.55 <.0001
some_col 1 247201.276 247201.276 16.35 <.0001

 Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 637.8580723 B 13.50332419 47.24 <.0001
yrn 0 -149.1590647 B 14.87518847 -10.03 <.0001
yrn 1 0.0000000 B . . .
some_col 2.2356887 0.55286556 4.04 <.0001

NOTE: The X'X matrix has been found to be singular, and a generalized inverse
 was used to solve the normal equations. Terms whose estimates are
 followed by the letter 'B' are not uniquely estimable.

3.7 Interactions of Continuous by 0/1 Categorical variables

Above we showed an analysis that looked at the relationship between some_col and api00 and also
included yr_rnd. We saw that this produced a graph where we saw the relationship between some_col
and api00 but there were two regression lines, one higher than the other but with equal slope. Such a
model assumed that the slope was the same for the two groups. Perhaps the slope might be different for
these groups. Let's run the regressions separately for these two groups beginning with the non-year
round schools.

proc reg data="c:\sasreg\elemapi2";
 model api00 = some_col;
 where yr_rnd=0;
run;
quit;

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 84701 84701 4.91 0.0274
Error 306 5273592 17234
Corrected Total 307 5358293

Root MSE 131.27818 R-Square 0.0158
Dependent Mean 684.53896 Adj R-Sq 0.0126
Coeff Var 19.17760

 232

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 655.11030 15.23704 42.99 <.0001
some_col parent some college 1 1.40943 0.63576 2.22 0.0274

symbol1 i=none c=black v=circle h=0.5;
symbol2 i=join c=red v=dot h=0.5;
proc reg data="c:\sasreg\elemapi2";
 model api00 = some_col;
 where yr_rnd=0;
 plot (api00 predicted.)*some_col /overlay;
run;
quit;

Likewise, let's look at the year round schools and we will use the same symbol statements as above.

symbol1 i=none c=black v=circle h=0.5;
symbol2 i=join c=red v=dot h=0.5;
proc reg data="c:\sasreg\elemapi2";
 model api00 = some_col;
 where yr_rnd=1;
 plot (api00 predicted.)*some_col /overlay;
run;

 233

quit;
 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 373644 373644 65.08 <.0001
Error 90 516735 5741.49820
Corrected Total 91 890379

Root MSE 75.77267 R-Square 0.4196
Dependent Mean 524.03261 Adj R-Sq 0.4132
Coeff Var 14.45953

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 407.03907 16.51462 24.65 <.0001
some_col parent some college 1 7.40262 0.91763 8.07 <.0001

Note that the slope of the regression line looks much steeper for the year round schools than for the
non-year round schools. This is confirmed by the regression equations that show the slope for the year
round schools to be higher (7.4) than non-year round schools (1.3). We can compare these to see if

 234

these are significantly different from each other by including the interaction of some_col by yr_rnd, an
interaction of a continuous variable by a categorical variable.

3.7.1 Computing interactions manually

We will start by manually computing the interaction of some_col by yr_rnd. Let's start fresh and use
the elemapi2 data file which should be sitting in your "c:\sasreg\" directory.

Next, let's make a variable that is the interaction of some college (some_col) and year round schools
(yr_rnd) called yrxsome.

data yrxsome_elemapi;
 set "c:\sasreg\elemapi2";
 yrxsome = yr_rnd*some_col;
run;

We can now run the regression that tests whether the coefficient for some_col is significantly different
for year round schools and non-year round schools. Indeed, the yrxsome interaction effect is significant.

proc reg data=yrxsome_elemapi;
 model api00 = some_col yr_rnd yrxsome;
run;
quit;

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 2283345 761115 52.05 <.0001
Error 396 5790327 14622
Corrected Total 399 8073672

Root MSE 120.92161 R-Square 0.2828
Dependent Mean 647.62250 Adj R-Sq 0.2774
Coeff Var 18.67162

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 655.11030 14.03499 46.68 <.0001
some_col parent some college 1 1.40943 0.58560 2.41 0.0165
yr_rnd year round school 1 -248.07124 29.85895 -8.31 <.0001
yrxsome 1 5.99319 1.57715 3.80 0.0002

We can then save the predicted values to a data set and graph the predicted values for the two types of
schools by some_col. You can see how the two lines have quite different slopes, consistent with the fact
that the yrxsome interaction was significant.

proc reg data=yrxsome_elemapi;
 model api00 = some_col yr_rnd yrxsome;
 output out=temp pred=p;

 235

 run;
quit;

axis1 label=(r=0 a=90) minor=none;
axis2 minor = none;
proc gplot data=temp;
 plot p*some_col=yr_rnd / haxis=axis2 vaxis=axis1;
run;
quit;

We can also create a plot including the data points. There are two ways of doing this and we'll show
both ways and their graphs here. One is to use the plot statement in proc reg.

symbol1 c=black v=star h=0.8;
symbol2 c=red v=circle i=join h=0.8;
proc reg data=yrxsome_elemapi;
 model api00 = some_col yr_rnd yrXsome;
 plot (api00 predicted.)*some_col/overlay;
 run;
quit;

 236

The other is to use proc gplot where we have more control over the look of the graph. In order to use
proc gplot, we have to create a data set including the predicted value. This is done using the output
statement in proc reg. In order to distinguish between the two groups of year-round schools and non-
year-round schools we will do another data step where two variables of predicted values are created for
each of the group.

proc reg data=yrxsome_elemapi;
 model api00 = some_col yr_rnd yrxsome;
 plot (api00 predicted.)*some_col/overlay;
run;
quit;

data temp1;
 set temp;
 if yr_rnd=1 then p1=p;
 if yr_rnd=0 then p0=p;
run;

axis1 label=(r=0 a=90) minor=none;
axis2 minor = none;
symbol1 c=black v=star h=0.8;
symbol2 c=red v=circle i=join h=0.8;
symbol3 c=blue v=diamond i=join h=0.8;
proc gplot data=temp1;
 plot (api00 p1 p0)*some_col / overlay haxis=axis2 vaxis=axis1;
run;
quit;

 237

We can further enhance it so the data points are marked with different symbols. The graph above used
the same kind of symbols for the data points for both types of schools. Let's make separate variables for
the api00 scores for the two types of schools called api0 for the non-year round schools and api1 for
the year round schools.

data temp1;
 set temp;
 if yr_rnd=1 then do api1=api00; p1=p; end;
 if yr_rnd=0 then do api0=api00; p0=p; end;
run;

We can then make the same graph as above except show the points differently for the two types of
schools. Below we use stars for the non-year round schools, and diamonds for the year round schools.

goptions reset=all;
axis1 label=(r=0 a=90) minor=none;
axis2 minor = none;
symbol1 c=black v=star h=0.8;
symbol2 c=red v=diamond h=0.8;
symbol3 c=black v=star i=join h=0.8;
symbol4 c=red v=diamond i=join h=0.8;
proc gplot data=temp1;
 plot api0*some_col=1 api1*some_col=2 p0*some_col=3 p1*some_col= 4
 / overlay haxis=axis2 vaxis=axis1;
run;
quit;

 238

Let's quickly run the regressions again where we performed separate regressions for the two groups. We
can first sort the data set by yr_rnd and make use of the by statement in the proc reg to perform
separate regressions for the two groups. We also use the ODS (output delivery system) of SAS 8 to
output the parameter estimate to a data set and print it out to compare the result.

proc sort data=yrxsome_elemapi;
 by yr_rnd;
run;

ods listing close; /*stop output to appear in the output window*/
ods output ParameterEstimates=reg_some_col
 (keep = yr_rnd Variable estimate);
proc reg data=yrxsome_elemapi;
 by yr_rnd;
 model api00=some_col;
run;
quit;
ods output close;
ods listing; /*put output back to the output window*/

proc print data=reg_some_col noobs;
run;
yr_rnd Variable Estimate

 0 Intercept 655.11030
 0 some_col 1.40943
 1 Intercept 407.03907
 1 some_col 7.40262

 239

Now, let's show the regression for both types of schools with the interaction term.

proc reg data=yrxsome_elemapi;
 model api00 = some_col yr_rnd yrxsome;
 output out=temp pred=p;
 run;
quit;

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 655.11030 14.03499 46.68 <.0001
some_col parent some college 1 1.40943 0.58560 2.41 0.0165
yr_rnd year round school 1 -248.07124 29.85895 -8.31 <.0001
yrxsome 1 5.99319 1.57715 3.80 0.0002

Note that the coefficient for some_col in the combined analysis is the same as the coefficient for
some_col for the non-year round schools? This is because non-year round schools are the reference
group. Then, the coefficient for the yrxsome interaction in the combined analysis is the Bsome_col for
the year round schools (7.4) minus Bsome_col for the non year round schools (1.41) yielding 5.99. This
interaction is the difference in the slopes of some_col for the two types of schools, and this is why this
is useful for testing whether the regression lines for the two types of schools are equal. If the two types
of schools had the same regression coefficient for some_col, then the coefficient for the yrxsome
interaction would be 0. In this case, the difference is significant, indicating that the regression lines are
significantly different.

So, if we look at the graph of the two regression lines we can see the difference in the slopes of the
regression lines (see graph below). Indeed, we can see that the non-year round schools (the solid line)
have a smaller slope (1.4) than the slope for the year round schools (7.4). The difference between these
slopes is 5.99, which is the coefficient for yrxsome.

 240

3.7.2 Computing interactions with proc glm

We can also run a model just like the model we showed above using the proc glm. We can include the
terms yr_rnd some_col and the interaction yr_rnr*some_col. Thus we can avoid a data step.

proc glm data="c:\sasreg\elemapi2";
 model api00 = yr_rnd some_col yr_rnd*some_col /ss3;
run;
quit;

 Sum of
Source DF Squares Mean Square F Value Pr > F
Model 3 2283345.485 761115.162 52.05 <.0001
Error 396 5790326.513 14622.037
Corrected Total 399 8073671.998

R-Square Coeff Var Root MSE api00 Mean
0.282814 18.67162 120.9216 647.6225

Source DF Type III SS Mean Square F Value Pr > F
yr_rnd 1 1009279.986 1009279.986 69.02 <.0001
some_col 1 84700.858 84700.858 5.79 0.0165
yr_rnd*some_col 1 211143.646 211143.646 14.44 0.0002

 Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 655.1103031 14.03499037 46.68 <.0001
yr_rnd -248.0712373 29.85894895 -8.31 <.0001
some_col 1.4094272 0.58560219 2.41 0.0165

 241

yr_rnd*some_col 5.9931903 1.57714998 3.80 0.0002

In this section we found that the relationship between some_col and api00 depended on whether the
school was from year round schools or from non-year round schools. For the schools from year round
schools, the relationship between some_col and api00 was significantly stronger than for those from
non-year round schools. In general, this type of analysis allows you to test whether the strength of the
relationship between two continuous variables varies based on the categorical variable.

3.8 Continuous and categorical variables, interaction with 1/2/3 variable

The prior examples showed how to do regressions with a continuous variable and a categorical variable
that has two levels. These examples will extend this further by using a categorical variable with three
levels, mealcat.

3.8.1 Manually creating dummy variables

We can use a data step to create all the dummy variables needed for the interaction of mealcat and
some_col just as we did before for mealcat. With the dummy variables, we can use proc reg for the
regression analysis. We'll use mealcat1 as the reference group.

data mxcol_elemapi;
 set "c:\sasreg\elemapi2";
 array mealdum(3) mealcat1-mealcat3;
 array mxcol(3) mxcol1-mxcol3;
 do i = 1 to 3;
 mealdum(i)=(mealcat=i);
 mxcol(i)=mealdum(i)*some_col;
 end;
drop i;
run;

proc reg data=mxcol_elemapi;
 model api00 = some_col mealcat2 mealcat3 mxcol2 mxcol3;
 run;
quit;

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 6212307 1242461 263.00 <.0001
Error 394 1861365 4724.27696
Corrected Total 399 8073672

Root MSE 68.73338 R-Square 0.7695
Dependent Mean 647.62250 Adj R-Sq 0.7665
Coeff Var 10.61319

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

 242

Intercept Intercept 1 825.89370 11.99182 68.87 <.0001
some_col parent some college 1 -0.94734 0.48737 -1.94 0.0526
mealcat2 1 -239.02998 18.66502 -12.81 <.0001
mealcat3 1 -344.94758 17.05743 -20.22 <.0001
mxcol2 1 3.14094 0.72929 4.31 <.0001
mxcol3 1 2.60731 0.89604 2.91 0.0038

The interaction now has two terms (mxcol2 and mxcol3). To get an overall test of this interaction, we
can use the test command.

proc reg data=mxcol_elemapi;
 model api00 = some_col mealcat2 mealcat3 mxcol2 mxcol3;
 test mxcol2=mxcol3=0;
run;
quit;

 Test 1 Results for Dependent Variable api00

 Mean
Source DF Square F Value Pr > F

Numerator 2 48734 10.32 <.0001
Denominator 394 4724.27696

These results indicate that the overall interaction is indeed significant. This means that the regression
lines from the three groups differ significantly. As we have done before, let's compute the predicted
values and make a graph of the predicted values so we can see how the regression lines differ.

proc reg data=mxcol_elemapi;
 model api00 = some_col mealcat2 mealcat3 mxcol2 mxcol3;
 output out=pred predicted=p;
 run;
quit;
goptions reset=all;
axis1 label=(r=0 a=90);
proc gplot data=pred;
 plot p*some_col=mealcat /vaxis=axis1;
run;
quit;

Since we had three groups, we get three regression lines, one for each category of mealcat. The solid
line is for group 1, the dashed line for group 2, and the dotted line is for group 3.

 243

Group 1 was the omitted group, therefore the slope of the line for group 1 is the coefficient for
some_col which is -.94. Indeed, this line has a downward slope. If we add the coefficient for some_col
to the coefficient for mxcol2 we get the coefficient for group 2, i.e., 3.14 + (-.94) yields 2.2, the slope
for group 2. Indeed, group 2 shows an upward slope. Likewise, if we add the coefficient for some_col
to the coefficient for mxcol3 we get the coefficient for group 3, i.e., 2.6 + (-.94) yields 1.66, the slope
for group 3,. So, the slopes for the 3 groups are

group 1: -0.94
group 2: 2.2
group 3: 1.66

The test of the coefficient in the parameter estimates for mxcol2 tested whether the coefficient for group
2 differed from group 1, and indeed this was significant. Likewise, the test of the coefficient for
mxcol3 tested whether the coefficient for group 3 differed from group 1, and indeed this was
significant. What did the test of the coefficient some_col test? This coefficient represents the
coefficient for group 1, so this tested whether the coefficient for group 1 (-0.94) was significantly
different from 0. This is probably a non-interesting test.

The comparisons in the above analyses don't seem to be as interesting as comparing group 1 versus 2
and then comparing group 2 versus 3. These successive comparisons seem much more interesting. We
can do this by making group 2 the omitted group, and then each group would be compared to group 2.

proc reg data=mxcol_elemapi;
 model api00 = some_col mealcat1 mealcat3 mxcol1 mxcol3;

 244

 run;
quit;

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 6212307 1242461 263.00 <.0001
Error 394 1861365 4724.27696
Corrected Total 399 8073672

Root MSE 68.73338 R-Square 0.7695
Dependent Mean 647.62250 Adj R-Sq 0.7665
Coeff Var 10.61319

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 586.86372 14.30311 41.03 <.0001
some_col parent some college 1 2.19361 0.54253 4.04 <.0001
mealcat1 1 239.02998 18.66502 12.81 <.0001
mealcat3 1 -105.91760 18.75450 -5.65 <.0001
mxcol1 1 -3.14094 0.72929 -4.31 <.0001
mxcol3 1 -0.53364 0.92720 -0.58 0.5653

Now, the test of mxcol1 tests whether the coefficient for group 1 differs from group 2, and it
does. Then, the test of mxcol3 tests whether the coefficient for group 3 significantly differs from group
2, and it does not. This makes sense given the graph and given the estimates of the coefficients that we
have, that -.94 is significantly different from 2.2 but 2.2 is not significantly different from 1.66.

3.8.2 Using proc glm

We can perform the same analysis using the proc glm command, as shown below. The proc glm
allows us to avoid dummy coding for either the categorical variable mealcat and for the interaction
term of mealcat and some_col. The tricky part is to control the reference group.

proc glm data="c:\sasreg\elemapi2";
 class mealcat;
 model api00=some_col mealcat some_col*mealcat /solution ss3;
run;
quit;

 Sum of
Source DF Squares Mean Square F Value Pr > F
Model 5 6212306.876 1242461.375 263.00 <.0001
Error 394 1861365.121 4724.277
Corrected Total 399 8073671.998

R-Square Coeff Var Root MSE api00 Mean
0.769452 10.61319 68.73338 647.6225

Source DF Type III SS Mean Square F Value Pr > F
some_col 1 36366.366 36366.366 7.70 0.0058

 245

mealcat 2 2012065.492 1006032.746 212.95 <.0001
some_col*mealcat 2 97468.169 48734.084 10.32 <.0001

 Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 480.9461176 B 12.13062708 39.65 <.0001
some_col 1.6599700 B 0.75190859 2.21 0.0278
mealcat 1 344.9475807 B 17.05743173 20.22 <.0001
mealcat 2 105.9176024 B 18.75449819 5.65 <.0001
mealcat 3 0.0000000 B . . .
some_col*mealcat 1 -2.6073085 B 0.89604354 -2.91 0.0038
some_col*mealcat 2 0.5336362 B 0.92720142 0.58 0.5653
some_col*mealcat 3 0.0000000 B . . .

NOTE: The X'X matrix has been found to be singular, and a generalized inverse
 was used to solve the normal equations. Terms whose estimates are
 followed by the letter 'B' are not uniquely estimable.

Because the default order for categorical variables is their numeric values, glm omits the third category.
On the other hand, the analysis we showed in previous section omitted the second category, the
parameter estimates will not be the same. You can compare the results from below with the results
above and see that the parameter estimates are not the same. Because group 3 is dropped, that is the
reference category and all comparisons are made with group 3. Other than default order, proc glm also
allows freq count order, which in our case is the same as the default order since group 3 has the most
count.

These analyses showed that the relationship between some_col and api00 varied, depending on the
level of mealcat. In comparing group 1 with group 2, the coefficient for some_col was significantly
different, but there was no difference in the coefficient for some_col in comparing groups 2 and 3.

3.9 Summary

This chapter covered some techniques for analyzing data with categorical variables, especially,
manually constructing indicator variables and using the proc glm. Each method has its advantages and
disadvantages, as described below.

Manually constructing indicator variables can be very tedious and even error prone. For very simple
models, it is not very difficult to create your own indicator variables, but if you have categorical
variables with many levels and/or interactions of categorical variables, it can be laborious to manually
create indicator variables. However, the advantage is that you can have quite a bit of control over how
the variables are created and the terms that are entered into the model.

The proc glm approach eliminates the need to create indicator variables making it easy to include
variables that have lots of categories, and making it easy to create interactions by allowing you to
include terms like some_col*mealcat. It can be easier to perform tests of simple main effects with the
proc glm. However, the proc glm is not very flexible in letting you choose which category is the
omitted category.

As you will see in the next chapter, the regress command includes additional options like the robust
option and the cluster option that allow you to perform analyses when you don't exactly meet the

 246

assumptions of ordinary least squares regression. In such cases, the regress command offers features
not available in the anova command and may be more advantageous to use.

Regression with SAS
Chapter 4 - Beyond OLS

Chapter Outline
 4.1 Robust Regression Methods
 4.1.1 Regression with Robust Standard Errors
 4.1.2 Using the Proc Genmod for Clustered Data
 4.1.3 Robust Regression
 4.1.4 Quantile Regression
 4.2 Constrained Linear Regression
 4.3 Regression with Censored or Truncated Data
 4.3.1 Regression with Censored Data
 4.3.2 Regression with Truncated Data
 4.4 Regression with Measurement Error
 4.5 Multiple Equation Regression Models
 4.5.1 Seemingly Unrelated Regression
 4.5.2 Multivariate Regression
 4.6 Summary

In this chapter we will go into various commands that go beyond OLS. This chapter is a bit different
from the others in that it covers a number of different concepts, some of which may be new to you.
These extensions, beyond OLS, have much of the look and feel of OLS but will provide you with
additional tools to work with linear models.

The topics will include robust regression methods, constrained linear regression, regression with
censored and truncated data, regression with measurement error, and multiple equation models.

4.1 Robust Regression Methods

It seems to be a rare dataset that meets all of the assumptions underlying multiple regression. We know
that failure to meet assumptions can lead to biased estimates of coefficients and especially biased
estimates of the standard errors. This fact explains a lot of the activity in the development of robust
regression methods.

The idea behind robust regression methods is to make adjustments in the estimates that take into
account some of the flaws in the data itself. We are going to look at three robust methods: regression
with robust standard errors, regression with clustered data, robust regression, and quantile regression.

Before we look at these approaches, let's look at a standard OLS regression using the elementary school
academic performance index (elemapi2.dta) dataset. We will look at a model that predicts the api 2000
scores using the average class size in K through 3 (acs_k3), average class size 4 through 6 (acs_46), the
percent of fully credentialed teachers (full), and the size of the school (enroll). First let's look at the
descriptive statistics for these variables. Note the missing values for acs_k3 and acs_k6.

http://www.ats.ucla.edu/stat/sas/webbooks/reg/

 247

proc means data = "c:\sasreg\elemapi2" mean std max min;
 var api00 acs_k3 acs_46 full enroll;
run;
The MEANS Procedure

Variable Mean Std Dev Minimum Maximum
--
api00 647.6225000 142.2489610 369.0000000 940.0000000
acs_k3 19.1608040 1.3686933 14.0000000 25.0000000
acs_46 29.6851385 3.8407840 20.0000000 50.0000000
full 84.5500000 14.9497907 37.0000000 100.0000000
enroll 483.4650000 226.4483847 130.0000000 1570.00
--

Below we see the regression predicting api00 from acs_k3 acs_46 full and enroll. We see that all of
the variables are significant except for acs_k3.

proc reg data = "c:\sasreg\elemapi2";
 model api00 = acs_k3 acs_46 full enroll ;
run;

The REG Procedure
Model: MODEL1
Dependent Variable: api00

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 4 3071909 767977 61.01 <.0001
Error 390 4909501 12588
Corrected Total 394 7981410

Root MSE 112.19832 R-Square 0.3849
Dependent Mean 648.65063 Adj R-Sq 0.3786
Coeff Var 17.29719

 Parameter Estimates

 Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -5.20041 84.95492 -0.06 0.9512
acs_k3 1 6.95438 4.37110 1.59 0.1124
acs_46 1 5.96601 1.53105 3.90 0.0001
full 1 4.66822 0.41425 11.27 <.0001
enroll 1 -0.10599 0.02695 -3.93 <.0001

Since the regression procedure is interactive and we haven't issued the quit command, we can test both
of the class size variables, and we find the overall test of these two variables is significant.

test acs_k3 = acs_46 = 0;
run;

 Test 1 Results for Dependent Variable api00

 248

 Mean
Source DF Square F Value Pr > F

Numerator 2 139437 11.08 <.0001
Denominator 390 12588

Here is the residual versus fitted plot for this regression. Notice that the pattern of the residuals is not
exactly as we would hope. The spread of the residuals is somewhat wider toward the middle right of
the graph than at the left, where the variability of the residuals is somewhat smaller, suggesting some
heteroscedasticity.

plot r.*p.;
run;

Here is the index plot of Cook's D for this regression. We see 4 points that are somewhat high in both
their leverage and their residuals.

 plot cookd.*obs.;
run;

 249

None of these results are dramatic problems, but the plot of residual vs. predicted value suggests that
there might be some outliers and some possible heteroscedasticity and the index plot of Cook's D shows
some points in the upper right quadrant that could be influential. We might wish to use something other
than OLS regression to estimate this model. In the next several sections we will look at some robust
regression methods.

4.1.1 Regression with Robust Standard Errors

The SAS proc reg includes an option called acov in the model statement for estimating the asymptotic
covariance matrix of the estimates under the hypothesis of heteroscedasticity. The standard error
obtained from the asymptotic covariance matrix is considered to be more robust and can deal with a
collection of minor concerns about failure to meet assumptions, such as minor problems about
normality, heteroscedasticity, or some observations that exhibit large residuals, leverage or influence.
For such minor problems, the standard error based on acov may effectively deal with these concerns.

With the acov option, the point estimates of the coefficients are exactly the same as in ordinary OLS,
but we will calculate the standard errors based on the asymptotic covariance matrix. Here is the same
regression as above using the acov option. We also use SAS ODS (Output Delivery System) to output
the parameter estimates along with the asymptotic covariance matrix. We calculated the robust standard
error in a data step and merged them with the parameter estimate using proc sql and created the t-values
and corresponding probabilities. Note the changes in the standard errors and t-tests (but no change in
the coefficients). In this particular example, using robust standard errors did not change any of the
conclusions from the original OLS regression. We should also mention that the robust standard error
has been adjusted for the sample size correction.

proc reg data = "c:\sasreg\elemapi2";
 model api00 = acs_k3 acs_46 full enroll /acov;
 ods output ACovEst = estcov;
 ods output ParameterEstimates=pest;
run;
quit;
data temp_dm;
 set estcov;
 drop model dependent;

 250

 array a(5) intercept acs_k3 acs_46 full enroll;
 array b(5) std1-std5;
 b(_n_) = sqrt((395/390)*a(_n_));
 std = max(of std1-std5);
 keep variable std;
run;
proc sql;
 select pest.variable, estimate, stderr, tvalue, probt, std as robust_stderr,
 estimate/robust_stderr as tvalue_rb,
 (1 - probt(abs(estimate/robust_stderr), 394))*2 as probt_rb
 from pest, temp_dm
 where pest.variable=temp_dm.variable;
quit;

 robust_
Variable Estimate StdErr tValue Probt stderr tvalue_rb probt_rb
--
Intercept -5.20041 84.95492 -0.06 0.9512 86.66308 -0.06001 0.95218
acs_k3 6.95438 4.37110 1.59 0.1124 4.620599 1.505082 0.133104
acs_46 5.96601 1.53105 3.90 0.0001 1.573214 3.792246 0.000173
full 4.66822 0.41425 11.27 <.0001 0.414681 11.25737 0
enroll -0.10599 0.02695 -3.93 <.0001 0.028015 -3.78331 0.000179

4.1.2 Using the Proc Genmod for Clustered Data

As described in Chapter 2, OLS regression assumes that the residuals are independent. The elemapi2
dataset contains data on 400 schools that come from 37 school districts. It is very possible that the
scores within each school district may not be independent, and this could lead to residuals that are not
independent within districts. SAS proc genmod is used to model correlated data. We can use the class
statement and the repeated statement to indicate that the observations are clustered into districts (based
on dnum) and that the observations may be correlated within districts, but would be independent
between districts.

proc genmod data="c:\sasreg\elemapi2";
 class dnum;
 model api00 = acs_k3 acs_46 full enroll ;
 repeated subject=dnum / type=ind ;
run;
quit;

The GENMOD Procedure

 Analysis Of GEE Parameter Estimates
 Empirical Standard Error Estimates
 Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|
Intercept -5.2004 119.5172 -239.450 229.0490 -0.04 0.9653
acs_k3 6.9544 6.7726 -6.3196 20.2284 1.03 0.3045
acs_46 5.9660 2.4839 1.0976 10.8344 2.40 0.0163
full 4.6682 0.6904 3.3151 6.0213 6.76 <.0001
enroll -0.1060 0.0421 -0.1886 -0.0234 -2.51 0.0119

As with the regression with robust error, the estimate of the coefficients are the same as the OLS
estimates, but the standard errors take into account that the observations within districts are non-
independent. Even though the standard errors are larger in this analysis, the three variables that were
significant in the OLS analysis are significant in this analysis as well.

 251

We notice that the standard error estimates given here are different from what Stata's result using
regress with the cluster option. This is because that Stata further does a finite-sample adjustment. We
can do some SAS programming here for the adjustment. The adjusted variance is a constant times the
variance obtained from the empirical standard error estimates. This particular constant is
(N-1)/(N-k)*M/(M-1).

data em;
 set 'c:\sasreg\elemapi2';
run;
proc genmod data=em;
 class dnum;
 model api00 = acs_k3 acs_46 full enroll ;
 repeated subject=dnum / type = ind covb ;
 ods output geercov = gcov;
 ods output GEEEmpPEst = parms;
run;
quit;
proc sql;
 select count(dnum),count(distinct dnum) into :n, :m
 from em;
quit;
proc sql;
 select count(prm1) into :k
 from gcov;
quit;
data gcov_ad;
 set gcov;
 array all(*) _numeric_;
 do i = 1 to dim(all);
 all(i) = all(i)*((&n-1)/(&n-&k))*(&m/(&m-1));
 if i = _n_ then std_ad = sqrt(all(i));
 end;
drop i;
keep std_ad;
run;
data all;
 merge parms gcov_ad;
run;
proc print data = all noobs;
run;
Parm Estimate Stderr LowerCL UpperCL Z ProbZ
std_ad
Intercept -5.2004 119.5172 -239.450 229.0490 -0.04 0.9653
121.778
acs_k3 6.9544 6.7726 -6.3196 20.2284 1.03 0.3045
6.901
acs_46 5.9660 2.4839 1.0976 10.8344 2.40 0.0163
2.531
full 4.6682 0.6904 3.3151 6.0213 6.76 <.0001
0.703
enroll -0.1060 0.0421 -0.1886 -0.0234 -2.51 0.0119
0.043

 252

Regression with SAS
Chapter 5: Additional coding systems for categorical variables in regression analysis

Chapter Outline
 5.1 Simple Coding
 5.2 Forward Difference Coding
 5.3 Backward Difference Coding
 5.4 Helmert Coding
 5.5 Reverse Helmert Coding
 5.6 Deviation Coding
 5.7 Orthogonal Polynomial Coding
 5.8 User-Defined Coding
 5.9 Summary

Categorical variables require special attention in regression analysis because, unlike dichotomous or
continuous variables, they cannot by entered into the regression equation just as they are. For example,
if you have a variable called race that is coded 1 = Hispanic, 2 = Asian 3 = Black 4 = White, then
entering race in your regression will look at the linear effect of race, which is probably not what you
intended. Instead, categorical variables like this need to be recoded into a series of variables which can
then be entered into the regression model. There are a variety of coding systems that can be used when
coding categorical variables. Ideally, you would choose a coding system that reflects the comparisons
that you want to make. In Chapter 3 of the Regression with SAS Web Book we covered the use of
categorical variables in regression analysis focusing on the use of dummy variables, but that is not the
only coding scheme that you can use. For example, you may want to compare each level to the next
higher level, in which case you would want to use "forward difference" coding, or you might want to
compare each level to the mean of the subsequent levels of the variable, in which case you would want
to use "Helmert" coding. By deliberately choosing a coding system, you can obtain comparisons that
are most meaningful for testing your hypotheses. Regardless of the coding system you choose, the test
of the overall effect of the categorical variable (i.e., the overall effect of race) will remain the
same. Below is a table listing various types of contrasts and the comparison that they make.

Name of contrast Comparison made
Simple Coding Compares each level of a variable to the reference level
Forward Difference
Coding Adjacent levels of a variable (each level minus the next level)

Backward Difference
Coding Adjacent levels of a variable (each level minus the prior level)

Helmert Coding Compare levels of a variable with the mean of the subsequent levels of the
variable

Reverse Helmert Coding Compares levels of a variable with the mean of the previous levels of the
variable

Deviation Coding Compares deviations from the grand mean
Orthogonal Polynomial
Coding Orthogonal polynomial contrasts

http://www.ats.ucla.edu/stat/sas/webbooks/reg/
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter3/sasreg3.htm
http://www.ats.ucla.edu/stat/sas/webbooks/reg/default.htm
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#SIMPLE#SIMPLE
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#forward#forward
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#forward#forward
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#backward#backward
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#backward#backward
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#HELMERT#HELMERT
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#reverse#reverse
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#DEVIATION#DEVIATION
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#ORTHOGONAL#ORTHOGONAL
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#ORTHOGONAL#ORTHOGONAL

 253

User-Defined Coding User-defined contrast

There are a couple of notes to be made about the coding systems listed above. The first is that they
represent planned comparisons and not post hoc comparisons. In other words, they are comparisons
that you plan to do before you begin analyzing your data, not comparisons that you think of once you
have seen the results of preliminary analyses. Also, some forms of coding make more sense with
ordinal categorical variables than with nominal categorical variables. Below we will show examples
using race as a categorical variable, which is a nominal variable. Because simple effect coding
compares the mean of the dependent variable for each level of the categorical variable to the mean of
the dependent variable at for the reference level, it makes sense with a nominal variable. However, it
may not make as much sense to use a coding scheme that tests the linear effect of race. As we describe
each type of coding system, we note those coding systems with which it does not make as much sense
to use a nominal variable. Also, you may notice that we follow several rules when creating the contrast
coding schemes. For more information about these rules, please see the section on User-Defined
Coding.

This page will illustrate two ways that you can conduct analyses using these coding schemes: 1) using
proc glm with estimate statements to define "contrast" coefficients that specify levels of the categorical
variable that are to be compared, and 2) using proc reg. When using proc reg to do contrasts, you first
need to create k-1 new variables (where k is the number of levels of the categorical variable) and use
these new variables as predictors in your regression model. Method 1 uses a type of coding we will call
"contrast coding" while method 2 uses a type of coding we will call "regression coding".

The Example Data File

The examples in this page will use dataset called hsb2.sas7bdat and we will focus on the categorical
variable race, which has four levels (1 = Hispanic, 2 = Asian, 3 = African American and 4 = white) and
we will use write as our dependent variable. Although our example uses a variable with four levels,
these coding systems work with variables that have more or fewer categories. No matter which coding
system you select, you will always have one fewer recoded variables than levels of the original
variable. In our example, our categorical variable has four levels so we will have three new variables (a
variable corresponding to the final level of the categorical variables would be redundant and therefore
unnecessary).

Before considering any analyses, let's look at the mean of the dependent variable, write, for each level
of race. This will help in interpreting the output from later analyses.

proc means data = c:\sasreg\hsb2 mean n;
 class race;
 var write;
run;
The MEANS Procedure

 Analysis Variable : write writing score

 N
 race Obs Mean N
--
 1 24 46.4583333 24

 2 11 58.0000000 11

http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#User#User
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#User#User
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#User#User
http://www.ats.ucla.edu/stat/sas/webbooks/reg/hsb2.sas7bdat

 254

 3 20 48.2000000 20

 4 145 54.0551724 145
--

5.1 Simple Coding

The results of simple coding are very similar to dummy coding in that each level is compared to the
reference level. In the example below, level 4 is the reference level and the first comparison compares
level 1 to level 4, the second comparison compares level 2 to level 4, and the third comparison
compares level 3 to level 4.

Method 1: PROC GLM

The table below shows the simple coding making the comparisons described above. The first contrast
compares level 1 to level 4, and level 1 is coded as 1 and level 4 is coded as -1. Likewise, the second
contrast compares level 2 to level 4 by coding level 2 as 1 and level 4 as -1. As you can see with
contrast coding, you can discern the meaning of the comparisons simply by inspecting the contrast
coefficients. For example, looking at the contrast coefficients for c3, you can see that it compares level
3 to level 4.

SIMPLE contrast coding

Level of race New variable 1 (c1) New variable 2 (c2) New variable 3 (c3)
1 (Hispanic) 1 0 0
2 (Asian) 0 1 0
3 (African American) 0 0 1
4 (white) -1 -1 -1

Below we illustrate how to form these comparisons using proc glm. As you see, a separate estimate
statement is used for each contrast.

proc glm data = c:\sasreg\hsb2;
 class race;
 model write = race;
 estimate 'level 1 versus level 4' race 1 0 0 -1;
 estimate 'level 2 versus level 4' race 0 1 0 -1;
 estimate 'level 3 versus level 4' race 0 0 1 -1;
run;
quit;

The contrast estimate for the first contrast compares the mean of the dependent variable, write, for
levels 1 and 4 yielding -7.597 and is statistically significant (p<.000). The t-value associated with this
test is -3.82. The results of the second contrast, comparing the mean of write for levels 2 and 4 is not
statistically significant (t = 1.40, p = .1638), while the third contrast is statistically significant. Please
note that while we have included the full SAS output for this example, we will only show the relevant
output in later examples to conserve space.

 255

The GLM Procedure

Dependent Variable: write writing score

 Sum of
Source DF Squares Mean Square F Value Pr > F

Model 3 1914.15805 638.05268 7.83 <.0001

Error 196 15964.71695 81.45264

Corrected Total 199 17878.87500

R-Square Coeff Var Root MSE write Mean

0.107063 17.10111 9.025111 52.77500

Source DF Type I SS Mean Square F Value Pr > F

race 3 1914.158046 638.052682 7.83 <.0001

Source DF Type III SS Mean Square F Value Pr > F

race 3 1914.158046 638.052682 7.83 <.0001

 Standard
Parameter Estimate Error t Value Pr > |t|

level 1 versus level 4 -7.59683908 1.98886958 -3.82 0.0002
level 2 versus level 4 3.94482759 2.82250377 1.40 0.1638
level 3 versus level 4 -5.85517241 2.15275967 -2.72 0.0071

Method 2: Regression

The regression coding is a bit more complex than contrast coding. In our example below, level 4 is the
reference level and x1 compares level 1 to level 4, x2 compares level 2 to level 4, and x3 compares
level 3 to level 4. For x1 the coding is 3/4 for level 1, and -1/4 for all other levels. Likewise, for x2 the
coding is 3/4 for level 2, and -1/4 for all other levels, and for x3 the coding is 3/4 for level 3, and -1/4
for all other levels. It is not intuitive that this regression coding scheme yields these comparisons;
however, if you desire simple comparisons, you can follow this general rule to obtain these comparisons.

SIMPLE regression coding

Level of race New variable 1 (x1) New variable 2 (x2) New variable 3 (x3)
1 (Hispanic) 3/4 -1/4 -1/4
2 (Asian) -1/4 3/4 -1/4
3 (African American) -1/4 -1/4 3/4
4 (white) -1/4 -1/4 -1/4

Below we show the more general rule for creating this kind of coding scheme using regression coding,
where k is the number of levels of the categorical variable (in this instance, k = 4).

 256

SIMPLE regression coding

Level of race New variable 1 (x1) New variable 2 (x2) New variable 3 (x3)
1 (Hispanic) (k-1) / k -1 / k -1 / k
2 (Asian) -1 / k (k-1) / k -1 / k
3 (African American) -1 / k -1 / k (k-1) / k
4 (white) -1 / k -1 / k -1 / k

Below we illustrate how to create x1, x2 and x3 and enter these new variables into the regression model
using proc reg.

data simple;
 set c:\sasreg\hsb2;
 if race = 1 then x1 = 3/4; else x1 = -1/4;
 if race = 2 then x2 = 3/4; else x2 = -1/4;
 if race = 3 then x3 = 3/4; else x3 = -1/4;
run;

proc reg data = simple;
 model write = x1 x2 x3;
run;
quit;

You will notice that the regression coefficients in the table below are the same as the contrast
coefficients that we saw using proc glm. Both the regression coefficient for x1 and the contrast
estimate for c1 are the mean of write for level 1 of race (Hispanic) minus the mean of write for level 4
(white). Likewise, the regression coefficient for x2 and the contrast estimate for c2 are the mean of
write for level 2 (Asian) minus the mean of write for level 4 (white). You also can see that the t values
and significance levels are also the same as those from the proc glm output. Please note that while we
have included the full SAS output for this example, we will only show the relevant output in later
examples to conserve space.

The REG Procedure
Model: MODEL1
Dependent Variable: write writing score

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 1914.15805 638.05268 7.83 <.0001
Error 196 15965 81.45264
Corrected Total 199 17879

Root MSE 9.02511 R-Square 0.1071
Dependent Mean 52.77500 Adj R-Sq 0.0934
Coeff Var 17.10111

 Parameter Estimates

 Parameter Standard

 257

Variable Label DF Estimate Error t Value Pr >
|t|

Intercept Intercept 1 51.67838 0.98212 52.62
<.0001
x1 1 -7.59684 1.98887 -3.82
0.0002
x2 1 3.94483 2.82250 1.40
0.1638
x3 1 -5.85517 2.15276 -2.72
0.0071

5.2 Forward Difference Coding

In this coding system, the mean of the dependent variable for one level of the categorical variable is
compared to the mean of the dependent variable for the next (adjacent) level. In our example below, the
first comparison compares the mean of write for level 1 with the mean of write for level 2 of race
(Hispanics minus Asians). The second comparison compares the mean of write for level 2 minus level
3, and the third comparison compares the mean of write for level 3 minus level 4. This type of coding
may be useful with either a nominal or an ordinal variable.

Method 1: PROC GLM

FORWARD DIFFERENCE contrast coding

Level of race New variable 1 (c1) New variable 2 (c2) New variable 3 (c3)
 Level 1 v. Level 2 Level 2 v. Level 3 Level 3 v. Level 4
1 (Hispanic) 1 0 0
2 (Asian) -1 1 0
3 (African American) 0 -1 1
4 (white) 0 0 -1
proc glm data = c:\sasreg\hsb2;
 class race;
 model write = race;
 estimate 'level 1 versus level 2' race 1 -1 0 0;
 estimate 'level 2 versus level 3' race 0 1 -1 0;
 estimate 'level 3 versus level 4' race 0 0 1 -1;
run;
quit;
 Standard
Parameter Estimate Error t Value Pr > |t|

level 1 versus level 2 -11.5416667 3.28612920 -3.51 0.0006
level 2 versus level 3 9.8000000 3.38783369 2.89 0.0043
level 3 versus level 4 -5.8551724 2.15275967 -2.72 0.0071

With this coding system, adjacent levels of the categorical variable are compared. Hence, the mean of
the dependent variable at level 1 is compared to the mean of the dependent variable at level 2: 46.4583
- 58 = -11.542, which is statistically significant. For the comparison between levels 2 and 3, the
calculation of the contrast coefficient would be 58 - 48.2 = 9.8, which is also statistically
significant. Finally, comparing levels 3 and 4, 48.2 - 54.0552 = -5.855, a statistically significant

 258

difference. One would conclude from this that each adjacent level of race is statistically significantly
different.

Method 2: Regression

For the first comparison, where the first and second levels are compared, x1 is coded 3/4 for level 1 and
the other levels are coded -1/4. For the second comparison where level 2 is compared with level 3, x2 is
coded 1/2 1/2 -1/2 -1/2, and for the third comparison where level 3 is compared with level 4, x3 is
coded 1/4 1/4 1/4 -3/4.

FORWARD DIFFERENCE regression coding

Level of race New variable 1 (x1) New variable 2 (x2) New variable 3 (x3)
 Level 1 v. Level 2 Level 2 v. Level 3 Level 3 v. Level 4
1 (Hispanic) 3/4 1/2 1/4
2 (Asian) -1/4 1/2 1/4
3 (African American) -1/4 -1/2 1/4
4 (white) -1/4 -1/2 -3/4

The general rule for this regression coding scheme is shown below, where k is the number of levels of
the categorical variable (in this case k = 4).

FORWARD DIFFERENCE regression coding

Level of race New variable 1 (x1) New variable 2 (x2) New variable 3 (x3)
 Level 1 v. Level 2 Level 2 v. Level 3 Level 3 v. Level 4
1 (Hispanic) (k-1)/k (k-2)/k (k-3)/k
2 (Asian) -1/k (k-2)/k (k-3)/k
3 (African American) -1/k -2/k (k-3)/k
4 (white) -1/k -2/k -3/k
data forward;
 set c:\sasreg\hsb2;

 if race = 1 then x1 = 3/4; else x1 = -1/4;

 if race = 1 or race = 2 then x2 = 1/2;
 if race = 3 or race = 4 then x2 = -1/2;

 if race = 4 then x3 = -3/4; else x3 = 1/4;

run;

proc reg data = forward;
 model write = x1 x2 x3;
run;
quit;
 Parameter Estimates

 259

 Parameter Standard
Variable Label DF Estimate Error t Value Pr >
|t|

Intercept Intercept 1 51.67838 0.98212 52.62
<.0001
x1 1 -11.54167 3.28613 -3.51
0.0006
x2 1 9.80000 3.38783 2.89
0.0043
x3 1 -5.85517 2.15276 -2.72
0.0071

You can see the regression coefficient for x1 is the mean of write for level 1 (Hispanic) minus the mean
of write for level 2 (Asian). Likewise, the regression coefficient for x2 is the mean of write for level 2
(Asian) minus the mean of write for level 3 (African American), and the regression coefficient for x3 is
the mean of write for level 3 (African American) minus the mean of write for level 4 (white).

5.3 Backward Difference Coding

In this coding system, the mean of the dependent variable for one level of the categorical variable is
compared to the mean of the dependent variable for the prior adjacent level. In our example below, the
first comparison compares the mean of write for level 2 with the mean of write for level 1 of race
(Hispanics minus Asians). The second comparison compares the mean of write for level 3 minus level
2, and the third comparison compares the mean of write for level 4 minus level 3. This type of coding
may be useful with either a nominal or an ordinal variable.

Method 1: PROC GLM

BACKWARD DIFFERENCE contrast coding

Level of race New variable 1 (c1) New variable 2 (c2) New variable 3 (c3)
 Level 1 v. Level 2 Level 2 v. Level 3 Level 3 v. Level 4
1 (Hispanic) -1 0 0
2 (Asian) 1 -1 0
3 (African American) 0 1 -1
4 (white) 0 0 1
proc glm data = c:\sasreg\hsb2;
 class race;
 model write = race;
 estimate 'level 1 versus level 2' race -1 1 0 0;
 estimate 'level 2 versus level 3' race 0 -1 1 0;
 estimate 'level 3 versus level 4' race 0 0 -1 1;
run;
quit;
 Standard
Parameter Estimate Error t Value Pr > |t|

level 1 versus level 2 11.5416667 3.28612920 3.51 0.0006
level 2 versus level 3 -9.8000000 3.38783369 -2.89 0.0043

 260

level 3 versus level 4 5.8551724 2.15275967 2.72 0.0071

With this coding system, adjacent levels of the categorical variable are compared, with each level
compared to the prior level. Hence, the mean of the dependent variable at level 2 is compared to the
mean of the dependent variable at level 1: 58 - 46.4583 = 11.542, which is statistically significant. For
the comparison between levels 3 and 2, the calculation of the contrast coefficient is 48.2 - 58 = -9.8,
which is also statistically significant. Finally, comparing levels 4 and 3, 54.0552 - 48.2 = 5.855, a
statistically significant difference. One would conclude from this that each adjacent level of race is
statistically significantly different.

Method 2: Regression

For the first comparison, where the first and second levels are compared, x1 is coded 3/4 for level 1
while the other levels are coded -1/4. For the second comparison where level 2 is compared with level
3, x2 is coded 1/2 1/2 -1/2 -1/2, and for the third comparison where level 3 is compared with level 4, x3
is coded 1/4 1/4 1/4 -3/4.

BACKWARD DIFFERENCE regression coding

Level of race New variable 1 (x1) New variable 2 (x2) New variable 3 (x3)
 Level 2 v. Level 1 Level 3 v. Level 2 Level 4 v. Level 3
1 (Hispanic) - 3/4 -1/2 -1/4
2 (Asian) 1/4 -1/2 -1/4
3 (African American) 1/4 1/2 -1/4
4 (white) 1/4 1/2 3/4

The general rule for this regression coding scheme is shown below, where k is the number of levels of
the categorical variable (in this case, k = 4).

BACKWARD DIFFERENCE regression coding

Level of race New variable 1 (x1) New variable 2 (x2) New variable 3 (x3)
 Level 1 v. Level 2 Level 2 v. Level 3 Level 3 v. Level 4
1 (Hispanic) -(k-1)/k -(k-2)/k -(k-3)/k
2 (Asian) 1/k -(k-2)/k -(k-3)/k
3 (African American) 1/k 2/k -(k-3)/k
4 (white) 1/k 2/k 3/k
data backward;
 set c:\sasreg\hsb2;

 if race = 1 then x1 = -3/4; else x1 = 1/4;

 if race = 1 or race = 2 then x2 = -1/2;
 if race = 3 or race = 4 then x2 = 1/2;

 if race = 4 then x3 = 3/4; else x3 = -1/4;

 261

run;

proc reg data = backward;
 model write = x1 x2 x3;
run;
quit;
 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr >
|t|

Intercept Intercept 1 51.67838 0.98212 52.62
<.0001
x1 1 11.54167 3.28613 3.51
0.0006
x2 1 -9.80000 3.38783 -2.89
0.0043
x3 1 5.85517 2.15276 2.72
0.0071

In the above example, the regression coefficient for x1 is the mean of write for level 2 minus the mean
of write for level 1 (58- 46.4583 = 11.542). Likewise, the regression coefficient for x2 is the mean of
write for level 3 minus the mean of write for level 2, and the regression coefficient for x3 is the mean
of write for level 4 minus the mean of write for level 3.

5.4 Helmert Coding

Helmert coding compares each level of a categorical variable to the mean of the subsequent
levels. Hence, the first contrast compares the mean of the dependent variable for level 1 of race with
the mean of all of the subsequent levels of race (levels 2, 3, and 4), the second contrast compares the
mean of the dependent variable for level 2 of race with the mean of all of the subsequent levels of race
(levels 3 and 4), and the third contrast compares the mean of the dependent variable for level 3 of race
with the mean of all of the subsequent levels of race (level 4). While this type of coding system does
not make much sense with a nominal variable like race, it is useful in situations where the levels of the
categorical variable are ordered say, from lowest to highest, or smallest to largest, etc.

For Helmert coding, we see that the first comparison comparing level 1 with levels 2, 3 and 4 is coded 1,
-1/3, -1/3 and -1/3, reflecting the comparison of level 1 with all other levels. The second comparison is
coded 0, 1, -1/2 and -1/2, reflecting that it compares level 2 with levels 3 and 4. The third comparison
is coded 0, 0, 1 and -1, reflecting that level 3 is compared to level 4.

Method 1: PROC GLM

HELMERT contrast coding

Level of race New variable 1 (c1) New variable 2 (c2) New variable 3 (c3)
 Level 1 v. Later Level 2 v. Later Level 3 v. Later
1 (Hispanic) 1 0 0
2 (Asian) -1/3 1 0

 262

3 (African American) -1/3 -1/2 1
4 (white) -1/3 -1/2 -1

Below we illustrate how to form these comparisons using proc glm with estimate statements. Note
that on the first estimate statement we indicate -.33333 and not just -.33. We need to use this many
decimals so the sum of all of the contrast coefficients (i.e., 1 + -.333333 + -.333333 + -.333333) is
sufficiently close to zero, otherwise SAS will say that the term cannot be estimated.

proc glm data = c:\sasreg\hsb2;
 class race;
 model write = race;
 estimate 'level 1 versus levels 2, 3 & 4' race 1 -.33333 -.33333 -.33333;
 estimate 'level 2 versus levels 3 & 4' race 0 1 -.5 -.5;
 estimate 'level 3 versus level 4' race 0 0 1 -1;
run;
quit;
 Standard
Parameter Estimate Error t Value Pr >
|t|

level 1 versus levels 2, 3 & 4 -6.96006384 2.17520603 -3.20
0.0016
level 2 versus levels 3 & 4 6.87241379 2.92632513 2.35
0.0198
level 3 versus level 4 -5.85517241 2.15275967 -2.72
0.0071

The contrast estimate for the comparison between level 1 and the remaining levels is calculated by
taking the mean of the dependent variable for level 1 and subtracting the mean of the dependent
variable for levels 2, 3 and 4: 46.4583 - [(58 + 48.2 + 54.0552) / 3] = -6.960, which is statistically
significant. This means that the mean of write for level 1 of race is statistically significantly different
from the mean of write for levels 2 through 4. As noted above, this comparison probably is not
meaningful because the variable race is nominal. This type of comparison would be more meaningful
if the categorical variable was ordinal.

To calculate the contrast coefficient for the comparison between level 2 and the later levels, you
subtract the mean of the dependent variable for levels 3 and 4 from the mean of the dependent variable
for level 2: 58 - [(48.2 + 54.0552) / 2] = 6.872, which is statistically significant. The contrast estimate
for the comparison between level 3 and level 4 is the difference between the mean of the dependent
variable for the two levels: 48.2 - 54.0552 = -5.855, which is also statistically significant.

Method 2: Regression

Below we see an example of Helmert regression coding. For the first comparison (comparing level 1
with levels 2, 3 and 4) the codes are 3/4 and -1/4 -1/4 -1/4. The second comparison compares level 2
with levels 3 and 4 and is coded 0 2/3 -1/3 -1/3. The third comparison compares level 3 to level 4 and is
coded 0 0 1/2 -1/2.

HELMERT regression coding

 263

Level of race New variable 1 (x1) New variable 2 (x2) New variable 3 (x3)
 Level 1 v. Later Level 2 v. Later Level 3 v. Later
1 (Hispanic) 3/4 0 0
2 (Asian) -1/4 2/3 0
3 (African American) -1/4 -1/3 1/2
4 (white) -1/4 -1/3 -1/2

Below we illustrate how to create x1, x2 and x3 and enter these new variables into the regression model
using porc reg.

data helmert;
 set c:\sasreg\hsb2;
 if race = 1 then x1 = .75; else x1 = -.25;

 if race = 1 then x2 = 0;
 if race = 2 then x2 = 2/3;
 if race = 3 or race = 4 then x2 = -1/3;

 if race = 1 or race = 2 then x3 = 0;
 if race = 3 then x3 = 1/2;
 if race = 4 then x3 = -1/2;

run;

proc reg data = helmert;
 model write = x1 x2 x3;
run;
quit;

As you see below, the regression coefficient for x1 is the mean of write for level 1 (Hispanic) versus all
subsequent levels (levels 2, 3 and 4). Likewise, the regression coefficient for x2 is the mean of write
for level 2 minus the mean of write for levels 3 and 4. Finally, the regression coefficient for x3 is the
mean of write for level 3 minus the mean of write for level 4.

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr >
|t|

Intercept Intercept 1 51.67836 0.98212 52.62
<.0001
x1 1 -6.96003 2.17521 -3.20
0.0016
x2 1 6.87241 2.92633 2.35
0.0198
x3 1 -5.85517 2.15276 -2.72
0.0071

5.5 Reverse Helmert Coding

 264

Reverse Helmert coding (also know as difference coding) is just the opposite of Helmert coding: instead
of comparing each level of categorical variable to the mean of the subsequent level(s), each is compared
to the mean of the previous level(s). In our example, the first contrast codes the comparison of the
mean of the dependent variable for level 2 of race to the mean of the dependent variable for level 1 of
race. The second comparison compares the mean of the dependent variable level 3 of race with both
levels 1 and 2 of race, and the third comparison compares the mean of the dependent variable for level
4 of race with levels 1, 2 and 3. Clearly, this coding system does not make much sense with our
example of race because it is a nominal variable. However, this system is useful when the levels of the
categorical variable are ordered in a meaningful way. For example, if we had a categorical variable in
which work-related stress was coded as low, medium or high, then comparing the means of the previous
levels of the variable would make more sense.

For reverse Helmert coding, we see that the first comparison comparing levels 1 and 2 are coded -1 and
1 to compare these levels, and 0 otherwise. The second comparison comparing levels 1, 2 with level 3
are coded -1/2, -1/2, 1 and 0, and the last comparison comparing levels 1, 2 and 3 with level 4 are
coded -1/3, -1/3, -1/3 and 1.

Method 1: PROC GLM

REVERSE HELMERT contrast coding

 New variable 1 (c1) New variable 2 (c2) New variable 3 (c3)
 Level 2 v. Level 1 Level 3 v. Previous Level 4 v. Previous
1 (Hispanic) -1 -1/2 -1/3
2 (Asian) 1 -1/2 -1/3
3 (African American) 0 1 -1/3
4 (white) 0 0 1

Below we illustrate how to form these comparisons using proc glm with estimate statements. Note
that on the third estimate statement we indicate -.33333 and not just -.33. We need to use this many
decimals so the sum of all of the contrast coefficients (i.e., -.333333 + - .333333 + - .333333 + 1) is
sufficiently close to zero, otherwise SAS will say that the term cannot be estimated.

proc glm data = c:\sasreg\hsb2;
 class race;
 model write = race;
 estimate 'level 2 versus level1' race -1 1 0 0;
 estimate 'level 3 versus levels 1 & 2' race -.5 -.5 1 0;
 estimate 'level 4 versus levels 1, 2 & 4' race -.33333 -.33333 -.33333 1;
run;
quit;

An alternate way, which solves the problem of the repeating decimals, is shown below. Only one
output is shown because the two outputs are identical.

proc glm data = c:\sasreg\hsb2;
 class race;
 model write = race;

 265

 estimate 'level 2 versus level 1' race -1 1 0 0;
 estimate 'level 3 versus levels 1 & 2' race -.5 -.5 1 0;
 estimate 'level 4 versus levels 1, 2 & 4' race -1 -1 -1 3 / divisor=3;
run;
quit;
 Standard
Parameter Estimate Error t Value Pr >
|t|

level 2 versus level1 11.5416667 3.28612920 3.51
0.0006
level 3 versus levels 1 & 2 -4.0291667 2.60236299 -1.55
0.1232
level 4 versus levels 1, 2 & 4 3.1690296 1.48797250 2.13
0.0344

The contrast estimate for the first comparison shown in this output was calculated by subtracting the
mean of the dependent variable for level 2 of the categorical variable from the mean of the dependent
variable for level 1: 58 - 46.4583 = 11.542. This result is statistically significant. The contrast estimate
for the second comparison (between level 3 and the previous levels) was calculated by subtracting the
mean of the dependent variable for levels 1 and 2 from that of level 3: 48.2 - [(46.4583 + 58) / 2] = -
4.029. This result is not statistically significant, meaning that there is not a reliable difference between
the mean of write for level 3 of race compared to the mean of write for levels 1 and 2 (Hispanics and
Asians). As noted above, this type of coding system does not make much sense for a nominal variable
such as race. For the comparison of level 4 and the previous levels, you take the mean of the dependent
variable for the those levels and subtract it from the mean of the dependent variable for level
4: 54.0552 - [(46.4583 + 58 + 48.2) / 3] = 3.169. This result is statistically significant.

Method 2: Regression

The regression coding for reverse Helmert coding is shown below. For the first comparison, where the
first and second level are compared, x1 is coded -1/2 and 1/2 and 0 otherwise. For the second
comparison, the values of x2 are coded -1/3 -1/3 2/3 and 0. Finally, for the third comparison, the
values of x3 are coded -1/4 -1/4 -/14 and 3/4.

REVERSE HELMERT regression coding

Level of race New variable 1 (x1) New variable 2 (x2) New variable 3 (x3)
1 (Hispanic) -1/2 -1/3 -1/4
2 (Asian) 1/2 -1/3 -1/4
3 (African American) 0 2/3 -1/4
4 (white) 0 0 3/4

Below we illustrate how to create x1, x2 and x3 and enter these new variables into the regression model
using proc reg.

data diff;
 set c:\sasreg\hsb2;
 if race = 1 then x1 = -1/2;
 if race = 2 then x1 = 1/2;

 266

 if race = 3 or race = 4 then x1 = 0;

 if race = 1 or race = 2 then x2 = -1/3;
 if race = 3 then x2 = 2/3;
 if race = 4 then x2 = 0;

 if race = 4 then x3 = 3/4; else x3 = -1/4;

run;

proc reg data = diff;
 model write = x1 x2 x3;
run;
quit;
 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr >
|t|

Intercept Intercept 1 51.67839 0.98212 52.62
<.0001
x1 1 11.54167 3.28613 3.51
0.0006
x2 1 -4.02917 2.60236 -1.55
0.1232
x3 1 3.16905 1.48799 2.13
0.0344

In the above examples, both the regression coefficient for x1 and the contrast estimate for c1 would be
the mean of write for level 1 (Hispanic) minus the mean of write for level 2 (Asian). Likewise, the
regression coefficient for x2 and the contrast estimate for c2 would be the mean of write for levels 1
and 2 combined minus the mean of write for level 3. Finally, the regression coefficient for x3 and the
contrast estimate for c3 would be the mean of write for levels 1, 2 and 3 combined minus the mean of
write for level 4.

5.6 Deviation Coding

This coding system compares the mean of the dependent variable for a given level to the overall mean
of the dependent variable. In our example below, the first comparison compares level 1 (Hispanics) to
all levels of race, the second comparison compares level 2 (Asians) to all levels of race, and the third
comparison compares level 3 (African Americans) to all levels of race.

As you can see, the logic of the contrast coding is fairly straightforward. The first comparison
compares level 1 to levels 2, 3 and 4. A value of 3/4 is assigned to level 1 and a value of -1/4 is
assigned to levels 2, 3 and 4. Likewise, the second comparison compares level 2 to levels 1, 3 and 4. A
value of 3/4 is assigned to level 2 and a value of -1/4 is assigned to levels 1, 3 and 4. A similar pattern is
followed for assigning values for the third comparison. Note that you could substitute 3 for 3/4 and 1
for 1/4 and you would get the same test of significance, but the contrast coefficient would be different.

Method 1: PROC GLM

DEVIATION contrast coding

 267

Level of race New variable 1 (c1) New variable 2 (c2) New variable 3 (c3)

 Level 1 v. Mean Level 2 v. Mean Level 3 v. Mean

1 (Hispanic) 3/4 -1/4 -1/4

2 (Asian) -1/4 3/4 -1/4
3 (African American) -1/4 -1/4 3/4
4 (white) -1/4 -1/4 -1/4

Below we illustrate how to form these comparisons using proc glm.

proc glm data = c:\sasreg\hsb2;
 class race;
 model write = race;
 estimate 'level 1 versus levels 2, 3 & 4' race .75 -.25 -.25 -.25;
 estimate 'level 2 versus levels 1, 3 & 4' race -.25 .75 -.25 -.25;
 estimate 'level 3 versus levels 1, 2 & 4' race -.25 -.25 .75 -.25;
run;
quit;
 Standard
Parameter Estimate Error t Value Pr >
|t|

level 1 versus levels 2, 3 & 4 -5.22004310 1.63140849 -3.20
0.0016
level 2 versus levels 1, 3 & 4 6.32162356 2.16031394 2.93
0.0038
level 3 versus levels 1, 2 & 4 -3.47837644 1.73230472 -2.01
0.0460

The contrast estimate is the mean for level 1 minus the grand mean. However, this grand mean is not
the mean of the dependent variable that is listed in the output of the means command above. Rather it
is the mean of means of the dependent variable at each level of the categorical variable: (46.4583 + 58
+ 48.2 + 54.0552) / 4 = 51.678375. This contrast estimate is then 46.4583 - 51.678375 = -5.220. The
difference between this value and zero (the null hypothesis that the contrast coefficient is zero) is
statistically significant (p = .0016), and the t-value for this test of -3.20. The results for the next two
contrasts were computed in a similar manner.

Method 2: Regression

As you see in the example below, the regression coding is accomplished by assigning 1 to level 1 for
the first comparison (because level 1 is the level to be compared to all others), a 1 to level 2 for the
second comparison (because level 2 is to be compared to all others), and 1 to level 3 for the third
comparison (because level 3 is to be compared to all others). Note that a -1 is assigned to level 4 for all
three comparisons (because it is the level that is never compared to the other levels) and all other values
are assigned a 0. This regression coding scheme yields the comparisons described above.

DEVIATION regression coding

Level of race New variable 1 (x1) New variable 2 (x2) New variable 3 (x3)

 268

 Level 1 v. Mean Level 2 v. Mean Level 3 v. Mean

1 (Hispanic) 1 0 0

2 (Asian) 0 1 0
3 (African American) 0 0 1
4 (white) -1 -1 -1

Below we illustrate how to create x1, x2 and x3 and enter these new variables into the regression model
using proc reg.

data deviation;
 set c:\sasreg\hsb2;
 if race = 1 then x1 = 1;
 if race = 2 or race = 3 then x1 = 0;
 if race = 4 then x1 = -1;

 if race = 2 then x2 = 1;
 if race = 1 or race = 3 then x2 = 0;
 if race = 4 then x2 = -1;

 if race = 3 then x3 = 1;
 if race = 1 or race = 2 then x3 = 0;
 if race = 4 then x3 = -1;
run;

proc reg data = deviation;
 model write = x1 x2 x3;
run;
quit;

In this example, both the regression coefficient for x1 is the mean of write for level 1 (Hispanic) minus
the grand mean of write. Likewise, the regression coefficient for x2 is the mean write for level 2
(Asian) minus the grand mean of write, and so on. As we saw in the previous analyses, all three
contrasts are statistically significant.

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr >
|t|

Intercept Intercept 1 51.67838 0.98212 52.62
<.0001
x1 1 -5.22004 1.63141 -3.20
0.0016
x2 1 6.32162 2.16031 2.93
0.0038
x3 1 -3.47838 1.73230 -2.01
0.0460

5.7 Orthogonal Polynomial Coding

 269

Orthogonal polynomial coding is a form of trend analysis in that it is looking for the linear, quadratic
and cubic trends in the categorical variable. This type of coding system should be used only with an
ordinal variable in which the levels are equally spaced. Examples of such a variable might be income
or education. The table below shows the contrast coefficients for the linear, quadratic and cubic trends
for the four levels. These could be obtained from most statistics books on linear models.

POLYNOMIAL

Level of race Linear (x1) Quadratic (x2) Cubic (x3)
1 (Hispanic) -.671 .5 -.224
2 (Asian) -.224 -.5 .671
3 (African American) .224 -.5 -.671
4 (white) .671 .5 .224

Method 1: PROC GLM

proc glm data = c:\sasreg\hsb2;
 class race;
 model write = race;
 estimate 'linear' race -.671 -.224 .224 .671;
 estimate 'quadratic' race .5 -.5 -.5 .5;
 estimate 'cubic' race -.224 .671 -.671 .224;
run;
quit;
 Standard
Parameter Estimate Error t Value Pr > |t|

linear 2.90227902 1.53520851 1.89 0.0602
quadratic -2.84324713 1.96424409 -1.45 0.1494
cubic 8.27749195 2.31648010 3.57 0.0004

To calculate the contrast estimates for these comparisons, you need to multiply the code used in the new
variable by the mean for the dependent variable for each level of the categorical variable, and then sum
the values. For example, the code used in x1 for level 1 of race is -.671 and the mean of write for level
1 is 46.4583. Hence, you would multiply -.671 and 46.4583 and add that to the product of the code for
level 2 of x1 and its mean, and so on. To obtain the contrast estimate for the linear contrast, you would
do the following: -.671*46.4583 + -.224*58 + .224*48.2 + .671*54.0552 = 2.905 (with rounding
error). This result is not statistically significant at the .05 alpha level, but it is close. The quadratic
component is also not statistically significant, but the cubic one is. This suggests that, if the mean of the
dependent variable was plotted against race, the line would tend to have two bends. As noted earlier,
this type of coding system does not make much sense with a nominal variable such as race.

Method 2: Regression

The regression coding for orthogonal polynomial coding is the same as the contrast coding. Below you
can see the SAS code for creating x1, x2 and x3 that correspond to the linear, quadratic and cubic trends
for race.

data poly;
 set c:\sasreg\hsb2;

 270

 if race = 1 then x1 = -.671;
 if race = 2 then x1 = -.224;
 if race = 3 then x1 = .224;
 if race = 4 then x1 = .671;

 if race = 1 then x2 = .5;
 if race = 2 then x2 = -.5;
 if race = 3 then x2 = -.5;
 if race = 4 then x2 = .5;

 if race = 1 then x3 = -.224;
 if race = 2 then x3 = .671;
 if race = 3 then x3 = -.671;
 if race = 4 then x3 = .224;

run;

proc reg data = poly;
 model write = x1 x2 x3;
run;
quit;
 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr >
|t|

Intercept Intercept 1 51.67838 0.98212 52.62
<.0001
x1 1 2.89986 1.53393 1.89
0.0602
x2 1 -2.84325 1.96424 -1.45
0.1494
x3 1 8.27059 2.31455 3.57
0.0004

The regression coefficients obtained from this analysis are the same as the contrast coefficients obtained
using proc glm.

5.8 User Defined Coding

You can use SAS for any general kind of coding scheme. For our example, we would like to make the
following three comparisons:

1) level 1 to level 3
2) level 2 to levels 1 and 4
3) levels 1 and 2 to levels 3 and 4.

In order to compare level 1 to level 3, we use the contrast coefficients 1 0 -1 0. To compare level 2 to
levels 1 and 4 we use the contrast coefficients -1/2 1 0 -1/2 . Finally, to compare levels 1 and 2 with
levels 3 and 4 we use the coefficients 1/2 1/2 -1/2 -1/2. Before proceeding to the SAS code necessary to
conduct these analyses, let's take a moment to more fully explain the logic behind the selection of these
contrast coefficients.

 271

For the first contrast, we are comparing level 1 to level 3, and the contrast coefficients are 1 0 -1
0. This means that the levels associated with the contrast coefficients with opposite signs are being
compared. In fact, the mean of the dependent variable is multiplied by the contrast coefficient. Hence,
levels 2 and 4 are not involved in the comparison: they are multiplied by zero and "dropped out." You
will also notice that the contrast coefficients sum to zero. This is necessary. If the contrast coefficients
do not sum to zero, the contrast is not estimable and SAS will issue an error message. Which level of
the categorical variable is assigned a positive or negative value is not terribly important: 1 0 -1 0 is the
same as -1 0 1 0 in that both of these codings compare the first and the third levels of the
variable. However, the sign of the regression coefficient would change.

Now let's look at the contrast coefficients for the second and third comparisons. You will notice that in
both cases we use fractions that sum to one (or minus one). They do not have to sum to one (or minus
one). You may wonder why we would use fractions like -1/2 1 0 -1/2 instead of whole numbers such as
-1 2 0 -1. While -1/2 1 0 -1/2 and -1 2 0 -1 both compare level 2 with levels 1 and 4 and both will give
you the same t-value and p-value for the regression coefficient, the contrast estimates/regression
coefficients themselves would be different, as would their interpretation. The coefficient for the -1/2 1
0 -1/2 contrast is the mean of level 2 minus the mean of the means for levels 1 and 4: 58 - (46.4583 +
54.0552)/2 = 7.74325. (Alternatively, you can multiply the contrasts by the mean of the dependent
variable for each level of the categorical variable: -1/2*46.4583 + 1*58.00 + 0*48.20 + -1/2*54.0552 =
7.74325. Clearly these are equivalent ways of thinking about how the contrast coefficient is
calculated.) By comparison, the coefficient for the -1 2 0 -1 contrast is two times the mean for level 2
minus the means of the dependent variable for levels 1 and 4: 2*58 - (46.4583 + 54.0552) = 15.4865,
which is the same as -1*46.4583 + 2*58 + 0*48.20 - 1*54.0552 = 15.4865. Note that the regression
coefficient using the contrast coefficients -1 2 0 -1 is twice the regression coefficient obtained when -
1/2 1 0 -1/2 is used.

Method 1: PROC GLM

In order to compare level 1 to level 3, we use the contrast coefficients 1 0 -1 0. To compare level 2 to
levels 1 and 4 we use the contrast coefficients -1/2 1 0 -1/2 . Finally, to compare levels 1 and 2 with
levels 3 and 4, we use the coefficients 1/2 1/2 -1/2 -1/2. These coefficients are used in the estimate
statements below.

proc glm data = c:\sasreg\hsb2;
 class race;
 model write = race;
 estimate 'level 1 versus level 3' race 1 0 -1 0;
 estimate 'level 2 versus levels 1 & 4' race -.5 1 0 -.5;
 estimate 'levels 1 & 2 versus levels 3 & 4' race .5 .5 -.5 -.5;
run;
quit;
 Standard
Parameter Estimate Error t Value Pr >
|t|

level 1 versus level 3 -1.74166667 2.73248820 -0.64
0.5246
level 2 versus levels 1 & 4 7.74324713 2.89718584 2.67
0.0082
levels 1 & 2 versus levels 3 & 4 1.10158046 1.96424409 0.56
0.5756

 272

The contrast estimate for the first comparison is the mean of level 1 minus the mean for level 3, and the
significance of this is .525, i.e., not significant. The second contrast estimate is 7.743, which is the
mean of level 2 minus the mean of level 1 and level 4, and this difference is significant, p = 0.008. The
final contrast estimate is 1.1 which is the mean of levels 1 and 2 minus the mean of levels 3 and 4, and
this contrast is not statistically significant, p = .576.

Method 2: Regression

As in the prior example, we will make the following three comparisons:

1) level 1 to level 3,
2) level 2 to levels 1 and 4 and
3) levels 1 and 2 to levels 3 and 4.

For methods 1 and 2 it was quite easy to translate the comparisons we wanted to make into contrast
codings, but it is not as easy to translate the comparisons we want into a regression coding scheme. If
we know the contrast coding system, then we can convert that into a regression coding system using the
SAS program shown below. As you can see, we place the three contrast codings we want into the
matrix c and then perform a set of matrix operations on c, yielding the matrix x. We then display x
using the print command.

proc iml;
 c = { 1 -.5 .5,
 0 1 .5,
 -1 0 -.5,
 0 -.5 -.5 };
 x = c*inv(c`*c);
 print x;
run;
quit;

 Below we see the output from this program showing the regression coding scheme we would use.

 X

 -0.5 -1 1.5
 0.5 1 -0.5
 -1.5 -1 1.5
 1.5 1 -2.5

This converted the contrast coding into the regression coding that we need for running this analysis with
proc reg. Below, we use if-then statements to create x1, x2 and x3 according to the coding shown
above and then enter them into the regression analysis.

data special;
 set c:\sasreg\hsb2;
 if race = 1 then x1 = -0.5;
 if race = 2 then x1 = .5;
 if race = 3 then x1 = -1.5;
 if race = 4 then x1 = 1.5;

 if race = 1 or race = 3 then x2 = -1;
 if race = 2 or race = 4 then x2 = 1;

 273

 if race = 1 or race = 3 then x3 = 1.5;
 if race = 2 then x3 = -.5;
 if race = 4 then x3 =-2.5;

run;

proc reg data = special;
 model write = x1 x2 x3;
run;
quit;

The first comparison of the mean of the dependent variable for level 1 to level 3 of the categorical
variable was not statistically significant, while the comparison of the mean of the dependent variable for
level 2 to that of levels 1 and 4 was. The comparison of the mean of the dependent variable for levels 1
and 2 to that of levels 3 and 4 also was not statistically significant.

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr >
|t|

Intercept Intercept 1 51.67838 0.98212 52.62
<.0001
x1 1 -1.74167 2.73249 -0.64
0.5246
x2 1 7.74325 2.89719 2.67
0.0082
x3 1 1.10158 1.96424 0.56
0.5756

5.9 Summary

This page has described a number of different coding systems that you could use for categorical data,
and two different strategies you could use for performing the analyses. You can choose a coding
system that yields comparisons that make the most sense for testing your hypotheses. In general we
would recommend using the easiest method that accomplishes your goals.

Regression with SAS
Chapter 6 - More on Interactions of Categorical Predictors

Chapter Outline
 6.0 Introduction
 6.1. Analysis with two categorical variables
 6.2. Simple effects
 6.2.1 Analyzing simple effects using PROC GLM
 6.2.2 Analyzing Simple Effects Using PROC REG
 6.3. Simple comparisons
 6.3.1 Analyzing simple comparisons using PROC REG
 6.3.2 Analyzing simple comparisons using PROC GLM
 6.4. Partial Interaction
 6.4.1 Analyzing partial interactions using PROC GLM

http://www.ats.ucla.edu/stat/sas/webbooks/reg/default.htm

 274

 6.4.2 Analyzing partial interactions using PROC REG
 6.5. Interaction contrasts
 6.5.1 Analyzing interaction contrasts using PROC GLM
 6.5.2 Analyzing interaction contrasts using PROC REG
 6.6. Computing adjusted means
 6.6.1 Computing adjusted means via PROC GLM
 6.6.1 Computing adjusted means via PROC REG
 6.7. More details on meaning of coefficients
 6.8. Simple effects via dummy coding versus effect coding
 6.8.1 Example 1. Simple effects of yr_rnd at levels of mealcat
 6.8.2 Example 2. Simple effects of mealcat at levels of yr_rnd

6.0 Introduction

This chapter will use the elemapi2 data that you have seen in the prior chapters. We assume that you
have put the data files in "c:\sasreg\" directory.

data elemapi2;
 set 'c:\sasreg\elemapi2';
run;

For this chapter we will use the elemapi2 data file that we have been using in prior chapters. We will
focus on the variables mealcat, and collcat as they relate to the outcome variable api00 (performance
on the api in the year 2000. The variable mealcat is the variable meals broken up into three categories,
and the variable collcat is the variable some_col broken into 3 categories. We could think of mealcat as
being the number of students receiving free meals and broken up into low, middle and high. The
variable collcat can be thought of as the number of parents with some college education, and we could
think of it as being broken up into low, medium and high. For our analysis, we think that both mealcat
and collcat may be related to api00, but it is also possible that the impact of mealcat might depend on
the level of collcat. In other words, we think that there might be an interaction of these two categorical
variables. In this chapter we will look at how these two categorical variables are related to api
performance in the school, and we will look at the interaction of these two categorical variables as well.
We will see that there is an interaction of these categorical variables, and will focus on different ways of
further exploring the interaction. Let's have a quick look at these variables.

proc tabulate data=elemapi2;
 class collcat mealcat ;
 var api00;
 table mealcat='mealcat',
 mean=' '*api00='API Index for 2000'*collcat='collcat'*F=10.2
 / RTS=13.;
run;
--
	API Index for 2000		

	collcat		

	1	2	3
-----------+----------+----------+----------			
mealcat			

1	816.91	825.65	782.15

http://www.ats.ucla.edu/stat/sas/webbooks/reg/elemapi2.sas7bdat

 275

|-----------+----------+----------+----------|
|2 | 589.35| 636.60| 655.64|
|-----------+----------+----------+----------|
|3 | 493.92| 508.83| 541.73|
--

 6.1. Analysis with two categorical variables

One traditional way to analyze this would be to perform a 3 by 3 factorial analysis of variance using
proc glm, as shown below. The results show a main effect of collcat (F=4.5, p-0.0117), a main effect of
mealcat (F=509.04, p=0.0000) and an interaction of collcat by mealcat, (F=6.63, p=0.0000). We also
use lsmeans and output statement to output the predicted means for each group and get ourselve ready
to graph the cell means.

proc glm data = elemapi2;
 class collcat mealcat;
 model api00 = collcat | mealcat /ss3;
 lsmeans collcat*mealcat;
 output out = pred p = pred;
run;
quit;
The GLM Procedure

 Class Level Information
Class Levels Values
collcat 3 1 2 3
mealcat 3 1 2 3

Number of observations 400
The GLM Procedure
Dependent Variable: api00 api 2000

 Sum of
Source DF Squares Mean Square F Value Pr > F
Model 8 6243714.810 780464.351 166.76 <.0001
Error 391 1829957.187 4680.197
Corrected Total 399 8073671.998

R-Square Coeff Var Root MSE api00 Mean
0.773343 10.56356 68.41197 647.6225

Source DF Type III SS Mean Square F Value Pr > F
collcat 2 42140.566 21070.283 4.50 0.0117
mealcat 2 4764843.563 2382421.781 509.04 <.0001
collcat*mealcat 4 124167.809 31041.952 6.63 <.0001

Least Squares Means
collcat mealcat api00 LSMEAN
1 1 816.914286
1 2 589.350000
1 3 493.918919
2 1 825.651163
2 2 636.604651
2 3 508.833333
3 1 782.150943
3 2 655.637681
3 3 541.733333

 276

We can now create the graph of cell means of api00 using the dataset pred.

proc sort data = pred;
 by mealcat;
run;
symbol1 v=circle i=join ci=blue h= 2;
symbol2 v=triangle i=join ci=red h =2;
symbol3 v=square i=join ci=black h =2;
proc gplot data = pred;
 plot pred*mealcat=collcat ;
run;
quit;

We can do the same analysis using the regression approach via proc reg. We use simple regression
coding for both collcat and mealcat. We also create interaction terms for them. The first test statement
tests the effect of main effect of collcat, the second the main effect of mealcat and the last one on the
effect of overall interaction.

data reg1;
 set elemapi2;
 s2 = -1/3; s3=-1/3;
 if collcat = 2 then s2 = 2/3;
 if collcat = 3 then s3 = 2/3;
 m2 = -1/3; m3 = -1/3;
 if mealcat = 2 then m2 = 2/3;
 if mealcat = 3 then m3 = 2/3;
 sm22 = s2*m2;
 sm23 = s2*m3;
 sm32 = s3*m2;
 sm33 = s3*m3;
run;

 277

proc reg data = reg1;
 model api00 = s2 s3 m2 m3 sm22 sm23 sm32 sm33;
 Collcat: test s2=s3=0;
 Mealcat: test m2=m3=0;
 Interaction: test sm22=sm23=sm32=sm33=0;
 output out = pred2 p = pred;
run;
quit;
The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F
Model 8 6243715 780464 166.76 <.0001
Error 391 1829957 4680.19741
Corrected Total 399 8073672

Root MSE 68.41197 R-Square 0.7733
Dependent Mean 647.62250 Adj R-Sq 0.7687
Coeff Var 10.56356

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|
Intercept Intercept 1 650.08826 3.87189 167.90 <.0001
s2 1 23.63531 9.10533 2.60 0.0098
s3 1 26.44625 9.99513 2.65 0.0085
m2 1 -181.04135 9.07713 -19.94 <.0001
m3 1 -293.41027 9.44946 -31.05 <.0001
sm22 1 38.51777 24.19532 1.59 0.1122
sm23 1 6.17754 20.08262 0.31 0.7585
sm32 1 101.05102 22.88808 4.42 <.0001
sm33 1 82.57776 24.43941 3.38 0.0008

 Test Collcat Results for Dependent Variable API00

 Mean
Source DF Square F Value Pr > F
Numerator 2 21070 4.50 0.0117
Denominator 391 4680.19741

 Test Mealcat Results for Dependent Variable API00

 Mean
Source DF Square F Value Pr > F
Numerator 2 2382422 509.04 <.0001
Denominator 391 4680.19741

 Test Interaction Results for Dependent Variable API00

 Mean
Source DF Square F Value Pr > F
Numerator 4 31042 6.63 <.0001

 278

Denominator 391 4680.19741

First, note that the results of the test statements correspond to those from proc glm statement. This is
because collcat and mealcat were coded using simple effect coding, a coding scheme where the
contrasts sum to 0. If this had been coded using dummy coding, then the results of the test commands
for mealcat and collcat from the proc reg would not have corresponded to the proc glm results. In
addition to simple coding, we could have used deviation or helmert coding schemes and the results of
the test commands would have matched the result from proc glm, although the meaning of the
individual tests would have been different. This point will be explored in more detail later in this
chapter.

The graph of the cell means we obtained before illustrates the interaction between collcat and mealcat.
The graph shows the 3 levels of collcat as 3 different lines, and the 3 levels of mealcat as the 3 values
on the x axis of the graph. We can see that the effect of collcat differs based on the level of mealcat.
For example, when mealcat is low, schools where collcat is 3 have the lowest api00 scores, as
compared to schools that are medium or high on mealcat, where schools with collcat of 3 have the
highest api00 scores.

Let's investigate this interaction further by looking at the simple effects of collcat at each level of
mealcat.

 6.2. Simple effects
 6.2.1 Analyzing simple effects using PROC GLM

This analysis looks at the simple effects of collcat at the different levels of mealcat using proc glm.
The lsmeans statement with option slice = mealcat gives the test of effects of collcat at each level of
mealcat.

proc glm data= elemapi2;
 class collcat mealcat;
 model api00 = mealcat|collcat ;
 lsmeans mealcat*collcat / slice = mealcat ;
run;
quit;
The GLM Procedure

 Sum of
Source DF Squares Mean Square F Value Pr > F
Model 8 6243714.810 780464.351 166.76 <.0001
Error 391 1829957.187 4680.197
Corrected Total 399 8073671.998

R-Square Coeff Var Root MSE API00 Mean
0.773343 10.56356 68.41197 647.6225

Source DF Type III SS Mean Square F Value Pr > F
MEALCAT 2 4764843.563 2382421.781 509.04 <.0001
COLLCAT 2 42140.566 21070.283 4.50 0.0117
COLLCAT*MEALCAT 4 124167.809 31041.952 6.63 <.0001
COLLCAT MEALCAT API00 LSMEAN
1 1 816.914286
1 2 589.350000
1 3 493.918919

 279

2 1 825.651163
2 2 636.604651
2 3 508.833333
3 1 782.150943
3 2 655.637681
3 3 541.733333

 COLLCAT*MEALCAT Effect Sliced by MEALCAT for API00

 Sum of
MEALCAT DF Squares Mean Square F Value Pr > F
1 2 50909 25455 5.44 0.0047
2 2 68629 34314 7.33 0.0007
3 2 29979 14990 3.20 0.0417

6.2.2 Analyzing Simple Effects Using PROC REG

We have demonstrated how to test the simple effect of collcat at each level of mealcat using PROC
GLM in the previous section. That is through the approach of ANOVA. We can also obtain the same
analysis through regression approach. After all, Anova is regression. In regression approach, we will
create the coding for variable collcat, mealcat and their interaction. The coding scheme is specific for
the effect we want to see. For example, in this section, we will do an analysis parallel to the previous
section. That is to say that we want to see the simple effect of collcat at each level of mealcat. We will
use simple coding for mealcat, though in our case the type of coding for mealcat does not really
matter. The scheme for simple coding is shown chapter 5. The reference group for mealcat is group
1. We use helmert coding for collcat. We should note that these terms are not used in the analysis, but
are used for creating the simple effects of collcat at each level of mealcat.

data reg2;
 set elemapi2;
 mcat1 = 1/3; mcat2 = 1/3;
 if mealcat = 3 then mcat1 = -2/3;
 if mealcat = 2 then mcat2 = -2/3;
 ccat1 = -1/3;
 if collcat = 1 then do;
 ccat1 = 2/3;
 ccat2 = 0;
 end;
 if collcat = 2 then ccat2 = .5;
 if collcat = 3 then ccat2 = -.5;
 c1m1 = 0; c2m1 = 0; c1m2 = 0;
 c2m2 = 0; c1m3 = 0; c2m3 = 0;
 if (mealcat = 1) then do; c1m1 = ccat1;
 c2m1 = ccat2; end;
 if (mealcat = 2) then do; c1m2 = ccat1;
 c2m2 = ccat2; end;
 if (mealcat = 3) then do; c1m3 = ccat1;
 c2m3 = ccat2; end;
run;

Now, that we have seen the helmert coding for collcat, we can see how this is used to create the simple
effects of collcat at each level of mealcat. First, we look at the two comparisons of collcat at mealcat
of 1. Note that the coding is the same as we saw above, but only when mealcat is 1, otherwise these
variables are coded 0. Likewise, we look at the terms that form the effects of collcat when mealcat is 2,
and we see that the variables are coded the same way when mealcat is 2, and otherwise 0. The same is

http://www.ats.ucla.edu/stat/spss/webbooks/reg/chapter5/spssreg5.htm

 280

true for the case when mealcat is 3. The following matrix is the coding we just used for all the
interaction terms.

collcat mealcat c1m1 c2m1 c1m2 c2m2 c1m3 c2m3
1 1 2/3 0 0 0 0 0
2 1 -1/3 1/2 0 0 0 0
3 1 -1/3 -1/2 0 0 0 0
1 2 0 0 2/3 0 0 0
2 2 0 0 -1/3 1/2 0 0
3 2 0 0 -1/3 -1/2 0 0
1 3 0 0 0 0 2/3 0
2 3 0 0 0 0 -1/3 1/2
3 3 0 0 0 0 -1/3 -1/2

Now we are ready for our regression analysis. The test statements used below are for testing the simple
effect of collcat at each level of mealcat.

proc reg data = reg2;
 model api00 = mcat1 mcat2 c1m1 c2m1 c1m2 c2m2 c1m3 c2m3;
 mealcat1: test c1m1 = c2m1 = 0;
 mealcat2: test c1m2 = c2m2 = 0;
 mealcat3: test c1m3 = c2m3 = 0;
run;
quit;
The REG Procedure
Model: MODEL1
Dependent Variable: API00 api 2000
 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F
Model 8 6243715 780464 166.76 <.0001
Error 391 1829957 4680.19741
Corrected Total 399 8073672

Root MSE 68.41197 R-Square 0.7733
Dependent Mean 647.62250 Adj R-Sq 0.7687
Coeff Var 10.56356

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|
Intercept Intercept 1 650.08826 3.87189 167.90 <.0001
MCAT1 1 293.41027 9.44946 31.05 <.0001
MCAT2 1 181.04135 9.07713 19.94 <.0001
C1M1 1 13.01323 13.52800 0.96 0.3367
C2M1 1 43.50022 14.04092 3.10 0.0021
C1M2 1 -56.77117 16.67866 -3.40 0.0007
C2M2 1 -19.03303 13.29175 -1.43 0.1530
C1M3 1 -31.36441 12.86955 -2.44 0.0153
C2M3 1 -32.90000 20.23653 -1.63 0.1048
 Test mealcat1 Results for Dependent Variable API00

 281

 Mean
Source DF Square F Value Pr > F
Numerator 2 25455 5.44 0.0047
Denominator 391 4680.19741

 Test mealcat2 Results for Dependent Variable API00

 Mean
Source DF Square F Value Pr > F
Numerator 2 34314 7.33 0.0007
Denominator 391 4680.19741

 Test mealcat3 Results for Dependent Variable API00

 Mean
Source DF Square F Value Pr > F
Numerator 2 14990 3.20 0.0417
Denominator 391 4680.19741

6.3 Simple Comparisons

In the analyses above we looked at the simple effect of collcat at each level of mealcat. For example,
we looked at the overall effect of collcat when mealcat was 1. This is the simple effect of collcat at
mealcat=1. Because collcat has more than 2 levels, we may wish to make further comparisons among
the 3 levels of collcat within mealcat=1. Simple comparisons allow us to make such comparisons.

6.3.1 Analyzing Simple Comparisons Using PROC REG

In the previous regression analysis, we used helmert coding for collcat. We choose this coding scheme
so we could compare group 1 with groups 2 and 3 and then compare groups 2 and 3 within mealcat = 1.
For example, if we wanted to compare collcat 1 vs. 2 and 3, we would want to look at the effect c1m1,
and if we wanted to compare collcat groups 2 and 3 when mealcat is 1, then we would look at the
effect c2m1. For example, c1m1 is not significant with t-value = 0.96 and p-value = 0.3367. That is to
say that the difference between group 1 of collcat with group 2 and group 3 with mealcat = 1 is not
significant.

6.3.2 Analyzing Simple Comparisons Using PROC GLM

We can also look at the simple comparisons using PROC GLM. For example, for the comparsion of
group 1 vs 2+ of collcat within mealcat = 1, we can do the following. The estimate statement below
indicates that the comparison on collcat is between group 1 and all the upper groups and the
comparison is restricted to within mealcat = 1.

proc glm data = elemapi2;
 class collcat mealcat;
 model api00 = collcat mealcat collcat*mealcat/ss3;
 estimate 'collcat 1 vs 2+ within mealcat = 1'
 collcat 1 -.5 -.5
 collcat*mealcat 1 0 0
 -.5 0 0
 -.5 0 0;
run;
quit;

 282

The GLM Procedure

Dependent Variable: API00 api 2000
 Sum of
Source DF Squares Mean Square F Value Pr > F
Model 8 6243714.810 780464.351 166.76 <.0001
Error 391 1829957.187 4680.197
Corrected Total 399 8073671.998

R-Square Coeff Var Root MSE API00 Mean
0.773343 10.56356 68.41197 647.6225

Source DF Type III SS Mean Square F Value Pr > F
COLLCAT 2 42140.566 21070.283 4.50 0.0117
MEALCAT 2 4764843.563 2382421.781 509.04 <.0001
COLLCAT*MEALCAT 4 124167.809 31041.952 6.63 <.0001

 Standard
Parameter Estimate Error t Value Pr
> |t|
collcat 1 vs 2+ within mealcat = 1 13.0132326 13.5279998 0.96
0.3367

6.4 Partial Interaction

A partial interaction allows you to apply contrasts to one of the effects in an interaction term. For
example, we can draw the interaction of collcat by mealcat like this below.

 Collcat low Collcat Med Collcat High
Mealcat Low
Mealcat Med
Mealcat High

Say that we wanted to compare, in the context of this interaction, group 1 for collcat vs. groups 2 and 3.
The table of this partial interaction would look like this. The contrast coefficients of -2 1 1 applied to
collcat indicate the comparison of group 1 for collcat vs. groups 2 and 3.

 -2 1 1
 Collcat low Collcat Med Collcat High
Mealcat Low
Mealcat Med
Mealcat High

Likewise, we also might want to compare groups 2 and 3 of collcat by mealcat, and the table of this
interaction would look like this.

 0 -1 1
 Collcat low Collcat Med Collcat High

 283

Mealcat Low
Mealcat Med
Mealcat High

These are called partial interactions because contrast coefficients are applied to one of the terms
involved in the interaction.

6.4.1 Analyzing partial interactions using PROC GLM

We wish to compare groups 1 versus 2 on collcat. Similarly, we can also compare groups 2 and 3 on
collcat. For example, we want to test the partial interaction of collcat comparing group 1 vs. 2 and 3 by
mealcat, we can do the following contrast statement. Because mealcat has 2 degrees of freedom, the
test of partial interaction also has 2 degrees of freedom. The 2 degrees of freedom of factor mealcat can
be broken down into 2 comparisons. These two interaction contrasts are separated by a semi-colon,
which tells SAS to join these contrasts together into a single test with 2 degrees of freedom.

proc glm data = elemapi2;
 class collcat mealcat;
 model api00 = collcat mealcat collcat*mealcat;
 contrast 'test of sm11 and sm12' collcat*mealcat 1 -1 0
 -.5 .5 0
 -.5 .5 0,
 collcat*mealcat 0 1 -1
 0 -.5 .5
 0 -.5 .5;
 contrast 'test of sm21 and sm22' collcat*mealcat 0 0 0
 1 -1 0
 -1 1 0,
 collcat*mealcat 0 0 0
 0 1 -1
 0 -1 1;
run;
quit;
The GLM Procedure

<output omitted>

Contrast DF Contrast SS Mean Square F Value Pr > F

test of sm11 and sm12 2 54141.40962 27070.70481 5.78 0.0033
test of sm21 and sm22 2 66511.60133 33255.80067 7.11 0.0009

6.4.2 Analyzing partial interactions Using PROC REG

With regression analysis, we can also compare groups 1 vs. 2 and 3 on collcat, or compare groups 2 and
3 on collcat. This implies Helmert coding on collcat, as we did before.

data reg3;
 set elemapi2;
 if mealcat = 1 then m1 = 2/3;
 if mealcat = 2 then m1 = -1/3;
 if mealcat = 3 then m1 = -1/3;
 if mealcat = 1 then m2 = 1/3;

 284

 if mealcat = 2 then m2 = 1/3;
 if mealcat = 3 then m2 = -2/3;

 if collcat = 1 then s1 = 2/3;
 if collcat = 2 then s1 = -1/3;
 if collcat = 3 then s1 = -1/3;
 if collcat = 1 then s2 = 0;
 if collcat = 2 then s2 = 1/2;
 if collcat = 3 then s2 = -1/2;

 sm11 = s1*m1;
 sm12 = s1*m2;
 sm21 = s2*m1;
 sm22 = s2*m2;
run;

proc reg data = reg3;
 model api00 = s1 s2 m1 m2 sm11 sm12 sm21 sm22;
 test sm11 = sm12 = 0;
 test sm21 = sm22 = 0;
run;
quit;
The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 8 6243715 780464 166.76 <.0001
Error 391 1829957 4680.19741
Corrected Total 399 8073672

Root MSE 68.41197 R-Square 0.7733
Dependent Mean 647.62250 Adj R-Sq 0.7687
Coeff Var 10.56356

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 650.08826 3.87189 167.90 <.0001
s1 1 -25.04078 8.34539 -3.00 0.0029
s2 1 -2.81094 9.32938 -0.30 0.7633
m1 1 181.04135 9.07713 19.94 <.0001
m2 1 112.36892 9.90759 11.34 <.0001
sm11 1 69.78440 21.47520 3.25 0.0013
sm12 1 -25.40675 21.06663 -1.21 0.2285
sm21 1 62.53325 19.33438 3.23 0.0013
sm22 1 13.86697 24.21132 0.57 0.5671

 Test 1 Results for Dependent Variable api00

 285

 Mean
Source DF Square F Value Pr > F

Numerator 2 27071 5.78 0.0033
Denominator 391 4680.19741

 Test 2 Results for Dependent Variable api00

 Mean
Source DF Square F Value Pr > F

Numerator 2 33256 7.11 0.0009
Denominator 391 4680.19741

6.5. Interaction Contrasts

Above we saw that a partial interaction allows you to apply contrast coefficients to one of the terms in a
2 way interaction. An interaction contrast allows you to apply contrast coefficients to both of the terms
in a two way interaction.

For example, with respect to collcat, let's say that we wish to compare groups 2 and 3, and with respect
to mealcat we wish to compare groups 1 and 2. The table of this looks like this below.

-1 1 0
 Collcat

low
Collcat
Med

Collcat
High

0 Mealcat Low
-1 Mealcat Med
1 Mealcat High

We also would like to form a second interaction contrast that also compares groups 2 and 3 with respect
to collcat, and compares groups 2 and 3 on mealcat. A table of this comparison is shown below.

0 -1 1
 Collcat

low
Collcat
Med

Collcat
High

0 Mealcat Low
-1 Mealcat Med
1 Mealcat High

If we look at the graph of the predicted values (repeated below) we constructed before, it compares line
2 and 3 (collcat 2 vs. 3) by mealcat 1 vs. 2, and then again by mealcat 2 vs. 3.

 286

6.5.1 Analyzing Interaction Contrasts Using PROG GLM

proc glm data = elemapi2;
 class collcat mealcat;
 model api00 = collcat mealcat collcat*mealcat;
 contrast 'collcat 2v3 with mealcat 1v2' collcat*mealcat 0 0 0
 1 -1 0
 -1 1 0;
 contrast 'somecat 2v3 with mealcat 2v3' collcat*mealcat 0 0 0
 0 1 -1
 0 -1 1;
run;
quit;
The GLM Procedure

 <output omitted>

Contrast DF Contrast SS Mean Square F Value

collcat 2v3 with mealcat 1v2 1 48958.23687 48958.23687 10.46
somceat 2v3 with mealcat 2v3 1 1535.28987 1535.28987 0.33

Contrast Pr > F

collcat 2v3 with mealcat 1v2 0.0013
somceat 2v3 with mealcat 2v3 0.5671

6.5.2 Analyzing interaction contrasts using PROC REG

In regression analysis, we have seen that difference coding schemes of the variables give us difference
contrasts and comparisons. Because we would like to compare groups 1 vs. 2, and then groups 2 vs. 3

 287

on mealcat, we will use forward difference coding for mealcat (which will compare 1 vs. 2, then 2 vs.
3).

data reg4;
 set elemapi2;
 if mealcat = 1 then m1 = 2/3;
 if mealcat = 2 then m1 = -1/3;
 if mealcat = 3 then m1 = -1/3;
 if mealcat = 1 then m2 = 1/3;
 if mealcat = 2 then m2 = 1/3;
 if mealcat = 3 then m2 = -2/3;

 if collcat = 1 then s1 = 2/3;
 if collcat = 2 then s1 = -1/3;
 if collcat = 3 then s1 = -1/3;
 if collcat = 1 then s2 = 0;
 if collcat = 2 then s2 = 1/2;
 if collcat = 3 then s2 = -1/2;

 sm11 = s1*m1;
 sm12 = s1*m2;
 sm21 = s2*m1;
 sm22 = s2*m2;
run;

proc reg data = reg4;
 model api00 = s1 s2 m1 m2 sm11 sm12 sm21 sm22;
run;
quit;
The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

Model 8 6243715 780464 166.76 <.0001
Error 391 1829957 4680.19741
Corrected Total 399 8073672

Root MSE 68.41197 R-Square 0.7733
Dependent Mean 647.62250 Adj R-Sq 0.7687
Coeff Var 10.56356

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 650.08826 3.87189 167.90 <.0001
s1 1 -25.04078 8.34539 -3.00 0.0029
s2 1 -2.81094 9.32938 -0.30 0.7633
m1 1 181.04135 9.07713 19.94 <.0001
m2 1 112.36892 9.90759 11.34 <.0001
sm11 1 69.78440 21.47520 3.25 0.0013

 288

sm12 1 -25.40675 21.06663 -1.21 0.2285
sm21 1 62.53325 19.33438 3.23 0.0013
sm22 1 13.86697 24.21132 0.57 0.5671

6.6 Computing Adjusted Means

Our model will be almost the same as before, in addition we include an additional covariate emer. We
want to obtain the adjusted means of api00 adjusted for variable emer. These adjusted means compute
the mean that would be expected if every school in the sample were at the mean for the variable emer.

6.6.1 Computing Adjusted Means via PROC GLM

The syntax to get the adjusted means using proc glm is as follows. The default is to adjust at the means
and it can be changed by using at variable = value option following the lsmeans statement.

proc glm data = elemapi2;
 class collcat mealcat;
 model api00 = collcat mealcat collcat*mealcat emer /ss3;
 lsmeans collcat*mealcat;
run;
quit;
The GLM Procedure
 Sum of
Source DF Squares Mean Square F Value Pr > F
Model 9 6402428.265 711380.918 166.01 <.0001
Error 390 1671243.733 4285.240
Corrected Total 399 8073671.998

R-Square Coeff Var Root MSE api00 Mean
0.793001 10.10801 65.46175 647.6225

Source DF Type III SS Mean Square F Value Pr > F
collcat 2 34730.090 17365.045 4.05 0.0181
mealcat 2 3017331.845 1508665.923 352.06 <.0001
collcat*mealcat 4 96789.116 24197.279 5.65 0.0002
emer 1 158713.455 158713.455 37.04 <.0001
collcat mealcat api00 LSMEAN
1 1 797.560428
1 2 596.972811
1 3 509.872241
2 1 812.550248
2 2 636.404940
2 3 523.884659
3 1 767.935241
3 2 652.976146
3 3 550.461628

6.6.2 Computing Adjusted Means via REGRESSION

Now we illustrate how to get the same adjusted means if you were to to the analysis via the proc reg.
First, we need to create all the necessary dummy variables for the categorical variables. The choice of
coding schemes does not matter for the purpose of obtaining the adjusted means. We choose the same
coding scheme we used before for both mealcat and collcat below. After coding our variables properly,
we proceed to proc reg to generate the regression equation used later in the proc score statement to

 289

generate predicted valued based on the equation. The proc sql statement below simply generates a new
variable meanemer as the mean of emer.

data reg6;
 set elemapi2;
 if collcat = 1 then s2 = 2/3;
 if collcat = 2 then s2 = -1/3;
 if collcat = 3 then s2 = -1/3;
 if collcat = 1 then s3 = -1/3;
 if collcat = 2 then s3 = 2/3;
 if collcat = 3 then s3 = -1/3;
 if mealcat = 1 then m2 = 2/3;
 if mealcat = 2 then m2 = -1/3;
 if mealcat = 3 then m2 = -1/3;
 if mealcat = 1 then m3 = -1/3;
 if mealcat = 2 then m3 = 2/3;
 if mealcat = 3 then m3 = -1/3;
 sm22 = s2*m2;
 sm23 = s2*m3;
 sm32 = s3*m2;
 sm33 = s3*m3;
run;

proc reg data = reg6 outest = pred6 noprint;
 yhat: model api00 = s2 s3 m2 m3 sm22 sm23 sm32 sm33 emer;
run;
quit;

proc sql;
 create table xy as
 select *, mean(emer) as meanemer
 from reg6;
quit;

NOTE: You need to rename meanemer to emer or else the proc score will not work The variables
listed on the var statement in the proc score must be the same as the IVs in the regression. If they are
not, you get a cryptic message about not finding a variable , even though you can see the variable in the
data set.

data xyz;
 set xy;
 emer = meanemer;
run;

proc score data = xyz score = pred6 out = ep type = parms;
 var s2 s3 m2 m3 sm22 sm23 sm32 sm33 emer;
run;

proc means data = ep mean;
 class collcat mealcat;
 var yhat;
run;
The MEANS Procedure

 Analysis Variable : yhat

 Percentage

 290

 free meals
 in 3 N
 collcat categories Obs Mean

 1 1 35 797.5629402
 2 20 596.9753239
 3 74 509.8747538
 2 1 43 812.5527606
 2 43 636.4074521
 3 48 523.8871715
 3 1 53 767.9377531
 2 69 652.9786583
 3 15 550.4641407

6.7 More Details on Meaning of the Coefficients

So far we have discussed a variety of techniques that you can use to help interpret interactions of
categorical variables in regression, but we have not gone into a great detail about the meaning of the
coefficients in these analyses. Let's consider this further. Consider the analysis below using collcat and
mealcat, using simple contrasts on both of these variables. The reference group for both variables will
be group 1.

data reg7;
 set elemapi2;
 if collcat = 1 then s1 = -1/3;
 if collcat = 2 then s1 = 2/3;
 if collcat = 3 then s1 = -1/3;
 if collcat = 1 then s2 = -1/3;
 if collcat = 2 then s2 = -1/3;
 if collcat = 3 then s2 = 2/3;
 if mealcat = 1 then m1 = -1/3;
 if mealcat = 2 then m1 = 2/3;
 if mealcat = 3 then m1 = -1/3;
 if mealcat = 1 then m2 = -1/3;
 if mealcat = 2 then m2 = -1/3;
 if mealcat = 3 then m2 = 2/3;
 sm11 = s1*m1;
 sm12 = s1*m2;
 sm21 = s2*m1;
 sm22 = s2*m2;
run;

proc reg data = reg7;
 model api00 = s1 s2 m1 m2 sm11 sm12 sm21 sm22;
 output out = predreg7 p = yhat;
run;
quit;
The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F

 291

Model 8 6243715 780464 166.76 <.0001
Error 391 1829957 4680.19741
Corrected Total 399 8073672

Root MSE 68.41197 R-Square 0.7733
Dependent Mean 647.62250 Adj R-Sq 0.7687
Coeff Var 10.56356

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 650.08826 3.87189 167.90 <.0001
s1 1 23.63531 9.10533 2.60 0.0098
s2 1 26.44625 9.99513 2.65 0.0085
m1 1 -181.04135 9.07713 -19.94 <.0001
m2 1 -293.41027 9.44946 -31.05 <.0001
sm11 1 38.51777 24.19532 1.59 0.1122
sm12 1 6.17754 20.08262 0.31 0.7585
sm21 1 101.05102 22.88808 4.42 <.0001
sm22 1 82.57776 24.43941 3.38 0.0008

We can produce the adjusted means as shown below. These will be useful for interpreting the meaning
of the coefficients.

proc means data = predreg7 mean;
 class collcat mealcat;
 var yhat;
run;
The MEANS Procedure

 Analysis Variable : yhat Predicted Value of api00

 Percentage
 free meals
 in 3 N
 collcat categories Obs Mean

 1 1 35 816.9142857
 2 20 589.3500000
 3 74 493.9189189
 2 1 43 825.6511628
 2 43 636.6046512
 3 48 508.8333333
 3 1 53 782.1509434
 2 69 655.6376812
 3 15 541.7333333

Let's consider the meaning of the coefficient for s1. The coding for this variable compares group 2 vs.
group 1, hence this coefficient corresponds to mean(collcat = 2) - mean(collcat = 1). Note that these are
the unweighted means, so we compute the mean for collcat = 2 as the mean of the 3 cells corresponding
to collcat = 2, i.e. (825.651+636.605+508.833)/3 . If we compare the result below to the coefficient for
s1 we see that they are the same,

 292

(825.651+636.605+508.833)/3 - (816.914+589.35+493.919)/3 = 23.635333.

Likewise, the coefficient for s2 is mean(collcat = 3) - mean(collcat = 1), computed below. The value
below corresponds to the coefficient for s2.

(782.151+655.638+541.733)/3 - (816.914+589.35+493.919)/3 = 26.446333

Likewise, the coefficient for m1 works out to be mean(mealcat = 2) - mean(mealcat = 1), computed
below.

(589.35+636.605+655.638)/3 - (816.914+825.651+782.151)/3 = -181.041.

And the coefficient for m2 is mean(mealcat = 3) - mean(mealcat = 1), computed below.

(493.919+508.833+541.733)/3 - (816.914+825.651+782.151)/3 = -293.41033

To get the meaning of the coefficients for the interaction terms, let's write out the regression equation
and take a closer look at the coefficients. From the parameter estimates, we have the following linear
equation for predicted values:

yhat = 650.090 + 23.635*s1 + 26.446*s2
 - 181.042*m1 - 293.412*m2
 + 38.518*s1*m1 + 6.178*s1*m2
 + 101.051*s2*m1 + 82.578*s2*m2.

Because of the simple coding scheme we use for both variables, we have from the above equation,

yhat(collcat = 2) - yhat(collcat = 1) = 23.635 + 38.518*ms1 + 6.178*ms2.

One way to think about this equation is that for any level of mealcat comparing group 2 vs. group 1 on
collcat only involves s1. It then follows that the coefficient for sm11 is to compare the difference of
group 2 vs. 1 on collcat when mealcat is 2 with the difference of group 2 vs. 1 on collcat when
mealcat is 1. In other words, sm11 is

[cell(2,2)-cell(1,2)] - [cell(2,1)-cell(1,1)].

Plugging all the corresponding cell means to the above formula, we get

 (636.6047 - 589.3500) - (825.6512 - 816.9143) = 38.5175,

which is the coefficient for sm11. Using the same argument, we can have the following

sm11 : [cell(2,2)-cell(1,2)] - [cell(2,1)-cell(1,1)],

sm12 : [cell(2,3)-cell(1,3)] - [cell(2,1)-cell(1,1)],

sm21 : [cell(3,2)-cell(1,2)] - [cell(3,1)-cell(1,1)],

sm22 : [cell(3,3)-cell(1,3)] - [cell(3,1)-cell(1,1)].

 293

We can go through the same process to verify the meaning of the coefficients for the other 3 interaction
terms. We verify that sm12 is 6.1775.

(508.8333 - 493.9189) - (825.6512 - 816.9143) = 6.1775.

We also verify that sm21 is 101.051.

(655.6377 - 589.3500) - (782.1509 - 816.9143) = 101.0511.

Last we verify that sm22 is 82.5778.

(541.7333 - 493.9189) - (782.1509 - 816.9143) = 82.5778.

6.8 Simple Effects via Dummy Coding vs. Effect Coding

We have used in this chapter different types of coding schemes. You may wonder why we have gone to
the effort of creating and testing these effects instead of just using dummy coding and what is the
difference between different coding schemes and how to choose them. In this section, let's compare
how to get simple effects using the effect coding to how we would get simple effects using dummy
coding. We hope to show that it is much easier to use effect coding so that the interpretation of the
coefficients is much more intuitive.

6.8.1 Example 1. Simple effects of yr_rnd at levels of mealcat

Let's use an example from Chapter 3 (section 3.5). In that example we looked at and analysis using
mealcat and yr_rnd and the interaction of these two variables. First, we look at how to do a simple
effects analysis looking at the simple effects of yr_rnd at each level of mealcat using effect coding. To
make our results correspond to those from Chapter 3, we will make category 3 of mealcat the reference
category.

data reg8;
 set elemapi2;
 if mealcat = 1 then do; ms1 =2/3; ms2 = -1/3; end;
 if mealcat = 2 then do; ms1 =-1/3; ms2= 2/3; end;
 if mealcat = 3 then do; ms1 =-1/3; ms2 = -1/3; end;
 if yr_rnd = 0 then yr1 = -1/2;
 else yr1 = 1/2;
 ym1 = 0;
 ym2 = 0;
 ym3 = 0;
 if mealcat = 1 then ym1 = yr1;
 if mealcat = 2 then ym2 = yr1;
 if mealcat = 3 then ym3 = yr1;
run;
proc reg data = reg8;
 model api00 = ms1 ms2 ym1 ym2 ym3;
run;
quit;
The REG Procedure
Model: MODEL1
Dependent Variable: API00 api 2000
 Analysis of Variance

http://www.ats.ucla.edu/stat/spss/webbooks/reg/chapter3/spssreg3.htm

 294

 Sum of Mean
Source DF Squares Square F Value Pr > F
Model 5 6204728 1240946 261.61 <.0001
Error 394 1868944 4743.51314
Corrected Total 399 8073672

Root MSE 68.87317 R-Square 0.7685
Dependent Mean 647.62250 Adj R-Sq 0.7656
Coeff Var 10.63477

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|
Intercept Intercept 1 632.23557 5.80048 109.00 <.0001
MS1 1 267.81076 14.61559 18.32 <.0001
MS2 1 114.65715 11.12812 10.30 <.0001
ym1 1 -74.25691 26.75629 -2.78 0.0058
ym2 1 -51.74017 18.88854 -2.74 0.0064
ym3 1 -33.49254 11.77129 -2.85 0.0047
Now we can obtain the simple effect of yr_rnd at mealcat = 1 by inspecting the coefficient for ym1,
the simple effect of yr_rnd at mealcat = 2 by inspecting the coefficient for ym2 and the simple effect
of yr_rnd at mealcat = 3 by inspecting the coefficient for ym3.

Now let's perform the same analysis using dummy coding. Again, we will explicitly make the 3rd
category for mealcat to be the omitted category.

data reg9;
 set elemapi2;
 if mealcat = 1 then do; md1 = 1; md2 = 0; end;
 if mealcat = 2 then do; md1 = 0; md2 = 1; end;
 if mealcat = 3 then do; md1 = 0; md2 = 0; end;
 ymd1 = yr_rnd*md1;
 ymd2 = yr_rnd*md2;
run;
proc reg data = reg9;
 model api00 = yr_rnd md1 md2 ymd1 ymd2;
run;
The REG Procedure
Model: MODEL1
Dependent Variable: API00

 Parameter Estimates

 Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 521.49254 8.41420 61.98 <.0001
YR_RND 1 -33.49254 11.77129 -2.85 0.0047
MD1 1 288.19295 10.44284 27.60 <.0001
MD2 1 123.78097 10.55185 11.73 <.0001
ymd1 1 -40.76438 29.23118 -1.39 0.1639
ymd2 1 -18.24763 22.25624 -0.82 0.4128

In order to form a test of simple main effects we need to make a table like the one shown below that
relates the cell means to the coefficients in the regression. Please see Chapter 3, section 3.5 for
information on how this table was constructed.

 295

 mealcat=1 mealcat=2 mealcat=3

 yr_rnd=0 const const const
 + md1 + md2

 yr_rnd=1 const const const
 + yr_rnd + yr_rnd + yr_rnd
 + md1 + md2
 + ymd1 + ymd2

Let's start by looking at how to get the simple effect of yr_rnd when mealcat is 3. Looking at the table
above, we can see that we would want to compare const with const + yr_rnd, , which is the same as
testing the coefficient for yr_rnd is zero. This is a single parameter test and is shown in the output
above. The t-value is -2.85 and the p-value is .0047.
Note that the coefficient for yr_rnd corresponds to the test of the effect of yr_rnd when all other
variables are set to 0 (the reference category), i.e. when mealcat is set to the reference category. You
may be tempted to interpret the coefficient for yr_rnd as the overall difference between year round
schools and non-year round schools, but in this example we see that it really corresponds to the simple
effect of yr_rnd. When using dummy coding people commonly misinterpret the lower order effects to
refer to overall effects rather than simple effects.

Now let's look at the simple effect of yr_rnd when mealcat=1. Looking at the table above we see that
this involves the comparison of the coefficients for yr_rnd=1 vs. yr_rnd=0 when mealcat=1, i.e.
comparing const + yr_rnd +md1 + ymd1 vs. const + md1. Removing the terms that drop out we see
that to test the simple effect of yr_rnd when mealcat = 1 is the same to test yr_rnd + ymd1 = 0. We
will have to do a test statement here following the previous proc reg.

 test yr_rnd + ymd1 = 0;
run;
quit;
 Test 1 Results for Dependent Variable API00

 Mean
Source DF Square F Value Pr > F

Numerator 1 36536 7.70 0.0058
Denominator 394 4743.51314
These examples illustrate that it is more complicated to form simple effects when using dummy coding,
and also that the interpretation of lower order effects when using dummy coding may not have the
meaning that you would expect.

 6.8.2 Example 2. Simple effects of mealcat at levels of yr_rnd

Example 1 looked at simple effects for yr_rnd, a variable with only 2 levels and it showed how to use
the test statement in SAS for it. In this example, let's consider the simple effects of mealcat at each
level of yr_rnd. Because mealcat has more than 2 levels, we will see what is required for doing tests of
simple effects for variables with more than 2 levels. We will show both proc glm and proc reg
approach here.

proc glm data = elemapi2;
 class yr_rnd mealcat;

 296

 model api00 = yr_rnd mealcat yr_rnd*mealcat;
 contrast '1' mealcat 1 0 -1
 yr_rnd*mealcat 1 0 -1
 0 0 0,
 mealcat 0 1 -1
 yr_rnd*mealcat 0 1 -1
 0 0 0;
 contrast '2' mealcat 1 0 -1
 yr_rnd*mealcat 0 0 0
 1 0 -1,
 mealcat 0 1 -1
 yr_rnd*mealcat 0 0 0
 0 1 -1;
run;
quit;
The GLM Procedure

<output omitted>
Contrast DF Contrast SS Mean Square F Value Pr > F

1 2 3903569.804 1951784.902 411.46 <.0001
2 2 476157.455 238078.727 50.19 <.0001

Here is how to do it with proc reg. The first test statement below looks at mealcat at yr_rnd = 0 and the
second test statement looks at mealcat at yr_rnd = 1.

data reg10;
 set elemapi2;
 if yr_rnd = 0 then yrrnd = -.5;
 if yr_rnd = 1 then yrrnd = .5;
 if mealcat = 1 then m1 = 2/3;
 if mealcat = 2 then m1 = -1/3;
 if mealcat = 3 then m1 = -1/3;
 if mealcat = 1 then m2 = -1/3;
 if mealcat = 2 then m2 = 2/3;
 if mealcat = 3 then m2 = -1/3;
 if yr_rnd = 0 then my11 = m1; else my11 = 0;
 if yr_rnd = 0 then my21 = m2; else my21 = 0;
 if yr_rnd = 1 then my12 = m1; else my12 = 0;
 if yr_rnd = 1 then my22 = m2; else my22 = 0;
run;
proc reg data = reg10;
 model api00 = yrrnd my11 my21 my12 my22;
 test my11 = my21 = 0;
 test my12 = my22 = 0;
run;
quit;
The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Parameter Estimates

 Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|
Intercept Intercept 1 632.23557 5.80048 109.00 <.0001
yrrnd 1 -53.16321 11.60095 -4.58 <.0001
my11 1 288.19295 10.44284 27.60 <.0001

 297

my21 1 123.78097 10.55185 11.73 <.0001
my12 1 247.42857 27.30218 9.06 <.0001
my22 1 105.53333 19.59588 5.39 <.0001

 Test 1 Results for Dependent Variable api00

 Mean
Source DF Square F Value Pr > F
Numerator 2 1951785 411.46 <.0001
Denominator 394 4743.51314

 Test 2 Results for Dependent Variable api00

 Mean
Source DF Square F Value Pr > F
Numerator 2 238079 50.19 <.0001
Denominator 394 4743.51314

We can also test the simple effects of mealcat at each level of yr_rnd via dummy coding. In SAS, each
equal sign in the test statement equals one degree of freedom: because there are two equals signs in the
second test statement, it is a two degree-of-freedom test, which is meant to do. The same logic holds
true for the fourth test statement and this test is the simple effect of mealcat when yr_rnd=1.

data reg11;
 set elemapi2;
 m1 = 0;
 if mealcat = 1 then m1 = 1;
 m2 = 0;
 if mealcat = 2 then m2 = 1;
 m1y = m1*yr_rnd;
 m2y = m2*yr_rnd;
run;
proc reg data = reg11;
 model api00 = m1 m2 yr_rnd m1y m2y;
 test m1 - m2 = 0;
 test m1 = m2 = 0;
 test m1 + m1y - m2 - m2y = 0;
 test m1 + m1y = m2 + m2y = 0;
run;
quit;
The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Test 1 Results for Dependent Variable api00

 Mean
Source DF Square F Value Pr > F

Numerator 1 1627262 343.05 <.0001
Denominator 394 4743.51314

 Test 2 Results for Dependent Variable api00

 Mean
Source DF Square F Value Pr > F

 298

Numerator 2 1951785 411.46 <.0001
Denominator 394 4743.51314

 Test 3 Results for Dependent Variable api00

 Mean
Source DF Square F Value Pr > F

Numerator 1 96095 20.26 <.0001
Denominator 394 4743.51314

 Test 4 Results for Dependent Variable api00

 Mean
Source DF Square F Value Pr > F

Numerator 2 238079 50.19 <.0001
Denominator 394 4743.51314

Regression with SAS
Chapter 7: Categorical and Continuous Predictors and
Interactions

Chapter Outline
 1. Continuous and categorical predictors without interaction
 2. Continuous and categorical predictors with interaction
 3. Show slopes for each group
 3.1 Show slopes by performing separate analyses
 3.2 Show slopes for each group from one analysis
 4. Compare slopes across groups
 5. Simple effects and simple comparisons of group, strategy 1
 5.1 Simple effects and comparisons when meals is 1 sd below mean
 5.2 Simple effects and comparisons when meals is at the mean
 5.3 Simple effects and comparisons when meals is 1 sd above the mean
 6. Simple effects and simple comparisons of group, strategy 2
 7. More on predicted values

1.0 Continuous and categorical predictors without interaction

data elemapi2;
 set 'd:\sas\sasdata\elemapi2';
run;

Creating the variables Icollcat2 and Icollcat3 by using the reverse Helmert coding on collcat.

data elemapi2;

http://www.ats.ucla.edu/stat/sas/webbooks/reg/default.htm

 299

 set elemapi2;
 Icollcat2 = 0;
 if collcat = 1 then Icollcat2 = -.5;
 if collcat = 2 then Icollcat2 = .5;
 Icollcat3 = 2/3;
 if collcat = 1 then Icollcat3 = -1/3;
 if collcat = 2 then Icollcat3 = -1/3;
run;
proc freq data=elemapi2;
 tables (Icollcat2 Icollcat3)*collcat/ norow nocol nopercent ;
run;
The FREQ Procedure

Table of Icollcat2 by collcat
Icollcat2 collcat

Frequency| 1| 2| 3| Total
---------+--------+--------+--------+
 -0.5 | 129 | 0 | 0 | 129
---------+--------+--------+--------+
 0 | 0 | 0 | 137 | 137
---------+--------+--------+--------+
 0.5 | 0 | 134 | 0 | 134
---------+--------+--------+--------+
Total 129 134 137 400
Table of Icollcat3 by collcat
Icollcat3 collcat

Frequency | 1| 2| 3| Total
-------------+--------+--------+--------+
-0.333333333 | 129 | 134 | 0 | 263
-------------+--------+--------+--------+
0.6666666667 | 0 | 0 | 137 | 137
-------------+--------+--------+--------+
Total 129 134 137 400

Traditional ANCOVA: regressing a continuous dependent variable on predictors that includes both
categorical and
continuous predictors (without any interactions).

proc reg data= elemapi2;
 model api00 = Icollcat2 Icollcat3 meals;
 output out=temp p=predict;
run;
quit;
The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F
Model 3 6586952 2195651 584.83 <.0001
Error 396 1486720 3754.34394
Corrected Total 399 8073672

Root MSE 61.27270 R-Square 0.8159

 300

Dependent Mean 647.62250 Adj R-Sq 0.8145
Coeff Var 9.46118
 Parameter Estimates

 Parameter Standard
Variable DF Estimate Error t Value Pr > |t|
Intercept 1 885.17891 6.71886 131.75 <.0001
Icollcat2 1 14.01454 7.62786 1.84 0.0669
Icollcat3 1 17.23322 6.58145 2.62 0.0092
meals 1 -3.94267 0.09883 -39.89 <.0001

Generating the graph with a regression line for each level of collcat.
Note: Each line has the same slope, namely the coefficient of meals in the regression output. The
coefficient of
Icollcat2 is the difference in y-intercepts between the lines for collcat=1 and collcat=2 whereas the
coefficient of
Icollcat3 is the difference in y-intercept between the line for collcat=3 and the average of the lines for
collcat=1
and collcat=2. This is simply a result of using the reverse Helmert coding for collcat when creating
Icollcat2 and
Icollcat3.

goptions reset=all;
symbol1 v=square i=join c=blue h=.6;
symbol2 v=dot i=join c=red h=.6;
symbol3 v=plus i=join c=green h=.6;
axis1 label=(a=90 'Predicted');

proc gplot data=temp;
 plot predict*meals=collcat/overlay vaxis=axis1;
run;
quit;

2.0 Continuous and categorical predictors with interaction

Testing the homogeneity of slopes by creating the two interactions and then testing to see if the overall
interaction is significant.

 301

data elemapi2;
 set elemapi2;
 Icolmeal2 = Icollcat2*meals;
 Icolmeal3 = Icollcat3*meals;
run;
proc reg data=elemapi2;
 model api00 = meals Icollcat2 Icollcat3 Icolmeal2 Icolmeal3;
 output out=temp p=predict;
 interaction: test Icolmeal2=Icolmeal3=0;
run;
quit;
The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F
Model 5 6629930 1325986 361.86 <.0001
Error 394 1443742 3664.32012
Corrected Total 399 8073672

Root MSE 60.53363 R-Square 0.8212
Dependent Mean 647.62250 Adj R-Sq 0.8189
Coeff Var 9.34705
 Parameter Estimates

 Parameter Standard
Variable DF Estimate Error t Value Pr > |t|
Intercept 1 882.47026 6.69004 131.91 <.0001
meals 1 -3.85935 0.10064 -38.35 <.0001
Icollcat2 1 10.29492 16.24717 0.63 0.5267
Icollcat3 1 -26.42920 14.31193 -1.85 0.0655
Icolmeal2 1 0.02815 0.22250 0.13 0.8994
Icolmeal3 1 0.79489 0.23242 3.42 0.0007
The REG Procedure
Model: MODEL1

 Test interaction Results for Dependent Variable api00

 Mean
Source DF Square F Value Pr > F
Numerator 2 21489 5.86 0.0031
Denominator 394 3664.32012

Generating a graph with a regression line for each of the levels of collcat.
Note: The lines are no longer parallel like they were in the previous graph which we
expected to see since the overall interaction test was significant.

goptions reset=all;
symbol1 v=square i=join c=blue h=.6;
symbol2 v=dot i=join c=red h=.6;
symbol3 v=plus i=join c=green h=.6;
axis1 label=(a=90 'Predicted');

proc gplot data=temp;
 plot predict*meals = collcat/overlay vaxis=axis1;

 302

run;
quit;

3.0 Show slopes for each group

3.1 Show slopes by performing separate analyses

It is entirely possible to get the slope and y-intercept for the regression line for each of
the levels of collcat. The by statement in the regression will accomplish this very easily.
Note: We need to sort the data set on collcat before we can use the by statement.

proc sort data=elemapi2 out=elemapisort;
 by collcat;
run;
proc reg data=elemapisort;
 by collcat;
 model api00=meals;
run;
quit;
collcat=1
The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F
Model 1 2617393 2617393 664.41 <.0001
Error 127 500307 3939.42342
Corrected Total 128 3117699

Root MSE 62.76483 R-Square 0.8395
Dependent Mean 596.34884 Adj R-Sq 0.8383
Coeff Var 10.52485
 Parameter Estimates

 Parameter Standard

 303

Variable DF Estimate Error t Value Pr > |t|
Intercept 1 886.13253 12.52709 70.74 <.0001
meals 1 -4.13839 0.16055 -25.78 <.0001
collcat=2

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F
Model 1 2424782 2424782 676.61 <.0001
Error 132 473050 3583.71194
Corrected Total 133 2897832

Root MSE 59.86411 R-Square 0.8368
Dependent Mean 651.50000 Adj R-Sq 0.8355
Coeff Var 9.18866
 Parameter Estimates

 Parameter Standard
Variable DF Estimate Error t Value Pr > |t|
Intercept 1 896.42745 10.74270 83.45 <.0001
meals 1 -4.11024 0.15801 -26.01 <.0001
collcat=3

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F
Model 1 975466 975466 279.96 <.0001
Error 135 470385 3484.33611
Corrected Total 136 1445851

Root MSE 59.02827 R-Square 0.6747
Dependent Mean 692.10949 Adj R-Sq 0.6723
Coeff Var 8.52875
 Parameter Estimates

 Parameter Standard
Variable DF Estimate Error t Value Pr > |t|
Intercept 1 864.85079 11.48996 75.27 <.0001
meals 1 -3.32943 0.19899 -16.73 <.0001

3.2 Obtaining slopes for each group in one analysis

Obtaining the slope of meals for each level of collcat by first sorting the data and then using a by
statement can be a bit cumbersome. Instead we can use the estimate statement in proc glm. Recall the
variable coded using the reverse Helmert coding:

 collcat Icollcat2 Icollcat3
 1 -.5 -1/3
 2 .5 -1/3
 3 0 -2/3

Thus, in order to get the slope of meals we need to have the appropriate coefficient for each of the
interaction variables. For example, for the collcat=1 group the coefficient for Icolmeal2 will be the
coefficient in the column for Icollcat2 in the collcat=1 row in the table above. In other words, the
coefficient for Icolmeal2 will be -.5. This is because Icolmeal2 is the interaction of Icollcat2 and meals.

 304

Using the same logic we find that the coefficient for Icolmeal3 is -1/3, the coefficient for Icollcat3 in
the collcat=1 row in the table above. Furthermore, using the same reasoning we find that for the
collcat=2 group the coefficient for Icolmeal2 is .5 and for Icolmeal3 the coefficient is -1/3. For the
collcat=3 group the coefficient for
Icolmeal2 is 0 and for Icolmeal3 it is -2/3.

Note: We are using the regression coding and the proc glm is missing a class statement which means
that proc glm is basically functioning as a proc reg--but it is a new an improved proc reg because now it
has an estimate statement!!!!

proc glm data=elemapi2;
 model api00 = meals Icollcat2 Icollcat3 Icolmeal2 Icolmeal3;
 estimate 'slope of meals at collcat=1' meals 1 Icolmeal2 -.5
 Icolmeal3 -.333333333;
 estimate 'slope of meals at collcat=2' meals 1 Icolmeal2 .5
 Icolmeal3 -.3333333333;
 estimate 'slope of meals at collcat=3' meals 1 Icolmeal2 0
 Icolmeal3 .666666667;
run;
quit;
The GLM Procedure
Number of observations 400
The GLM Procedure

Dependent Variable: api00 api 2000
 Sum of
Source DF Squares Mean Square F Value Pr > F
Model 5 6629929.872 1325985.974 361.86 <.0001
Error 394 1443742.126 3664.320
Corrected Total 399 8073671.998
R-Square Coeff Var Root MSE api00 Mean
0.821179 9.347054 60.53363 647.6225
Source DF Type I SS Mean Square F Value Pr > F
meals 1 6549825.145 6549825.145 1787.46 <.0001
Icollcat2 1 11385.768 11385.768 3.11 0.0787
Icollcat3 1 25740.884 25740.884 7.02 0.0084
Icolmeal2 1 115.990 115.990 0.03 0.8589
Icolmeal3 1 42862.086 42862.086 11.70 0.0007
Source DF Type III SS Mean Square F Value Pr > F
meals 1 5389132.969 5389132.969 1470.70 <.0001
Icollcat2 1 1471.242 1471.242 0.40 0.5267
Icollcat3 1 12495.833 12495.833 3.41 0.0655
Icolmeal2 1 58.655 58.655 0.02 0.8994
Icolmeal3 1 42862.086 42862.086 11.70 0.0007
 Standard
Parameter Estimate Error t Value Pr > |t|
slope of meals at collcat=1 -4.13839216 0.15484383 -26.73 <.0001
slope of meals at collcat=2 -4.11024157 0.15978196 -25.72 <.0001
slope of meals at collcat=3 -3.32942579 0.20406098 -16.32 <.0001
 Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 882.4702589 6.69003553 131.91 <.0001
meals -3.8593532 0.10063563 -38.35 <.0001
Icollcat2 10.2949246 16.24717093 0.63 0.5267
Icollcat3 -26.4292002 14.31192705 -1.85 0.0655
Icolmeal2 0.0281506 0.22250143 0.13 0.8994
Icolmeal3 0.7948911 0.23241688 3.42 0.0007

 305

Obtaining the exact same results using the GLM default coding (and a class statement so that proc glm
functions
as proc glm and not as a proc reg).

proc glm data=elemapi2;
 class collcat;
 model api00 = meals collcat collcat*meals ;
 estimate 'slope of meals at collcat=1' meals 1 collcat*meals 1 0 0;
 estimate 'slope of meals at collcat=2' meals 1 collcat*meals 0 1 0;
 estimate 'slope of meals at collcat=3' meals 1 collcat*meals 0 0 1;
run;
quit;
The GLM Procedure

 Class Level Information

Class Levels Values
collcat 3 1 2 3

Number of observations 400
The GLM Procedure
Dependent Variable: api00 api 2000

 Sum of
Source DF Squares Mean Square F Value Pr > F
Model 5 6629929.872 1325985.974 361.86 <.0001
Error 394 1443742.126 3664.320
Corrected Total 399 8073671.998
R-Square Coeff Var Root MSE api00 Mean
0.821179 9.347054 60.53363 647.6225
Source DF Type I SS Mean Square F Value Pr > F
meals 1 6549825.145 6549825.145 1787.46 <.0001
collcat 2 37126.652 18563.326 5.07 0.0067
meals*collcat 2 42978.076 21489.038 5.86 0.0031
Source DF Type III SS Mean Square F Value Pr > F
meals 1 5389132.969 5389132.969 1470.70 <.0001
collcat 2 14535.351 7267.676 1.98 0.1390
meals*collcat 2 42978.076 21489.038 5.86 0.0031
 Standard
Parameter Estimate Error t Value Pr > |t|
slope of meals at collcat=1 -4.13839216 0.15484383 -26.73 <.0001
slope of meals at collcat=2 -4.11024157 0.15978196 -25.72 <.0001
slope of meals at collcat=3 -3.32942579 0.20406098 -16.32 <.0001

4.0 Comparing Slopes Across Groups

By using the reverse Helmert coding we can compare slopes of group 1 versus group2
by looking at the t-test for the coefficient of Icolmeal2. We can compare the slopes of
group 3 versus the average of groups 1 and 2 by looking at the t-test for the coefficient
of Icolmeal2 and Icolmeal3. From this we can conclude that the slopes of groups 1 and 2 are not
significantly different (p=0.8994) but that the slope of group 3 is significantly different
from the slope of the average of groups 1 and 2 (p=0.0007).

proc reg data=elemapi2;
 model api00 = meals Icollcat2 Icollcat3 Icolmeal2 Icolmeal3;
run;

 306

quit;
The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F
Model 5 6629930 1325986 361.86 <.0001
Error 394 1443742 3664.32012
Corrected Total 399 8073672

Root MSE 60.53363 R-Square 0.8212
Dependent Mean 647.62250 Adj R-Sq 0.8189
Coeff Var 9.34705
 Parameter Estimates

 Parameter Standard
Variable DF Estimate Error t Value Pr > |t|
Intercept 1 882.47026 6.69004 131.91 <.0001
meals 1 -3.85935 0.10064 -38.35 <.0001
Icollcat2 1 10.29492 16.24717 0.63 0.5267
Icollcat3 1 -26.42920 14.31193 -1.85 0.0655
Icolmeal2 1 0.02815 0.22250 0.13 0.8994
Icolmeal3 1 0.79489 0.23242 3.42 0.0007

5.0 Simple Effects and Simple Comparisons of Groups, method I

The tests of the coefficients of the interactions reflect if the slopes of the groups are
significantly different across the whole dataset. However, sometimes it can be very
informative to test for significant difference between the groups at specific points in the
dataset. A common strategy is to test for differences at the mean, the mean - 1 standard
deviation, the mean + 1 standard deviation. So, we need to calculate the mean and
standard deviation of meals.
Here we insert the graph maybe with circles and/or moving parts!

proc means data=elemapi2 mean std;
 var meals;
run;
proc reg data=elemapi2 noprint;
 model api00 = meals Icollcat2 Icollcat3 Icolmeal2
 Icolmeal3;
 output out=temp p=predict;
run;
quit;
goptions reset=all;
symbol1 v=square i=join c=blue h=.6;
symbol2 v=dot i=join c=red h=.6;
symbol3 v=plus i=join c=green h=.6;
axis1 label=(a=90 'Predicted');
axis2 label=(' ');

proc gplot data=temp;
 plot predict*meals=collcat/overlay vaxis=axis1
 haxis=axis2 href=28.403299 60.3150000 92.226701;
run;

 307

quit;
The MEANS Procedure

Analysis Variable : meals pct free meals

 Mean Std Dev

 60.3150000 31.9117011

5.1 Simple effects and comparisons when meals = means - 1std.

First, we generate a variable for meals that is shifted to be centered at one standard
deviation below the mean using proc sql. We also create new interaction variables
using the new variable for meals.

proc sql;
 create table low as
 select *, meals - (mean(meals) - std(meals)) as meals_low
 from elemapi2;
quit;
data low;
 set low;
 Icolmeals2_low = Icollcat2*meals_low;
 Icolmeals3_low = Icollcat3*meals_low;
run;

Now that we have the new variable for meals we can perform the same regression as previously and the
only difference is that instead of meals we will use meals_low. By using the variable for meals
centered
at one standard deviation below the mean we can now test for group differences at this specific point.
If you refer to the graph above we are testing for group differences at the first vertical line. Since the
three lines are very close together we anticipate that we probably won't find any significant differences.

proc reg data=low;
 model api00 = meals_low Icollcat2 Icollcat3 Icolmeals2_low Icolmeals3_low;
 test: test Icollcat2=Icollcat3=0;

 308

run;
quit;
The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F
Model 5 6629930 1325986 361.86 <.0001
Error 394 1443742 3664.32012
Corrected Total 399 8073672

Root MSE 60.53363 R-Square 0.8212
Dependent Mean 647.62250 Adj R-Sq 0.8189
Coeff Var 9.34705
 Parameter Estimates

 Parameter Standard
Variable DF Estimate Error t Value Pr > |t|
Intercept 1 772.85190 4.36931 176.88 <.0001
meals_low 1 -3.85935 0.10064 -38.35 <.0001
Icollcat2 1 11.09449 11.05054 1.00 0.3160
Icollcat3 1 -3.85167 8.95725 -0.43 0.6674
Icolmeals2_low 1 0.02815 0.22250 0.13 0.8994
Icolmeals3_low 1 0.79489 0.23242 3.42 0.0007

 Test test Results for Dependent Variable api00

 Mean
Source DF Square F Value Pr > F
Numerator 2 2346.37142 0.64 0.5277
Denominator 394 3664.32012

By looking at the coefficient for Icollcat2 in the regression output we can see if the simple comparison
of the group collcat=1 and the group collcat=2 is significant. The t-test has a p-value of 0.316 and this
comparison is therefore not statistically significant at the 0.05 level. We can see if the simple
comparison of groups 3 vs group 12 is significant by looking at the coefficient for Icollcat3. We can
also calculate these numbers by recalling that Icollcat2 is the difference in the y-intercept between
groups 1 and 2. Let's calculate the predicted values (y-intercepts) for group 1 and for group 2 using
proc glm and then we can subtract them to get exactly the coefficient for Icollcat2. We will also obtain
the test of the simple comparison between group 3 and groups 1,2, as well as the predicted values for
groups 12 and 3 at meals=28.4 (one standard deviation below the mean).

Note: We are using the regression coding and the proc glm is missing a class statement which means
that proc glm is basically functioning as a proc reg--but it is a new an improved proc reg because now
it has an estimate statement!!!!

proc glm data=low;
 model api00 = meals_low Icollcat2 Icollcat3 Icolmeals2_low Icolmeals3_low;
 estimate 'simple comparisons group 1 v 2, m=28.4' Icollcat2 1;
 estimate 'predicted value group 1, m=28.4' intercept 1 Icollcat2 -.5
 Icollcat3 -.3333333;
 estimate 'predicted value group 2, m=28.4' intercept 1 Icollcat2 .5
 Icollcat3 -.3333333;

 309

 estimate 'simple comparisons group 3 vs 12, m=28.4' Icollcat3 1;
 estimate 'predicted value group 1,1, m=28.4' intercept 1 Icollcat2 0
 Icollcat3 -.3333333;
 estimate 'predicted value group 2, m=28.4' intercept 1 Icollcat2 0
 Icollcat3 .6666667;
run;
quit;
The GLM Procedure
Number of observations 400
The GLM Procedure

Dependent Variable: api00 api 2000

 Sum of
Source DF Squares Mean Square F Value Pr > F
Model 5 6629929.872 1325985.974 361.86 <.0001
Error 394 1443742.126 3664.320
Corrected Total 399 8073671.998
R-Square Coeff Var Root MSE api00 Mean
0.821179 9.347054 60.53363 647.6225
Source DF Type I SS Mean Square F Value Pr > F
meals_low 1 6549825.145 6549825.145 1787.46 <.0001
Icollcat2 1 11385.768 11385.768 3.11 0.0787
Icollcat3 1 25740.884 25740.884 7.02 0.0084
Icolmeals2_low 1 115.990 115.990 0.03 0.8589
Icolmeals3_low 1 42862.086 42862.086 11.70 0.0007
Source DF Type III SS Mean Square F Value Pr > F
meals_low 1 5389132.969 5389132.969 1470.70 <.0001
Icollcat2 1 3693.531 3693.531 1.01 0.3160
Icollcat3 1 677.552 677.552 0.18 0.6674
Icolmeals2_low 1 58.655 58.655 0.02 0.8994
Icolmeals3_low 1 42862.086 42862.086 11.70 0.0007
 Standard
Parameter Estimate Error t Value Pr >
|t|
comparisons group 1 v 2, m=28.4 11.094494 11.0505357 1.00
0.3160
pred value group 1, m=28.4 768.588540 8.3629162 91.90
<.0001
pred value group 2, m=28.4 779.683035 7.2232933 107.94
<.0001
comparisons group 3 vs 12, m=28.4 -3.851671 8.9572501 -0.43
0.6674
pred value group 1,1, m=28.4 774.135788 5.5252676 140.11
<.0001
pred value group 2, m=28.4 770.284116 7.0500883 109.26
<.0001
 Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 772.8518972 4.36931324 176.88 <.0001
meals_low -3.8593532 0.10063563 -38.35 <.0001
Icollcat2 11.0944942 11.05053567 1.00 0.3160
Icollcat3 -3.8516714 8.95725011 -0.43 0.6674
Icolmeals2_low 0.0281506 0.22250143 0.13 0.8994
Icolmeals3_low 0.7948911 0.23241688 3.42 0.0007
Obtaining the exact same results using the GLM coding (and a class statement so that proc glm
functions as proc glm and not as a proc reg).

 310

proc glm data=elemapi2;
 class collcat;
 model api00 = meals collcat collcat*meals ;
 estimate 'slope of 2 v 1 at m=28.4' collcat -1 1 0 collcat*meals -28.4 28.4 0;
 estimate 'pred values, group 1, m=28.4' intercept 1 meals 28.4 collcat 1 0 0
collcat*meals 28.4 0 0;
 estimate 'pred values, group 2, m=28.4' intercept 1 meals 28.4 collcat 0 1 0
collcat*meals 0 28.4 0;
 estimate 'pred values, group 12, m=28.4' intercept 1 meals 28.4 collcat .5 .5 0
collcat*meals 14.2 14.2 0;
 estimate 'pred values, group 3, m=28.4' intercept 1 meals 28.4 collcat 0 0 1
collcat*meals 0 0 28.4;
 estimate 'slope of 3 v 12 at m=28.4' collcat -.5 -.5 1 collcat*meals -14.2 -14.2
28.4;
run;
quit;

The GLM Procedure

 Class Level Information

Class Levels Values

collcat 3 1 2 3

Number of observations 400
The GLM Procedure
Dependent Variable: api00 api 2000
 Sum of
Source DF Squares Mean Square F Value Pr > F

Model 5 6629929.872 1325985.974 361.86 <.0001
Error 394 1443742.126 3664.320
Corrected Total 399 8073671.998

R-Square Coeff Var Root MSE api00 Mean

0.821179 9.347054 60.53363 647.6225

Source DF Type I SS Mean Square F Value Pr > F

meals 1 6549825.145 6549825.145 1787.46 <.0001
collcat 2 37126.652 18563.326 5.07 0.0067
meals*collcat 2 42978.076 21489.038 5.86 0.0031

Source DF Type III SS Mean Square F Value Pr > F

meals 1 5389132.969 5389132.969 1470.70 <.0001
collcat 2 14535.351 7267.676 1.98 0.1390
meals*collcat 2 42978.076 21489.038 5.86 0.0031

 Standard
Parameter Estimate Error t Value Pr >
|t|

 311

slope of 2 v 1 at m=28.4 11.094401 11.0510713 1.00
0.3160
pred values, group 1, m=28.4 768.602193 8.3633100 91.90
<.0001
pred values, group 2, m=28.4 779.696594 7.2236571 107.94
<.0001
pred values, group 12, m=28.4 774.149393 5.5255356 140.10
<.0001
pred values, group 3, m=28.4 770.295100 7.0505458 109.25
<.0001
slope of 3 v 12 at m=28.4 -3.854294 8.9577754 -0.43
0.6672

5.2 Simple Effects and Comparisons for meals=mean.

First, we generate a variable for meals that is shifted to be centered at the mean using proc sql. We also
create new interaction variables
using the new variable for meals.

proc sql;
 create table mean as
 select *, meals - mean(meals) as meals_mean
 from elemapi2;
quit;
data mean;
 set mean;
 Icolmeals2_mean = Icollcat2*meals_mean;
 Icolmeals3_mean = Icollcat3*meals_mean;
run;

Performing the regression using meals_mean and testing for the simple effects of collcat at
meals=mean. Conclusion: The three groups of collcat are significantly different at meals=mean. The
individual t-tests for Icollcat2 and Icollcat3, however, indicate that only the comparisons between
group 3 and groups 1,2 is significant (p<.000).

proc reg data=mean;
 model api00=meals_mean Icollcat2 Icollcat3 Icolmeals2_mean Icolmeals3_mean;
 test: test Icollcat2=Icollcat3=0;
run;
quit;
The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F
Model 5 6629930 1325986 361.86 <.0001
Error 394 1443742 3664.32012
Corrected Total 399 8073672

Root MSE 60.53363 R-Square 0.8212

 312

Dependent Mean 647.62250 Adj R-Sq 0.8189
Coeff Var 9.34705
 Parameter Estimates

 Parameter Standard
Variable DF Estimate Error t Value Pr > |t|
Intercept 1 649.69337 3.12218 208.09 <.0001
meals_mean 1 -3.85935 0.10064 -38.35 <.0001
Icollcat2 1 11.99283 7.61738 1.57 0.1162
Icollcat3 1 21.51465 6.64932 3.24 0.0013
Icolmeals2_mean 1 0.02815 0.22250 0.13 0.8994
Icolmeals3_mean 1 0.79489 0.23242 3.42 0.0007
 Test test Results for Dependent Variable api00

 Mean
Source DF Square F Value Pr > F
Numerator 2 23138 6.31 0.0020
Denominator 394 3664.32012

Looking at the simple comparisons, first of group 1 vs 2 and then for group 3 vs 1,2 using proc glm.

Note: We are using the regression coding and the proc glm is missing a class statement which means
that proc glm is basically functioning as a proc reg--but it is a new an improved proc reg because now
it has an estimate statement!!!!

proc glm data=mean;
 model api00 =meals_mean Icollcat2 Icollcat3 Icolmeals2_mean Icolmeals3_mean;
 estimate 'simple comparisons group 1 v 2, m=60.3' Icollcat2 1;
 estimate 'simple comparisons group 3 vs 12, m=60.3' Icollcat3 1;
run;
quit;
The GLM Procedure
Number of observations 400
The GLM Procedure

Dependent Variable: api00 api 2000
 Sum of
Source DF Squares Mean Square F Value Pr > F
Model 5 6629929.872 1325985.974 361.86 <.0001
Error 394 1443742.126 3664.320
Corrected Total 399 8073671.998
R-Square Coeff Var Root MSE api00 Mean
0.821179 9.347054 60.53363 647.6225
Source DF Type I SS Mean Square F Value Pr > F
meals_mean 1 6549825.145 6549825.145 1787.46 <.0001
Icollcat2 1 11385.768 11385.768 3.11 0.0787
Icollcat3 1 25740.884 25740.884 7.02 0.0084
Icolmeals2_mean 1 115.990 115.990 0.03 0.8589
Icolmeals3_mean 1 42862.086 42862.086 11.70 0.0007
Source DF Type III SS Mean Square F Value Pr > F
meals_mean 1 5389132.969 5389132.969 1470.70 <.0001
Icollcat2 1 9082.915 9082.915 2.48 0.1162
Icollcat3 1 38362.580 38362.580 10.47 0.0013
Icolmeals2_mean 1 58.655 58.655 0.02 0.8994
Icolmeals3_mean 1 42862.086 42862.086 11.70 0.0007
 Standard
Parameter Estimate Error t Value Pr
> |t|

 313

comparisons group 1 v 2, m=60.3 11.9928275 7.61738092 1.57
0.1162
comparisons group 3 vs 12, m=60.3 21.5146549 6.64931923 3.24
0.0013
 Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 649.6933723 3.12217544 208.09 <.0001
meals_mean -3.8593532 0.10063563 -38.35 <.0001
Icollcat2 11.9928275 7.61738092 1.57 0.1162
Icollcat3 21.5146549 6.64931923 3.24 0.0013
Icolmeals2_mean 0.0281506 0.22250143 0.13 0.8994
Icolmeals3_mean 0.7948911 0.23241688 3.42 0.0007
Obtaining the exact same results using the GLM coding (and a class statement so that proc glm
functions as proc glm and not as a proc reg).
proc glm data=elemapi2;
 class collcat;
 model api00 = meals collcat collcat*meals ;
 estimate 'slope of 2 v 1 at m=60.3' collcat -1 1 0 collcat*meals -60.3 60.3 0;
 estimate 'slope of 3 v 12 at m=60.3' collcat -.5 -.5 1 collcat*meals -30.15 -
30.15 60.3;
run;
quit;

The GLM Procedure

 Class Level Information

Class Levels Values

collcat 3 1 2 3

Number of observations 400
The GLM Procedure
Dependent Variable: api00 api 2000
 Sum of
Source DF Squares Mean Square F Value Pr > F

Model 5 6629929.872 1325985.974 361.86 <.0001
Error 394 1443742.126 3664.320
Corrected Total 399 8073671.998

R-Square Coeff Var Root MSE api00 Mean

0.821179 9.347054 60.53363 647.6225

Source DF Type I SS Mean Square F Value Pr > F

meals 1 6549825.145 6549825.145 1787.46 <.0001
collcat 2 37126.652 18563.326 5.07 0.0067
meals*collcat 2 42978.076 21489.038 5.86 0.0031

Source DF Type III SS Mean Square F Value Pr > F

meals 1 5389132.969 5389132.969 1470.70 <.0001
collcat 2 14535.351 7267.676 1.98 0.1390
meals*collcat 2 42978.076 21489.038 5.86 0.0031

 314

 Standard
Parameter Estimate Error t Value Pr > |t|

slope of 2 v 1 at m=60.3 11.992405 7.6178035 1.57 0.1162
slope of 3 v 12 at m=60.3 21.502731 6.6486489 3.23 0.0013

5.3 Simple Effects and Comparisons when Meals=mean+1 std

First, we generate a variable for meals that is shifted to be centered at one standard deviation above the
mean using proc sql. We also create new interaction variables using the new variable for meals.

proc sql;
 create table high as
 select *, meals - (mean(meals) + std(meals)) as meals_high
 from elemapi2;
quit;
data high;
 set high;
 Icolmeals2_high = Icollcat2*meals_high;
 Icolmeals3_high = Icollcat3*meals_high;
run;

Performing the regression using meals_mean and testing for the simple effects of collcat at
meals=mean. Conclusion: The three groups of collcat are significantly different at meals=mean. The
individual t-tests for Icollcat2 and Icollcat3 however indicate that only the comparison between group
3 and groups 1,2 is significant (p<.000).

proc reg data=high;
 model api00 =meals_high Icollcat2 Icollcat3 Icolmeals2_high Icolmeals3_high;
 test: test Icollcat2=Icollcat3=0;
run;
quit;
The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F
Model 5 6629930 1325986 361.86 <.0001
Error 394 1443742 3664.32012
Corrected Total 399 8073672

Root MSE 60.53363 R-Square 0.8212
Dependent Mean 647.62250 Adj R-Sq 0.8189
Coeff Var 9.34705
 Parameter Estimates

 Parameter Standard
Variable DF Estimate Error t Value Pr > |t|
Intercept 1 526.53485 4.58606 114.81 <.0001
meals_high 1 -3.85935 0.10064 -38.35 <.0001
Icollcat2 1 12.89116 9.73478 1.32 0.1862
Icollcat3 1 46.88098 10.87258 4.31 <.0001
Icolmeals2_high 1 0.02815 0.22250 0.13 0.8994

 315

Icolmeals3_high 1 0.79489 0.23242 3.42 0.0007
 Test test Results for Dependent Variable api00
 Mean
Source DF Square F Value Pr > F
Numerator 2 38869 10.61 <.0001
Denominator 394 3664.32012

Looking at the simple comparisons, first of group 1 vs 2 and then for group 3 vs 1,2 using proc glm.

Note: We are using the regression coding and the proc glm is missing a class statement which means
that proc glm is basically functioning as a proc reg--but it is a new an improved proc reg because now
it has an estimate statement!!!!

proc glm data=high;
 model api00 =meals_high Icollcat2 Icollcat3 Icolmeals2_high Icolmeals3_high;
 estimate 'simple comparisons group 1 v 2, m=92.2' Icollcat2 1;
 estimate 'simple comparisons group 3 vs 12, m=92.2' Icollcat3 1;
run;
quit;
The GLM Procedure
Number of observations 400
The GLM Procedure
Dependent Variable: api00 api 2000

 Sum of
Source DF Squares Mean Square F Value Pr > F
Model 5 6629929.872 1325985.974 361.86 <.0001
Error 394 1443742.126 3664.320
Corrected Total 399 8073671.998
R-Square Coeff Var Root MSE api00 Mean
0.821179 9.347054 60.53363 647.6225
Source DF Type I SS Mean Square F Value Pr > F
meals_high 1 6549825.145 6549825.145 1787.46 <.0001
Icollcat2 1 11385.768 11385.768 3.11 0.0787
Icollcat3 1 25740.884 25740.884 7.02 0.0084
Icolmeals2_high 1 115.990 115.990 0.03 0.8589
Icolmeals3_high 1 42862.086 42862.086 11.70 0.0007
Source DF Type III SS Mean Square F Value Pr > F
meals_high 1 5389132.969 5389132.969 1470.70 <.0001
Icollcat2 1 6425.767 6425.767 1.75 0.1862
Icollcat3 1 68127.391 68127.391 18.59 <.0001
Icolmeals2_high 1 58.655 58.655 0.02 0.8994
Icolmeals3_high 1 42862.086 42862.086 11.70 0.0007
 Standard
Parameter Estimate Error t Value Pr
> |t|
comparisons group 1 v 2, m=92.2 12.8911608 9.7347822 1.32
0.1862
comparisons group 3 vs 12, m=92.2 46.8809811 10.8725776 4.31
<.0001
 Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 526.5348475 4.58605897 114.81 <.0001
meals_high -3.8593532 0.10063563 -38.35 <.0001
Icollcat2 12.8911608 9.73478216 1.32 0.1862
Icollcat3 46.8809811 10.87257762 4.31 <.0001
Icolmeals2_high 0.0281506 0.22250143 0.13 0.8994
Icolmeals3_high 0.7948911 0.23241688 3.42 0.0007

 316

Obtaining the exact same results using the GLM coding (and a class statement so that proc glm
functions as proc glm and not as a proc reg).
proc glm data=elemapi2;
 class collcat;
 model api00 = meals collcat collcat*meals ;
 estimate 'slope of 2 v 1 at m=92.2' collcat -1 1 0 collcat*meals -92.2 92.2 0;
 estimate 'slope of 3 v 12 at m=92.2' collcat -.5 -.5 1 collcat*meals -46.1 -46.1
92.2;
run;
quit;

The GLM Procedure

 Class Level Information

Class Levels Values

collcat 3 1 2 3

Number of observations 400
The GLM Procedure
Dependent Variable: api00 api 2000
 Sum of
Source DF Squares Mean Square F Value Pr > F

Model 5 6629929.872 1325985.974 361.86 <.0001
Error 394 1443742.126 3664.320
Corrected Total 399 8073671.998

R-Square Coeff Var Root MSE api00 Mean

0.821179 9.347054 60.53363 647.6225

Source DF Type I SS Mean Square F Value Pr > F

meals 1 6549825.145 6549825.145 1787.46 <.0001
collcat 2 37126.652 18563.326 5.07 0.0067
meals*collcat 2 42978.076 21489.038 5.86 0.0031

Source DF Type III SS Mean Square F Value Pr > F

meals 1 5389132.969 5389132.969 1470.70 <.0001
collcat 2 14535.351 7267.676 1.98 0.1390
meals*collcat 2 42978.076 21489.038 5.86 0.0031

 Standard
Parameter Estimate Error t Value Pr > |t|

slope of 2 v 1 at m=92.2 12.8904091 9.7310376 1.32 0.1860
slope of 3 v 12 at m=92.2 46.8597567 10.8676142 4.31 <.0001

6.0 Simple effects, simple group and interaction comparisons, strategy 2

 317

How to get all the all these comparisons from both proc reg and proc glm. proc reg only has a test
statement. That means it will not give the estimate for the effect we are interested, only the significance
test. For that reason, we have to switch to proc glm using its estimate statement.

Note1: .5*28.403 = 14.2015 and (1/3)*28.403=9.4676667, and (2/3)*28.403=18.935333.
Note2: For the interactions it is much more confusing because you have to pre-calculate all the correct
coefficients. For example, the first interaction you can use (1*Icollcat2+ 60.315*Icolmeal2) -
(1*Icollcat + 28.403*Icolmeal2) whereas in proc glm you have to reduce that to 31.912*Icolmeal2 in
order to use it in an estimate statement. If you repeat the variables SAS will only recognize it the first
time you use a variable and ignore it the other times.

Note: We are using the regression coding and the proc glm is missing a class statement which means
that proc glm is basically functioning as a proc reg--but it is a new an improved proc reg because now
it has an estimate statement!!!!

proc reg data=elemapi2;
 model api00 = meals Icollcat2 Icollcat3 Icolmeal2 Icolmeal3;
 low: test Icollcat2+28.403*Icolmeal2=0, Icollcat3+28.403*Icolmeal3=0;
 mean: test Icollcat2+60.315*Icolmeal2=0, Icollcat3+60.315*Icolmeal3=0;
 high: test Icollcat2+92.23*Icolmeal2=0, Icollcat3+92.23*Icolmeal3=0;
run;
quit;
proc glm data=elemapi2;
 model api00 = meals Icollcat2 Icollcat3 Icolmeal2 Icolmeal3;
 estimate 'Group 1 v 2, meals=28.403' Icollcat2 1 Icolmeal2 28.403;
 estimate 'Predicted values, Group 1, m=28.403' intercept 1 Icollcat2 -.5
 Icollcat3 -.3333333 meals 28.403 Icolmeal2 -14.2015
 Icolmeal3 -9.4676667;
 estimate 'Predicted values, Group 2, m=28.403' intercept 1 Icollcat2 .5
 Icollcat3 -.3333333 meals 28.403 Icolmeal2 14.2015
 Icolmeal3 -9.4676667;
 estimate 'Group 3 v 12, meals=28.403' Icollcat3 1 Icolmeal3 28.403;
 estimate 'Predicted values, Group 12, m=28.403' intercept 1 Icollcat2 0
 Icollcat3 -.3333333 meals 28.403 Icolmeal2 0
 Icolmeal3 -9.4676667;
 estimate 'Predicted values, Group 1, m=28.403' intercept 1 Icollcat2 0
 Icollcat3 .6666666667 meals 28.403 Icolmeal2 0
 Icolmeal3 18.935333;
 estimate 'Group 1 v 2, meals=60.315' Icollcat2 1 Icolmeal2 60.315;
 estimate 'Group 3 v 12, meals=60.315' Icollcat3 1 Icolmeal3 60.315;
 estimate 'Group 1 v 2, meals=92.23' Icollcat2 1 Icolmeal2 92.23;
 estimate 'Group 3 v 12, meals=92.23' Icollcat3 1 Icolmeal3 92.23;
 estimate 'Interaction: group 1 v 2, m=mean v m=mean+1std' Icolmeal2 31.912;
 estimate 'Interaction: group 3 v 12, m=mean v m=mean+1std' Icolmeal3 31.912;
run;
quit;
The REG Procedure
Model: MODEL1
Dependent Variable: api00 api 2000

 Analysis of Variance

 Sum of Mean
Source DF Squares Square F Value Pr > F
Model 5 6629930 1325986 361.86 <.0001
Error 394 1443742 3664.32012

 318

Corrected Total 399 8073672

Root MSE 60.53363 R-Square 0.8212
Dependent Mean 647.62250 Adj R-Sq 0.8189
Coeff Var 9.34705
 Parameter Estimates

 Parameter Standard
Variable DF Estimate Error t Value Pr > |t|
Intercept 1 882.47026 6.69004 131.91 <.0001
meals 1 -3.85935 0.10064 -38.35 <.0001
Icollcat2 1 10.29492 16.24717 0.63 0.5267
Icollcat3 1 -26.42920 14.31193 -1.85 0.0655
Icolmeal2 1 0.02815 0.22250 0.13 0.8994
Icolmeal3 1 0.79489 0.23242 3.42 0.0007

 Test low Results for Dependent Variable api00

 Mean
Source DF Square F Value Pr > F
Numerator 2 2346.39755 0.64 0.5277
Denominator 394 3664.32012
 Test mean Results for Dependent Variable api00

 Mean
Source DF Square F Value Pr > F
Numerator 2 23138 6.31 0.0020
Denominator 394 3664.32012
 Test high Results for Dependent Variable api00

 Mean
Source DF Square F Value Pr > F
Numerator 2 38869 10.61 <.0001
Denominator 394 3664.32012
The GLM Procedure
Number of observations 400
The GLM Procedure

Dependent Variable: api00 api 2000

 Sum of
Source DF Squares Mean Square F Value Pr > F
Model 5 6629929.872 1325985.974 361.86 <.0001
Error 394 1443742.126 3664.320
Corrected Total 399 8073671.998
R-Square Coeff Var Root MSE api00 Mean
0.821179 9.347054 60.53363 647.6225
Source DF Type I SS Mean Square F Value Pr > F
meals 1 6549825.145 6549825.145 1787.46 <.0001
Icollcat2 1 11385.768 11385.768 3.11 0.0787
Icollcat3 1 25740.884 25740.884 7.02 0.0084
Icolmeal2 1 115.990 115.990 0.03 0.8589
Icolmeal3 1 42862.086 42862.086 11.70 0.0007
Source DF Type III SS Mean Square F Value Pr > F
meals 1 5389132.969 5389132.969 1470.70 <.0001
Icollcat2 1 1471.242 1471.242 0.40 0.5267
Icollcat3 1 12495.833 12495.833 3.41 0.0655
Icolmeal2 1 58.655 58.655 0.02 0.8994
Icolmeal3 1 42862.086 42862.086 11.70 0.0007

 319

 Standard
Parameter Estimate Error t Value Pr > |t|
Group 1 v 2, meals=28.403 11.094486 11.0505842 1.00 0.3160
Pred values, Group 1, m=28.403 768.589777 8.3629518 91.90 <.0001
Pred values, Group 2, m=28.403 779.684262 7.2233262 107.94 <.0001
Group 3 v 12, meals=28.403 -3.851909 8.9572977 -0.43 0.6674
Pred values, Group 12, m=28.403 774.137020 5.5252918 140.11 <.0001
Pred values, Group 1, m=28.403 770.285111 7.0501298 109.26 <.0001
Group 1 v 2, meals=60.315 11.992828 7.6173809 1.57 0.1162
Group 3 v 12, meals=60.315 21.514655 6.6493192 3.24 0.0013
Group 1 v 2, meals=92.23 12.891254 9.7352449 1.32 0.1862
Group 3 v 12, meals=92.23 46.883603 10.8731909 4.31 <.0001
Group 1 v 2, m=mean v m=mean+1std 0.898342 7.1004657 0.13 0.8994
Group 3 v 12, m=mean v m=mean+1std 25.366564 7.4168876 3.42 0.0007

 Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 882.4702589 6.69003553 131.91 <.0001
meals -3.8593532 0.10063563 -38.35 <.0001
Icollcat2 10.2949246 16.24717093 0.63 0.5267
Icollcat3 -26.4292002 14.31192705 -1.85 0.0655
Icolmeal2 0.0281506 0.22250143 0.13 0.8994
Icolmeal3 0.7948911 0.23241688 3.42 0.0007
Obtaining the exact same results using the GLM coding (and a class statement so that proc glm
functions as proc glm and not as a proc reg).
proc glm data=elemapi2;
 class collcat;
 model api00 = meals collcat collcat*meals ;
 estimate 'slope of 2 v 1 at m=28.4' collcat -1 1 0 collcat*meals -28.4 28.4 0;
 estimate 'pred values, group 1, m=28.4' intercept 1 meals 28.4 collcat 1 0 0
collcat*meals 28.4 0 0;
 estimate 'pred values, group 2, m=28.4' intercept 1 meals 28.4 collcat 0 1 0
collcat*meals 0 28.4 0;
 estimate 'slope of 3 v 12 at m=28.4' collcat -.5 -.5 1 collcat*meals -14.2 -14.2
28.4;
 estimate 'pred values, group 12, m=28.4' intercept 1 meals 28.4 collcat .5 .5 0
collcat*meals 14.2 14.2 0;
 estimate 'pred values, group 3, m=28.4' intercept 1 meals 28.4 collcat 0 0 1
collcat*meals 0 0 28.4;
 estimate 'slope of 2 v 1 at m=60.3' collcat -1 1 0 collcat*meals -60.3 60.3 0;
 estimate 'slope of 3 v 12 at m=60.3' collcat -.5 -.5 1 collcat*meals -30.15 -
30.15 60.3;
 estimate 'slope of 2 v 1 at m=92.2' collcat -1 1 0 collcat*meals -92.2 92.2 0;
 estimate 'slope of 3 v 12 at m=92.2' collcat -.5 -.5 1 collcat*meals -46.1 -46.1
92.2;
 estimate 'slope of 2 v 1 at m=60.3 v m=28.4' collcat*meals -31.9 31.9 0;
 estimate 'slope of 3 v 12 at m=60.3 v m=28.4' collcat*meals -15.95 -15.95 31.9 ;
run;
quit;

The GLM Procedure

 Class Level Information

Class Levels Values

 320

collcat 3 1 2 3

Number of observations 400
The GLM Procedure
Dependent Variable: api00 api 2000
 Sum of
Source DF Squares Mean Square F Value Pr > F

Model 5 6629929.872 1325985.974 361.86 <.0001
Error 394 1443742.126 3664.320
Corrected Total 399 8073671.998

R-Square Coeff Var Root MSE api00 Mean

0.821179 9.347054 60.53363 647.6225

Source DF Type I SS Mean Square F Value Pr > F

meals 1 6549825.145 6549825.145 1787.46 <.0001
collcat 2 37126.652 18563.326 5.07 0.0067
meals*collcat 2 42978.076 21489.038 5.86 0.0031

Source DF Type III SS Mean Square F Value Pr > F

meals 1 5389132.969 5389132.969 1470.70 <.0001
collcat 2 14535.351 7267.676 1.98 0.1390
meals*collcat 2 42978.076 21489.038 5.86 0.0031

 Standard
Parameter Estimate Error t Value Pr
> |t|

slope of 2 v 1 at m=28.4 11.094401 11.0510713 1.00
0.3160
pred values, group 1, m=28.4 768.602193 8.3633100 91.90
<.0001
pred values, group 2, m=28.4 779.696594 7.2236571 107.94
<.0001
slope of 3 v 12 at m=28.4 -3.854294 8.9577754 -0.43
0.6672
pred values, group 12, m=28.4 774.149393 5.5255356 140.10
<.0001
pred values, group 3, m=28.4 770.295100 7.0505458 109.25
<.0001
slope of 2 v 1 at m=60.3 11.992405 7.6178035 1.57
0.1162
slope of 3 v 12 at m=60.3 21.502731 6.6486489 3.23
0.0013
slope of 2 v 1 at m=92.2 12.890409 9.7310376 1.32
0.1860
slope of 3 v 12 at m=92.2 46.859757 10.8676142 4.31
<.0001
slope of 2 v 1 at m=60.3 v m=28.4 0.898004 7.0977957 0.13
0.8994
slope of 3 v 12 at m=60.3 v m=28.4 25.357025 7.4140986 3.42
0.0007

 321

output and explanation.

Demo Analysis #1

The between groups test indicates that there the variable group is significant, consequently in the graph
we see that the lines for the two groups are rather far apart. The within subject test indicate that there is
not a significant time effect, in other words, the groups do not change in depression over time. In the
graph we see that the groups have lines that are flat, i.e. the slopes of the lines are approximately equal
to zero. Also, since the lines are parallel, we are not surprised that the interaction between time and
group is not significant.

<Abbreviated output from proc glm>

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F
GROUP 1 155.0416667 155.0416667 3721.00 <.0001
Error 6 0.2500000 0.0416667

Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type III SS Mean Square F Value Pr > F
time 2 0.08333333 0.04166667 1.00 0.3966
time*GROUP 2 0.08333333 0.04166667 1.00 0.3966
Error(time) 12 0.50000000 0.04166667

Demo Analysis #2

The between groups test indicates that there the variable group is not significant, consequently in the
graph we see that the lines for the two groups are rather close together. The within subject test indicate
that there is a significant time effect, in other words, the groups do change in depression over time. In
the graph we see that the groups have lines that increase over time. Again, the lines are parallel
consistent with the finding that the interaction is not significant.

 322

<Abbreviated output from proc glm>
Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F
GROUP 1 15.0416667 15.0416667 0.84 0.3957
Error 6 107.9166667 17.9861111

Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type III SS Mean Square F Value Pr > F
time 2 978.2500000 489.1250000 53.68 <.0001
time*GROUP 2 1.0833333 0.5416667 0.06 0.9426
Error(time) 12 109.3333333 9.1111111

Demo Analysis #3

The between groups test indicates that there the variable group is significant, consequently in the graph
we see that the lines for the two groups are rather far apart. The within subject test indicate that there is
a significant time effect, in other words, the groups do change over time, both groups are getting less
depressed over time. Moreover, the interaction of time and group is significant which means that the
groups are changing over time but are changing in different ways, which means that in the graph the
lines will not be parallel. In the graph we see that the groups have non-parallel lines that decrease over
time and are getting progressively closer together over time.

 323

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F
GROUP 1 2035.041667 2035.041667 343.15 <.0001
Error 6 35.583333 5.930556

Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type III SS Mean Square F Value Pr > F
time 2 2830.333333 1415.166667 553.76 <.0001
time*GROUP 2 200.333333 100.166667 39.20 <.0001
Error(time) 12 30.666667 2.555556

Demo Analysis #4

The within subject test indicate that the interaction of time and group is significant. The main effect of
time is not significant. However, the significant interaction indicates that the groups are changing over
time and they are changing in different ways, in other words, in the graph the lines of the groups will
not be parallel. The between groups test indicates that there the variable group is significant. In the
graph for this particular case we see that one group is increasing in depression over time and the other
group is decreasing in depression over time.

 324

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F
GROUP 1 2542.041667 2542.041667 628.96 <.0001
Error 6 24.250000 4.041667

Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type III SS Mean Square F Value Pr > F
time 2 1.000000 0.500000 0.08 0.9246
time*GROUP 2 1736.333333 868.166667 137.08 <.0001
Error(time) 12 76.000000 6.333333

Creating Graphs of the Means for Demo Analysis #4

The SAS code for creating the graph for demo=4.

/* We use the out option in the lsmeans statement to create the data set means. */
proc glm data=demo4;
 class group;
 model time1 time2 time3 = group;
 repeated time 3 ;
 lsmeans group / out=means;
run;
quit;

/*We want to look at the means to make sure we created the correct dataset.*/
proc print data=means;
run;

/* For a better understanding of all the gplot options used here please
visit our webpage on using proc gplot.*/

goptions reset=all;
symbol1 c=blue v=star h=.8 i=j;
symbol2 c=red v=dot h=.8 i=j;
axis1 label=(a=90 'Means');
axis2 label=('Time') value=('1' '2' '3');
proc gplot data=means;

http://www.ats.ucla.edu/stat/sas/code/proc_gplot_stuff.htm

 325

 plot lsmean*_name_=group/ vaxis=axis1 haxis=axis2;
run;
quit;

Exercise data examples

The data consists of people who were randomly assigned to two different diets: low-fat and not low-fat
and three different types of exercise: at rest, walking leisurely and running. Their pulse rate was
measured at three different time points during their assigned exercise: at 1 minute, 15 minutes and 30
minutes.

data exercise;
 input id exertype diet time1 time2 time3;
cards;
1 1 1 85 85 88
2 1 1 90 92 93
3 1 1 97 97 94
4 1 1 80 82 83
5 1 1 91 92 91
6 1 2 83 83 84
7 1 2 87 88 90
8 1 2 92 94 95
9 1 2 97 99 96
10 1 2 100 97 100
11 2 1 86 86 84
12 2 1 93 103 104
13 2 1 90 92 93
14 2 1 95 96 100
15 2 1 89 96 95
16 2 2 84 86 89
17 2 2 103 109 90
18 2 2 92 96 101
19 2 2 97 98 100
20 2 2 102 104 103
21 3 1 93 98 110

 326

22 3 1 98 104 112
23 3 1 98 105 99
24 3 1 87 132 120
25 3 1 94 110 116
26 3 2 95 126 143
27 3 2 100 126 140
28 3 2 103 124 140
29 3 2 94 135 130
30 3 2 99 111 150
;
run;

Exercise example, model 1 (time and diet)

Let us first consider the model including diet as the group variable. The graph below suggests that the
pulse rate is growing over time. The pulse rates may vary for the 2 diets and it is possible that the pulse
rate is growing faster for the "red" diet than the "blue" diet.

proc glm data=exercise;
 class diet;
 model time1 time2 time3 = diet;
 repeated time 3 / printe;
run;
quit;

Looking at the results from the manova test the effect of time is significant but the interaction of time
and diet is not significant. The between subject test of the effect of diet is also not significant.
Consequently, in the graph we have lines that are not flat, in fact, they are actually increasing over time,
which was expected since the effect of time was significant. Furthermore, the lines are approximately
parallel which was anticipated since the interaction was not significant.

 Sphericity Tests

 Mauchly's
Variables DF Criterion Chi-Square Pr > ChiSq

Transformed Variates 2 0.4531199 21.373158 <.0001
Orthogonal Components 2 0.673336 10.678793 0.0048

 327

Manova Test Criteria and Exact F Statistics for the Hypothesis of no time Effect
 H = Type III SSCP Matrix for time
 E = Error SSCP Matrix

 S=1 M=0 N=12.5

Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.64349965 7.48 2 27 0.0026
Pillai's Trace 0.35650035 7.48 2 27 0.0026
Hotelling-Lawley Trace 0.55400240 7.48 2 27 0.0026
Roy's Greatest Root 0.55400240 7.48 2 27 0.0026

 Manova Test Criteria and Exact F Statistics
 for the Hypothesis of no time*DIET Effect
 H = Type III SSCP Matrix for time*DIET
 E = Error SSCP Matrix

 S=1 M=0 N=12.5

Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.94402156 0.80 2 27 0.4595
Pillai's Trace 0.05597844 0.80 2 27 0.4595
Hotelling-Lawley Trace 0.05929784 0.80 2 27 0.4595
Roy's Greatest Root 0.05929784 0.80 2 27 0.4595

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F
DIET 1 1261.87778 1261.87778 3.15 0.0869
Error 28 11227.02222 400.96508
Repeated Measures Analysis of Variance
Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type III SS Mean Square F Value Pr > F
time 2 2066.600000 1033.300000 11.81 <.0001
time*diet 2 192.822222 96.411111 1.10 0.3394
Error(time) 56 4900.577778 87.510317

 Adj Pr > F
Source G - G H - F
time 0.0003 0.0002
time*diet 0.3264 0.3303
Error(time)

Greenhouse-Geisser Epsilon 0.7538
Huynh-Feldt Epsilon 0.8158

Exercise example, model 2 (time and exercise type)

Next, let us consider the model including exertype as the group variable.

proc glm data=exercise;
 class exertype;
 model time1 time2 time3 = exertype;
 repeated time 3 ;
run;
quit;

 328

The interaction of time and exertype is significant as is the effect of time. The between subject test of
the effect of exertype is also significant. Consequently, in the graph we have lines that are not parallel
which we expected since the interaction was significant. Furthermore, we see that some of the lines that
are rather far apart and at least one line is not horizontal which was anticipated since exertype and time
were both significant. The output for this analysis is omitted.

Here is the code for the graph.

proc glm data=exercise;
 class exertype;
 model time1 time2 time3 = exertype;
 repeated time 3 ;
 lsmeans exertype / out=means;
run;
quit;
proc print data=means;
run;

goptions reset=all;
symbol1 c=blue v=star h=.8 i=j;
symbol2 c=red v=dot h=.8 i=j;
symbol3 c=green v=square h=.8 i=j;
axis1 order=(60 to 150 by 30) label=(a=90 'Means');
axis2 label=('Time') value=('1' '2' '3');
proc gplot data=means;
 plot lsmean*_name_=exertype / vaxis=axis1 haxis=axis2;
run;
quit;

Further Issues

Missing Data

• Compare GLM and Mixed on Missing Data

Variance-Covariance Structures

 329

• Discuss "univariate" vs. "multivariate" tests.
• Discuss "sphericity" and test of sphericity.

Independence

As though analyzed using between subjects analysis.

σ2
0 � σ2
0 � 0 � σ2

Compound Symmetry

The univariate tests assumes that the variance-covariance structure has compound symmetry. There is
a single Variance (represented by σ2) for all 3 of the time points and there is a single covariance
(represented by σ1) for each of the pairs of trials. This is illustrated below.

σ2
σ1 σ2
σ1 σ1 σ2

Unstructured

The manova tests assumes that each variance and covariance is unique, see below, referred to as an
unstructured covariance matrix. Each trial has its own variance (e.g. σ1

2 is the variance of trial 1) and
each pair of trials has its own covariance (e.g. σ21 is the covariance of trial 1 and trial2).

σ1
2

σ21 σ2
2

σ31 σ32 σ3
2

We can use the sphericity test to indicate which is most appropriate: the manova or the univariate test.
The null hypothesis test of the test of sphericity is: the variance-covariance structure has compound
symmetry. If the sphericity test is not significant then the variance-covariance structure has compound
symmetry and then it is appropriate to use the results from the univariate tests. If, however, the
sphericity test is significant then we reject that the variance-covariance structure has compound
symmetry and it is most appropriate to use the results from the manova test or alternatively use the
corrections for the univariate test. It is very important, however, to note that the sphericity test is
overly sensitive. It is very likely to reject compound symmetry when the data only slightly deviates
from compound symmetry, so in actuality this test could be very deceiving and may be best ignored.

Autoregressive

Another common covariance structure which is frequently observed in repeated measures data is an
autoregressive structure, which recognizes that observations which are more proximate are more
correlated than measures that are more distant.

 330

σ2
σρ σ2
σρ2 σρ σ2

Autoregressive Heterogenous Variances

If the variances change over time, then the covariance would look like this.

σ1
2

σρ σ2
2

σρ2 σρ σ3
2

However, we cannot use this kind of covariance structure in a traditional repeated measures analysis,
but we can use SAS PROC MIXED for such an analysis.

(For a complete list of all variance-covariance structures that SAS supports in proc mixed please see
the SAS help page: http://saspdf.ats.ucla.edu/sasdoc/sashtml/stat/chap41/sect20.htm#mixedrepeat .)

Let's look at the correlations, variances and covariances for the exercise data.

proc corr data=exercise cov;
 var time1 time2 time3;
run;
 Covariance Matrix, DF = 29

 time1 time2 time3
time1 37.8436782 48.7885057 60.2850575
time2 48.7885057 212.1195402 233.7609195
time3 60.2850575 233.7609195 356.3229885

 Pearson Correlation Coefficients, N = 30

 time1 time2 time3
time1 1.00000 0.54454 0.51915
time2 0.54454 1.00000 0.85028
time3 0.51915 0.85028 1.00000

SAS Exercise example, model 2 using Proc Mixed

Even though we are very impressed with our results so far, we are not completely convinced that the
variance-covariance structure really has compound symmetry. In order to compare models with
different variance-covariance structures we have to use proc mixed and try the different structures that
we think our data might have. However, in order to use proc mixed we must reshape our data from its
wide form to a long form.

proc transpose data=exercise out=long;
 by id diet exertype;
run;
data long;
 set long (rename=(col1=pulse));
 time = substr(_NAME_, 5, 1)+0;

http://saspdf.ats.ucla.edu/sasdoc/sashtml/stat/chap41/sect20.htm#mixedrepeat

 331

 drop _name_;
run;
proc print data=long (obs=20);
 var id diet exertype time pulse;
run;

Obs id DIET EXERTYPE time pulse

 1 1 1 1 1 85
 2 1 1 1 2 85
 3 1 1 1 3 88
 4 2 1 1 1 90
 5 2 1 1 2 92
 6 2 1 1 3 93
 7 3 1 1 1 97
 8 3 1 1 2 97
 9 3 1 1 3 94
 10 4 1 1 1 80
 11 4 1 1 2 82
 12 4 1 1 3 83
 13 5 1 1 1 91
 14 5 1 1 2 92
 15 5 1 1 3 91
 16 6 2 1 1 83
 17 6 2 1 2 83
 18 6 2 1 3 84
 19 7 2 1 1 87
 20 7 2 1 2 88

Compound Symmetry

The first model we will look at is one using compound symmetry for the variance-covariance structure.
This model should confirm the results of the univariate tests that we obtained through proc glm and
we will be able to obtain fit statistics that we will use for comparisons with our models that assume
other variance-covariance structures.

proc mixed data=long;
 class exertype time;
 model pulse = exertype time exertype*time;
 repeated time / subject=id type=cs;
run;

 Fit Statistics
-2 Res Log Likelihood 590.8
AIC (smaller is better) 594.8
AICC (smaller is better) 595.0
BIC (smaller is better) 597.6

 Null Model Likelihood Ratio Test
 DF Chi-Square Pr > ChiSq
 1 15.36 <.0001

 Type 3 Tests of Fixed Effects

 Num Den
Effect DF DF F Value Pr > F
exertype 2 27 27.00 <.0001

 332

time 2 54 23.54 <.0001
exertype*time 4 54 15.51 <.0001

Unstructured

We now try an unstructured covariance matrix.

proc mixed data=long;
 class exertype time;
 model pulse = exertype time exertype*time;
 repeated time / subject=id type=un;
run;

Covariance Parameter Estimates

Cov Parm Subject Estimate
UN(1,1) id 34.2000
UN(2,1) id 23.6852
UN(2,2) id 87.1926
UN(3,1) id 26.7889
UN(3,2) id 59.8148
UN(3,3) id 120.57

 Fit Statistics
-2 Res Log Likelihood 577.7
AIC (smaller is better) 589.7
AICC (smaller is better) 590.9
BIC (smaller is better) 598.1

 Null Model Likelihood Ratio Test

 DF Chi-Square Pr > ChiSq
 5 28.46 <.0001

 Type 3 Tests of Fixed Effects

 Num Den
Effect DF DF F Value Pr > F
exertype 2 27 27.00 <.0001
time 2 27 22.32 <.0001
exertype*time 4 27 14.39 <.0001

Autoregressive

From previous studies we suspect that our data might actually have an auto-regressive variance-
covariance structure so this is the model we will look at next. The auto-regressive variance-covariance
structure does fit our data slightly better than the compound symmetry does (AIC of 594.1 vs. 594.8).

proc mixed data=long;
 class exertype time;
 model pulse = exertype time exertype*time;
 repeated time / subject=id type=ar(1);
run;

 333

-2 Res Log Likelihood 590.1
AIC (smaller is better) 594.1
AICC (smaller is better) 594.3
BIC (smaller is better) 596.9

 Null Model Likelihood Ratio Test

 DF Chi-Square Pr > ChiSq
 1 16.08 <.0001

 Type 3 Tests of Fixed Effects

 Num Den
Effect DF DF F Value Pr > F
exertype 2 27 28.39 <.0001
time 2 54 18.20 <.0001
exertype*time 4 54 11.73 <.0001

Autoregressive with heterogeneous variances

Now we suspect that what is actually going on is that the we have auto-regressive covariances and
heterogeneous variances. The fit statistics indicate that our suspicions were correct (see table in Model
Comparisons section) and that the model with heterogeneous variances fits the data better than the
model with autoregressive covariance and homogeneous variances (AIC 587.8 versus 594.1). Our
suspicions arose when we were looking at the raw covariance structure obtained from the proc corr.
When looking at the output we see that the variances (the numbers along the diagonal) are clearly
unequal indicating heterogeneous variances.

proc mixed data=long;
 class exertype time;
 model pulse = exertype time exertype*time;
 repeated time / subject=id type=arh(1);
run;

Covariance Parameter Estimates

Cov
Parm Subject Estimate
Var(1) id 35.7683
Var(2) id 87.1927
Var(3) id 115.50
ARH(1) id 0.5101

 Fit Statistics
-2 Res Log Likelihood 579.8
AIC (smaller is better) 587.8
AICC (smaller is better) 588.3
BIC (smaller is better) 593.4

 Null Model Likelihood Ratio Test

 334

 DF Chi-Square Pr > ChiSq
 3 26.42 <.0001

 Type 3 Tests of Fixed Effects

 Num Den
Effect DF DF F Value Pr > F
exertype 2 27 28.96 <.0001
time 2 54 21.92 <.0001
exertype*time 4 54 13.81 <.0001

It is very important to explore different variance-covariance structures when using proc mixed because
the output contains fit statistics indicating which clearly indicate how well each model fits the data
compared to other models.

Model comparison (comparing to Compound Symmetry)

Model AIC -2RLL Parms
(df + 1)

Diff -
2RLL
(vs. CS)

Diff in df
(vs. CS)

p value for Diff
(from a chi square dist)

Compound
Symmetry 594.8 590.8 2

Unstructured 589.7 577.7 6 13.1 4 .01
Autoregressive 594.1 590.1 2 .7 0 na
Autoregressive
Heterogenous
Variances

587.8 579.8 4 11 2 0.027

The two most promising structures are Autoregressive Heterogeneous Variances and Unstructured
since these two models have the smallest AIC values and the -2 Log Likelihood scores are significantly
smaller than the -2 Log Likehood scores of other models.

Creating Graphs of the Means for Proc Mixed, model 2 (time and exertype)

Just as in the case of proc glm it is often very useful to look at the graph of the means in order to really
understand the data. So, here is the code for creating the graphs in proc mixed that we were able to
obtain when using proc glm.

/* Proc Mixed does not have an out option in the lsmeans statement. Instead we use
ODS to create the data set containing all the means. */
ods output LSMeans=means1;
proc mixed data=long;
 class exertype time;
 model pulse = exertype time exertype*time;
 repeated time / subject=id type=ar(1);
 lsmeans time*exertype;
run;

 335

/* We print the dataset just to make sure that we have created the correct dataset.
*/
proc print data=means1;
run;

/* First we reset all the plot options to avoid any carry over from previous
plotting procedures. We use
a format statement in the proc gplot because the values for estimate have been
assigned many decimal places that do not look
very nice when used as tick marks on the y-axis. The format 8. means that we will
allow there to be 8 digits for the
whole number and no decimal places. This statement is included purely for cosmetic
purposes and can easily be removed.
To understand all the plotting options used please refer to our webpage
on using proc gplot. */
goptions reset=all;
symbol1 c=blue v=star h=.8 i=j;
symbol2 c=red v=dot h=.8 i=j;
symbol3 c=green v=square h=.8 i=j;
axis1 order=(60 to 150 by 30) label=(a=90 'Means');
proc gplot data=means1;
 format estimate 8.;
 plot estimate*time=exertype / vaxis=axis1;
run;
quit;

Here is the graph.

Exercise example, model 3 (time, diet and exertype)--Proc Glm

Looking at models including only diet or exertype separately does not answer all our questions. We
would also like to know if the people on the low-fat diet who engage in running have lower pulse rates
than the people participating in the not low-fat diet who are not running. In order to address these types
of questions we need to look at a model that includes the interaction of diet and exertype. After all the
analysis involving the variance-covariance structures we will look at this model using both proc glm
and proc mixed.

http://www.ats.ucla.edu/stat/sas/code/proc_gplot_stuff.htm

 336

In the graph of exertype by diet we see that for the low-fat diet (diet=1) group the pulse rate for the
two exercise types: at rest and walking, are very close together, indeed they are almost flat, whereas the
running group has a higher pulse rate that increases over time. For the not low-fat diet (diet=2) group
the same two exercise types: at rest and walking, are also very close together and almost flat. For this
group, however, the pulse rate for the running group increases greatly over time and the rate of increase
is much steeper than the increase of the running group in the low-fat diet group.
The within subject tests indicate that there is a three-way interaction between diet, exertype and time.
In other words, the pulse rate will depend on which diet you follow, the exercise type you engage in and
at what time during the the exercise that you measure the pulse. The interactions of time and exertype
and diet and exertype are also significant as are the main effects of diet and exertype.

proc glm data=exercise;
 class diet exertype;
 model time1 time2 time3 = diet|exertype;
 repeated time 3 ;
run;
quit;

Looking at the graphs of exertype by diet.

 337

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F
DIET 1 1261.877778 1261.877778 14.52 0.0008
EXERTYPE 2 8326.066667 4163.033333 47.92 <.0001
DIET*EXERTYPE 2 815.755556 407.877778 4.69 0.0190
Error 24 2085.200000 86.883333

Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type III SS Mean Square F Value Pr > F
time 2 2066.600000 1033.300000 31.72 <.0001
time*DIET 2 192.822222 96.411111 2.96 0.0614
time*EXERTYPE 4 2723.333333 680.833333 20.90 <.0001
time*DIET*EXERTYPE 4 613.644444 153.411111 4.71 0.0028
Error(time) 48 1563.600000 32.575000

Creating Graphs for model 3 Using Proc Glm

proc glm data=exercise;
 class diet exertype;
 model time1 time2 time3 = diet|exertype;
 repeated time 3;
 lsmeans diet*exertype / out=means;
run;
quit;

proc print data=means;
run;

proc sort data=means out=sortdiet;
 by diet;
run;

goptions reset=all;
symbol1 c=blue v=star h=.8 i=j;
symbol2 c=red v=dot h=.8 i=j;
symbol3 c=green v=square h=.8 i=j;
axis1 order=(60 to 150 by 30) label=(a=90 'Means');

 338

axis2 label=('Time') value=('1' '2' '3');
proc gplot data=sortdiet;
 by diet;
 plot lsmean*_name_ = exertype / vaxis=axis1 haxis=axis2;
run;
quit;

Exercise example, model 3 (time, diet and exertype)--Proc Mixed

For the mixed model we will use the autoregressive heterogeneous variances variance-covariance
structure since we previously observed that this is the structure that appears to fit the data the best (see
discussion of variance-covariance structures). We do not expect to find a great change in which factors
will be significant but we do expect to have a model that has a better fit than the glm model.
The graphs are exactly the same as the glm model and we find that the same factors are significant.
However, since the model has a better fit we can be more confident in the estimate of the standard
errors and therefore we can be more confident in the tests and in the findings of significant factors. The
model has a better fit than the model only including exertype and time because both the -2Log
Likelihood and the AIC has decrease dramatically. The -2 Log Likelihood decreased from 579.8 for the
model including only exertype and time to 505.3 for the current model; the AIC decreased from 587.8
for the model including only exertype and time to 513.3 for the current model.

The code for the mixed model

proc mixed data=long;
 class exertype diet time;
 model pulse = exertype|diet|time;
 repeated time / subject=id type=arh(1) ;
run;

Looking at the graphs of exertype by diet.

 339

Covariance Parameter Estimates

Cov
Parm Subject Estimate
Var(1) id 33.0864
Var(2) id 73.5148
Var(3) id 45.3847
ARH(1) id 0.3610

 Fit Statistics
-2 Res Log Likelihood 505.3
AIC (smaller is better) 513.3
AICC (smaller is better) 513.9
BIC (smaller is better) 518.9

 Null Model Likelihood Ratio Test

 DF Chi-Square Pr > ChiSq
 3 10.65 0.0138

 Type 3 Tests of Fixed Effects

 Num Den
Effect DF DF F Value Pr > F
exertype 2 24 52.17 <.0001
diet 1 24 15.81 0.0006
exertype*diet 2 24 5.11 0.0142
time 2 48 30.82 <.0001
exertype*time 4 48 20.25 <.0001
diet*time 2 48 2.80 0.0709
exertype*diet*time 4 48 4.45 0.0039

Creating Graphs for model 3 Using Proc Mixed

 340

/* Proc Mixed does not have an out option in the lsmeans statement. Instead we use
ODS to create the data set containing all the means. */
ods output LSMeans = means;
proc mixed data=long;
 class exertype diet time;
 model pulse = exertype|diet|time;
 repeated time / subject=id type=arh(1) ;
 lsmeans time*diet*exertype;
run;
/* We print the dataset just to make sure that we have created the correct dataset.
*/
proc print data=means;
run;
proc sort data=means;
 by diet;
run;

/* First we reset all the plot options to avoid any carry over from previous
plotting procedures.
We use a format statement in the proc gplot because the values for estimate have
been assigned
many decimal places that do not look very nice when used as tick marks on the y-
axis. The format 8.
means that we will allow there to be 8 digits for the whole number and no decimal
places. This
statement is included purely for cosmetic purposes and can easily be removed. To
understand all
the plotting options used please refer to our webpage on using proc gplot. */

goptions reset=all;
symbol1 c=black v=dot i=j;
symbol2 c=blue v=circle i=j;
symbol3 c=red v=square i=j;
axis1 order=(60 to 150 by 30) label=(a=90 'Means');
proc gplot data=means;
 by diet;
 format estimate 8.;
 plot estimate*time=exertype / vaxis=axis1;
run;
quit;

Contrasts and interaction contrasts for model 3

From the graphs in the above analysis we see that the runners (exertype level 3) have a pulse rate that is
increases much quicker than the pulse rates of the two other groups. We would like to know if there is a
statistically significant difference between the changes over time in the pulse rate of the runners versus
the change over time in the pulse rate of the walkers and the "rest-ers" (the people at rest) across diet
groups and across time. Furthermore, we suspect that there might be a difference in pulse rate over time
and across exercise type between the two diet groups. But to make matters even more complicated we
would like to test if the runners in the low fat diet group are statistically significantly different from all
the other groups (i.e. the runners in the non-low fat diet, the walkers and the "rest-ers" in both diet
groups). Since we are being ambitious we also want to test if the runners in the low fat diet group
(diet=1) are different from the runners in the non-low fat diet group (diet=2). These contrasts are all
tested using the estimate statement in proc mixed.

If we would like to look at the differences among groups at each level of another variable we have to

http://www.ats.ucla.edu/stat/sas/code/proc_gplot_stuff.htm

 341

utilize the lsmeans statement with the slice option. For example, we could test for differences among
the exertype groups at each level of diet across all levels of time; or we could test for differences in
groups of exertype for each time point across both levels of diet; we could also test for differences in
groups of exertype for each combination of time and diet levels.

proc mixed data=long;
 class diet exertype time;
 model pulse = exertype|diet|time;
 repeated time / subject=id type=cs ;
 estimate 'exer 12 v 3' exertype -.5 -.5 1; /* across time and across diet groups
*/
 estimate 'exer 1 v 2' exertype -1 1 0; /* across time and across diet groups */
 estimate 'diet' diet -1 1; /* across time and across exercise types */
 estimate 'diet 1v2 & exertype 12v3'
 diet*exertype -.5 -.5 1
 .5 .5 -1; /* across time only */
 estimate 'runners only, diet 1 v 2' diet 1 -1
 diet*exertype 0 0 1
 0 0 -1;
lsmeans diet*exertype / slice=diet;
 /*testing for differences among exertype for each level of diet across time*/
 lsmeans exertype*time / slice=time;
 /*testing for differences in exertype at each time point across diets*/
 lsmeans exertype*diet*time / slice=time*diet;
 /*testing for differences in exertype at all combinations of diet and time
levels*/
run;
quit;

Covariance Parameter Estimates

Cov
Parm Subject Estimate
Var(1) id 33.0864
Var(2) id 73.5148
Var(3) id 45.3847
ARH(1) id 0.3610

 Fit Statistics
-2 Res Log Likelihood 505.3
AIC (smaller is better) 513.3
AICC (smaller is better) 513.9
BIC (smaller is better) 518.9

 Null Model Likelihood Ratio Test

 DF Chi-Square Pr > ChiSq
 3 10.65 0.0138

 Type 3 Tests of Fixed Effects

 Num Den
Effect DF DF F Value Pr > F
exertype 2 24 52.17 <.0001
diet 1 24 15.81 0.0006

 342

diet*exertype 2 24 5.11 0.0142
time 2 48 30.82 <.0001
exertype*time 4 48 20.25 <.0001
diet*time 2 48 2.80 0.0709
diet*exertype*time 4 48 4.45 0.0039

 Estimates

 Standard
Label Estimate Error DF t Value Pr > |t|
exer 12 v 3 20.0500 1.9975 24 10.04 <.0001
exer 1 v 2 4.3667 2.3066 24 1.89 0.0705
diet 7.4889 1.8833 24 3.98 0.0006
diet 1v2 & exertype 12v3 -12.7667 3.9951 24 -3.20 0.0039
runners only, diet 1 v 2 -16.0000 3.2620 24 -4.91 <.0001

 Tests of Effect Slices

 Num Den
Effect diet time DF DF F Value Pr > F
diet*exertype 1 2 24 12.51 0.0002
diet*exertype 2 2 24 44.77 <.0001
exertype*time 1 2 48 2.63 0.0824
exertype*time 2 2 48 25.83 <.0001
exertype*time 3 2 48 77.98 <.0001
diet*exertype*time 1 1 2 48 1.13 0.3326
diet*exertype*time 1 2 2 48 7.53 0.0014
diet*exertype*time 1 3 2 48 13.92 <.0001
diet*exertype*time 2 1 2 48 1.57 0.2194
diet*exertype*time 2 2 2 48 19.76 <.0001
diet*exertype*time 2 3 2 48 77.39 <.0001

From the tests we see that there is a significant difference between the pulse rate over time of the
runners of the low fat diet and the runners of the non-low fat diet. The runners of the low fat diet also
have significantly different pulse rate from the pulse rate of all the other groups (the runners of the non-
low fat diet, the walkers and "rest-ers" of both diet groups). The runners have a different pulse rate over
time from the walkers and "rest-ers" combined. The only time we do not have a significant results is
when we look at the pulse rate of the walkers and "rest-ers" over time. Here the test has a p-value of
0.0705 which exceeds 0.05 and thus it is not significant.

When looking at diet=1 and diet=2 separately across all time points we find that there is significant
differences in the exertype groups. At time=2 and time=3 there is also a significant difference between
exertype groups across both diets. There is not a significant differences between the exertype groups
when looking at time=1 and diet=1 nor is there a significant differences among the groups when
looking at time=1 and diet=2. For all other combinations of diet and time levels there is a significant
difference among the exertype groups.

It might be tempting to try and use the same type of estimate statements in proc glm in order to
perform similar types of contrasts. Unfortunately, the results of the estimate statement will be for each
of the dependent variable rather than across the repeated measure. Thus, it is not possible to test any of
the contrasts that we performed in proc mixed in the above analysis in proc glm using an estimate
statement since these contrasts are all done across time. In proc glm these contrasts would be

 343

performed separately for each time point which is very different from the results we obtained in proc
mixed.

Unequally Spaced Time Points

Modeling Time as a Linear Predictor of Pulse

We have another study which is very similar to the one previously discussed except that in this new
study the pulse measurements were not taken at regular time points. In this study a baseline pulse
measurement was obtained at time = 0 for every individual in the study. However, subsequent pulse
measurements were taken at less regular time intervals. The second pulse measurements were taken at
approximately 2 minutes (time = 120 seconds); the pulse measurement was obtained at approximately 5
minutes (time = 300 seconds); and the fourth and final pulse measurement was obtained at
approximately 10 minutes (time = 600 seconds). The data for this study is displayed below and it is
available in the study2 data file.

data study2;
 input id exertype diet pulse time;
cards;
1 1 1 90 0
1 1 1 92 228
1 1 1 93 296
1 1 1 93 639
2 1 1 90 0
2 1 1 92 56
2 1 1 93 434
2 1 1 93 538
3 1 1 97 0
3 1 1 97 150
3 1 1 94 295
3 1 1 94 541
4 1 1 80 0
4 1 1 82 121
4 1 1 83 256
4 1 1 83 575
5 1 1 91 0
5 1 1 92 161
5 1 1 91 252
5 1 1 91 526
6 1 2 83 0
6 1 2 83 73
6 1 2 84 320
6 1 2 84 570
7 1 2 87 0
7 1 2 88 40
7 1 2 90 325
7 1 2 90 730
8 1 2 92 0
8 1 2 94 205
8 1 2 95 276
8 1 2 95 761
9 1 2 97 0
9 1 2 99 57
9 1 2 96 244
9 1 2 96 695
10 1 2 100 0

http://www.ats.ucla.edu/stat/sas/seminars/sas_repeatedmeasures/study2.sas7bdat

 344

10 1 2 97 143
10 1 2 100 296
10 1 2 100 722
11 2 1 86 0
11 2 1 86 83
11 2 1 84 262
11 2 1 84 566
12 2 1 93 0
12 2 1 103 116
12 2 1 104 357
12 2 1 104 479
13 2 1 90 0
13 2 1 92 191
13 2 1 93 280
13 2 1 93 709
14 2 1 95 0
14 2 1 96 112
14 2 1 100 219
14 2 1 100 367
15 2 1 89 0
15 2 1 96 96
15 2 1 95 339
15 2 1 95 639
16 2 2 84 0
16 2 2 86 92
16 2 2 89 351
16 2 2 89 508
17 2 2 103 0
17 2 2 109 196
17 2 2 114 213
17 2 2 120 634
18 2 2 92 0
18 2 2 96 117
18 2 2 101 227
18 2 2 101 614
19 2 2 97 0
19 2 2 98 70
19 2 2 100 295
19 2 2 100 515
20 2 2 102 0
20 2 2 104 165
20 2 2 103 302
20 2 2 103 792
21 3 1 93 0
21 3 1 98 100
21 3 1 110 396
21 3 1 115 498
22 3 1 98 0
22 3 1 104 104
22 3 1 112 310
22 3 1 117 518
23 3 1 98 0
23 3 1 105 148
23 3 1 118 208
23 3 1 121 677
24 3 1 87 0
24 3 1 122 171
24 3 1 127 320
24 3 1 133 633

 345

25 3 1 94 0
25 3 1 110 57
25 3 1 116 268
25 3 1 119 657
26 3 2 95 0
26 3 2 126 163
26 3 2 143 382
26 3 2 147 501
27 3 2 100 0
27 3 2 126 70
27 3 2 140 347
27 3 2 148 737
28 3 2 103 0
28 3 2 124 61
28 3 2 140 263
28 3 2 143 588
29 3 2 94 0
29 3 2 135 164
29 3 2 130 353
29 3 2 137 560
30 3 2 99 0
30 3 2 111 114
30 3 2 140 362
30 3 2 148 501
;
run;

In order to get a better understanding of the data we will look at a scatter plot of the data with lines
connecting the points for each individual.

proc sort data=study2;
 by id time;
run;
goptions reset=all;
symbol1 c=blue v=star h=.8 i=j r=10;
symbol2 c=red v=dot h=.8 i=j r=10;
symbol3 c=green v=square h=.8 i=j r=10;
axis1 order=(60 to 150 by 30) label=(a=90 'Pulse');
proc gplot data=study2;
 plot pulse*time=id / vaxis=axis1;
run;

 346

This is a situation where multilevel modeling excels for the analysis of data with irregularly spaced time
points. The multilevel model with time as a linear effect is illustrated in the following equations.

Level 1 (time): Pulse = β0j + β1j (Time) + rij
Level 2 (person): β0j = γ00 + γ01(Exertype) + u0j
Level 2 (person): β1j = γ10 + γ11(Exertype) + u1j

Substituting the level 2 model into the level 1 model we get the following single equations. Note: The
random components have been placed in square brackets.

Pulse = γ00 + γ01(Exertype) + γ10(Time) + γ11(Exertype*time) + [u0j + u1j(Time) + rij]

Since this model contains both fixed and random components, it can be analyzed in proc mixed as
shown below.

*the linear model ;
proc mixed data=study2 covtest noclprint;
 class id exertype ;
 model pulse = time exertype time*exertype / solution outp=pred1r outpm = pred1f;
 random intercept time / subject = id;
run;
 Covariance Parameter Estimates

 Standard Z
Cov Parm Subject Estimate Error Value Pr Z
Intercept id 33.8894 13.3635 2.54 0.0056
time id 0.000133 0.000080 1.66 0.0482

 347

Residual 32.4052 5.4327 5.96 <.0001

 Solution for Fixed Effects

 Standard
Effect exertype Estimate Error DF t Value Pr > |t|
Intercept 103.70 2.2884 27 45.31 <.0001
time 0.05635 0.005405 27 10.43 <.0001
exertype 1 -12.6252 3.2262 60 -3.91 0.0002
exertype 2 -9.1144 3.2309 60 -2.82 0.0065
exertype 3 0
time*exertype 1 -0.05477 0.007531 60 -7.27 <.0001
time*exertype 2 -0.04760 0.007711 60 -6.17 <.0001
time*exertype 3 0

 Type 3 Tests of Fixed Effects

 Num Den
Effect DF DF F Value Pr > F
time 1 27 51.13 <.0001
exertype 2 60 8.15 0.0007
time*exertype 2 60 30.68 <.0001

The output file pred1f contains the predicted values based on the fixed part of the model. We can
illustrate what the predicted values of pulse look like using this model below.

goptions reset=all;
symbol1 c=blue v=star h=.8 i=j;
symbol2 c=red v=dot h=.8 i=j;
symbol3 c=green v=square h=.8 i=j;
axis1 order=(60 to 150 by 30) label=(a=90 'Predicted Pulse');
proc gplot data=pred1f;
 plot pred*time=exertype /vaxis=axis1;
run;
quit;

 348

We can include the observed pulse as well and see that this model is not fitting very well at all. The
green line is fitting curved data with a straight line.

proc sort data=pred1f;
 by time;
run;
goptions reset=all;
symbol1 c=blue v=star h=.8 i=j w=10;
symbol2 c=red v=dot h=.8 i=j w=10;
symbol3 c=green v=square h=.8 i=j w=10;
symbol4 c=blue v=star h=.8 i=j r=10;
symbol5 c=red v=dot h=.8 i=j r=10;
symbol6 c=green v=square h=.8 i=j r=10;
axis1 order=(60 to 150 by 30) label=(a=90 'Predicted and Observed Pulse');
proc gplot data=pred1f;
 plot pred*time=exertype / vaxis=axis1 ;
 plot2 pulse*time = id / vaxis=axis1 ;;
run;
quit;

 349

Modeling Time as a Quadratic Predictor of Pulse

To model the quadratic effect of time, we add time*time to the model. We see that term is significant.

*the quadratic model ;
proc mixed data=study2 covtest noclprint;
 class id exertype;
 model pulse = time exertype time*exertype time*time / solution outp=pred2r
outpm=pred2f ;
 random intercept time / subject = id;
run;

 Covariance Parameter Estimates

 Standard Z
Cov Parm Subject Estimate Error Value Pr Z
Intercept id 33.2228 12.3961 2.68 0.0037
time id 0.000151 0.000075 2.00 0.0226
Residual 24.8148 4.2003 5.91 <.0001

 Solution for Fixed Effects

 Standard
Effect exertype Estimate Error DF t Value Pr > |t|
Intercept 101.68 2.2145 27 45.91 <.0001
time 0.08777 0.008310 27 10.56 <.0001
exertype 1 -12.9233 3.0723 59 -4.21 <.0001
exertype 2 -9.3558 3.0757 59 -3.04 0.0035
exertype 3 0

 350

time*exertype 1 -0.05253 0.007332 59 -7.16 <.0001
time*exertype 2 -0.04690 0.007464 59 -6.28 <.0001
time*exertype 3 0
time*time -0.00005 0.000011 27 -4.83 <.0001

 Type 3 Tests of Fixed Effects

 Num Den
Effect DF DF F Value Pr > F
time 1 27 55.38 <.0001
exertype 2 59 9.42 0.0003
time*exertype 2 59 30.48 <.0001
time*time 1 27 23.28 <.0001

Below we see the predicted values from this model with the quadratic effect of time.

* just predicted, fixed ;
proc sort data=pred2f;
 by time;
run;
goptions reset=all;
symbol1 c=blue v=star h=.8 i=j ;
symbol2 c=red v=dot h=.8 i=j ;
symbol3 c=green v=square h=.8 i=j ;
axis1 order=(60 to 150 by 30) label=(a=90 'Predicted Pulse');
proc gplot data=pred2f;
 plot pred*time=exertype /vaxis=axis1 ;
run;
quit;

 351

Again, we can plot the predicted values against the actual values of pulse. We see that this model fits
better, but it appears that the predicted values for the green group have too little curvature and the red
and blue group have too much curvature.

* predicted vs. actual , fixed ;
proc sort data=pred2f;
 by time;
run;
goptions reset=all;
symbol1 c=blue v=star h=.8 i=j w=10;
symbol2 c=red v=dot h=.8 i=j w=10;
symbol3 c=green v=square h=.8 i=j w=10;
symbol4 c=blue v=star h=.8 i=j r=10;
symbol5 c=red v=dot h=.8 i=j r=10;
symbol6 c=green v=square h=.8 i=j r=10;
axis1 order=(60 to 150 by 30) label=(a=90 'Predicted and Observed Pulse');
proc gplot data=pred2f;
 plot pred*time=exertype / vaxis=axis1 ;
 plot2 pulse*time = id / vaxis=axis1 ;;
run;
quit;

Modeling Time as a Quadratic Predictor of Pulse, Interacting by Exertype

We can include an interaction of time*time*exertype to indicate that the different exercises not only
show different linear trends over time, but that they also show different quadratic trends over time, as
shown below. The time*time*exertype term is significant.

* quadratic model , model 3 ;

 352

proc mixed data=study2 covtest noclprint;
 class id exertype;
 model pulse = time exertype time*exertype time*time time*time*exertype / solution
outp=pred3r outpm=pred3f ;
 random intercept time / subject = id;
run;
 Solution for Fixed Effects

 Standard
Effect exertype Estimate Error DF t Value Pr >
|t|
Intercept 98.0958 2.1923 27 44.75
<.0001
time 0.1448 0.01065 27 13.60
<.0001
exertype 1 -7.2807 3.0989 57 -2.35
0.0223
exertype 2 -4.6201 3.1042 57 -1.49
0.1422
exertype 3 0
time*exertype 1 -0.1393 0.01461 57 -9.53
<.0001
time*exertype 2 -0.1204 0.01472 57 -8.18
<.0001
time*exertype 3 0
time*time -0.00014 0.000016 27 -9.17
<.0001
time*time*exertype 1 0.000139 0.000021 57 6.67
<.0001
time*time*exertype 2 0.000120 0.000021 57 5.60
<.0001
time*time*exertype 3 0

 Type 3 Tests of Fixed Effects

 Num Den
Effect DF DF F Value Pr > F
time 1 27 96.49 <.0001
exertype 2 57 2.83 0.0676
time*exertype 2 57 52.32 <.0001
time*time 1 27 84.11 <.0001
time*time*exertype 2 57 24.77 <.0001

* predicted vs. actual , fixed ;
proc sort data=pred3f;
 by time;
run;
goptions reset=all;
symbol1 c=blue v=star h=.8 i=j w=10;
symbol2 c=red v=dot h=.8 i=j w=10;
symbol3 c=green v=square h=.8 i=j w=10;
symbol4 c=blue v=star h=.8 i=j r=10;
symbol5 c=red v=dot h=.8 i=j r=10;
symbol6 c=green v=square h=.8 i=j r=10;
axis1 order=(60 to 150 by 30) label=(a=90 'Predicted and Observed Pulse');
proc gplot data=pred3f;
 plot pred*time=exertype / vaxis=axis1 ;
 plot2 pulse*time = id / vaxis=axis1 ;;
run;

 353

quit;

Below we see the predicted and actual values and see that this model fits much better. The green curve
hugs the data from the green group much better and the blue and red groups are much flatter, fitting
their data much better as well.

Statistical Computing Seminar
Proc Logistic and Logistic Regression Models

• Introduction
• Binary Logistic Regression
• Exact Logistic Regression
• Generalized Logits Model - Multinomial Logistic Regression
• Proportional Odds Model - Ordinal Logistic Regression

Introduction

Logistic regression describes the relationship between a categorical response variable and a set of
predictor variables. A categorical response variable can be a binary variable, an ordinal variable or a
nominal variable. Each type of categorical variables requires different techniques to model its

 354

relationship with the predictor variables. In this seminar, we illustrate how to perform different types of
analyses using SAS proc logistic. For a binary response variable, such as a response to a yes-no
question, a commonly used model is the logistic regression model. We also touch the surface of exact
logistic regression, which is very useful when the sample size is too small or the events are too sparse.
For a nominal response variable, such as Democrats, Republicans and Independents, we can fit a
generalized logits model. For an ordinal response variable, such as low, medium and high, we can fit it
to a proportional odds model.

Logistic Regression Models

In this section, we will use the High School and Beyond data set, hsb2.sas7bdat to describe what a
logistic model is, how to perform a logistic regression model analysis and how to interpret the model.
Our dependent variable is created as a dichotomous variable indicating if a student's writing score is
higher than or equal to 52. We call it hiwrite. The predictor variables will include prog, female and
other test scores. Our data set has 200 observations.

data hsb2;
 set hsb2;
 hiwrite = write >=52;
run;
proc means data = hsb2 mean std;
run;
Variable Mean Std Dev
--
ID 100.5000000 57.8791845
FEMALE 0.5450000 0.4992205
RACE 3.4300000 1.0394722
SES 2.0550000 0.7242914
SCHTYP 1.1600000 0.3675260
PROG 2.0250000 0.6904772
READ 52.2300000 10.2529368
WRITE 52.7750000 9.4785860
MATH 52.6450000 9.3684478
SCIENCE 51.8500000 9.9008908
SOCST 52.4050000 10.7357935
hiwrite 0.6300000 0.4840159
--

Let π be the probability of scoring higher than 51 in writing test. The odds is π/(1-π). For example, the
overall probability of scoring higher than 51 is .63. The odds will be .63/(1-.63) = 1.703. A logistic
regression model describes a linear relationship between the logit, which is the log of odds, and a set of
predictors.

logit(π) = log(π/(1-π)) = α + β1*x1 + β2*x2 + ... + βk*xk = α + x β

We can either interpret the model using the logit scale, or we can convert the log of odds back to the
probability such that

π = exp(α + x β) /(1 + exp(α + x β)).

http://www.ats.ucla.edu/stat/sas/notes2/hsb2.sas7bdat

 355

The advantage of using the logit scale for interpretation is that the relationship between the logit and the
predictors is a linear relationship. But sometimes it is easier to interpret the model in terms of
probabilities. Then we have to keep in mind that the relationship between the probabilities and the
predictors is not a linear relationship. For more details on odds ratio, please see our FAQ page on how
to interpret odds ratios in logistic regression.

A Simple Model

Let's consider the model where female is the only predictor. We will use this example to understand the
concepts of odds and odds ratios and to understand how they are related to the parameter estimates.

proc logistic data = hsb2 ;
 model hiwrite (event='1') = female ;
 ods output ParameterEstimates = model_female;
run;
 Analysis of Maximum Likelihood Estimates
 Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 0.0220 0.2097 0.0110 0.9165
FEMALE 1 0.9928 0.3016 10.8369 0.0010

Notice that we can specify which event to model using the event = option in the model statement. This
is new in SAS 8.2. The other way of specifying that we want to model 1 as event instead of 0 is to use
the descending option in the proc logistic statement. One thing that is worth noticing is the use of
quotes in the option event = '1'. Even though, the variable hiwrite is a numeric variable, it is still
necessary to surround 1 with a pair of quotes. It comes handy when the outcome variable is coded as a
character variable. Using the ODS output statement, we created a data set called model_female
containing the parameter estimates shown above. We can then use the data set to create the odds and
odds ratio.

data model_fem;
 set model_female;
 o = exp(estimate);
run;
proc print data = model_fem;
 var variable estimate o;
run;
Obs Variable Estimate o
 1 Intercept 0.0220 1.02222
 2 FEMALE 0.9928 2.69865

The intercept has a parameter estimate of .022. This is the estimated logit when female = 0, that is when
the student is a male student. Therefore, the odds = exp(logit) = exp(.0220) = 1.02222 is the estimated
odds for a male student to score 52 or higher in writing test. The coefficient for variable female is .9928.
That means that for a one unit increase in female (that is changing from male to female) the expected
change in log of odds is .9928. We can also interpret it in the scale of odds ratio. The odds for a male
student is exp(α) = exp(.022) and the odds for a female student is exp(.022 + .9928*1). Therefore,
taking the ratio of these two odds, we get the odds ratio for female versus male is exp(.9928) = 2.699.
In terms of probabilities, the probability for females to score 52 or higher on the writing test is exp(.022
+ .9928) / (1 + exp(.022 + .9928)) = .734. The probability for males is exp(.022)/(1 + exp(.022)) = .505.

With this simple example, we can actually compute the odds ratio from the 2x2 table of hiwrite*female.

http://www.ats.ucla.edu/stat/SAS/faq/oratio.htm
http://www.ats.ucla.edu/stat/SAS/faq/oratio.htm

 356

proc freq data = hsb2;
 tables hiwrite*female /nocum nopercent;
run;
hiwrite FEMALE
Frequency|
Row Pct |
Col Pct | 0| 1| Total
---------+--------+--------+
 0 | 45 | 29 | 74
 | 60.81 | 39.19 |
 | 49.45 | 26.61 |
---------+--------+--------+
 1 | 46 | 80 | 126
 | 36.51 | 63.49 |
 | 50.55 | 73.39 |
---------+--------+--------+
Total 91 109 200

For example, for males, the odds is 46/45 = 1.022, which is the exponentiated value of the intercept
from the model. The odds ratio for females versus males is (80/29)/(46/45) = 2.699. It is usually written
as a cross-product (45*80)/(29*46) = 2.699. This is the exponentiated value of the parameter estimate
for variable female.

A Model with a Continuous Predictor and a Categorical Predictor

Let's now take a look at a model with both a continuous variable math and a categorical variable
female as predictors. We will focus on how to interpret the parameter estimate for the continuous
variable.

proc logistic data = hsb2;
 model hiwrite (event='1') = female math;
 output out = m2 p = prob xbeta = logit;
run;
 Analysis of Maximum Likelihood Estimates
 Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -10.3651 1.5535 44.5153 <.0001
FEMALE 1 1.6304 0.4052 16.1922 <.0001
MATH 1 0.1979 0.0293 45.5559 <.0001
 Odds Ratio Estimates
 Point 95% Wald
Effect Estimate Confidence Limits
FEMALE 5.106 2.308 11.298
MATH 1.219 1.151 1.291

The interpretation for the parameter estimate of math is very similar to that for the categorical variable
female. In terms of logit scale, we can say that for every unit increase in the math score, the logit will
increase by .198, holding everything else constant. We can also say that for a one unit increase in math
score, the odds of scoring 51 or higher in writing test increases by (1.219-1)*100% = 22%.

We used an output statement to create a data set containing the predicted probabilities based on the
model. We can compare the linear predictions and the probabilities in terms of the math scores for the
males and females.

 357

proc sort data = m2;
 by math;
run;
symbol1 i = join v=star l=32 c = black;
symbol2 i = join v=circle l = 1 c=black;
proc gplot data = m2;
 plot logit*math = female;
 plot prob*math = female;
run;
quit;

 358

Sometimes, a one unit change may not be a desirable scale to use. We can ask SAS to give us odds ratio
for different units of change. For example, it may make more sense to talk about change of every 5 units
in math score. This can be done using unit statement. We also include the option clodds = wald to the
model statement so that the confidence interval will also be calculated for the odds ratio calculated in
the unit statement. Of course, you can always manually compute the odds ratio for every 5 units change
in math score as 1.219^5 = 2.69.
proc logistic data = hsb2 ;
 model hiwrite (event='1') = female math /clodds=wald;
 unit math = 5;
run;

 Odds Ratio Estimates
 Point 95% Wald
Effect Estimate Confidence Limits
FEMALE 5.106 2.308 11.298
MATH 1.219 1.151 1.291
 Wald Confidence Interval for Adjusted Odds Ratios
Effect Unit Estimate 95% Confidence Limits
MATH 5.0000 2.689 2.018 3.584

Other Features of Proc Logistic

We will illustrate other features of proc logistic by using a model with more predictors. We will include
categorical variables prog and female, continuous variables math and read. This model is merely for
the purpose of demonstrating proc logistic, not really a model developed based on any theory.

proc logistic data = hsb2 ;
 class prog (ref='1') /param = ref;
 model hiwrite (event='1') = female read math prog ;
run;

 359

 Response Profile
 Ordered Total
 Value hiwrite Frequency
 1 0 74
 2 1 126
Probability modeled is hiwrite=1.
 Class Level Information
 Design
Class Value Variables
PROG 1 0 0
 2 1 0
 3 0 1
 Analysis of Maximum Likelihood Estimates
 Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -12.3140 2.0374 36.5311 <.0001
FEMALE 1 1.9576 0.4533 18.6541 <.0001
READ 1 0.1037 0.0298 12.1453 0.0005
MATH 1 0.1310 0.0329 15.8738 <.0001
PROG 2 1 0.2721 0.4889 0.3098 0.5778
PROG 3 1 -0.5776 0.5478 1.1116 0.2917

CLASS statement

Notice that we have used the class statement for variable prog. SAS will create dummy variables for a
categorical variable on-the-fly. There are various coding schemes from which to choose. The default
coding for all the categorical variables in proc logistic is the effect coding. Here we changed it to
dummy coding by using the param = ref option. We can specify the comparison group by using ref =
option after the variable name. There are other coding schemes available, such as orthogonal
polynomial coding scheme and reference cell coding. We can double check what coding scheme is used
and which group is the reference group by looking at the Class Level Information part of the output.

CONTRAST statement

In the parameter estimates, we only see the comparison of level 2 vs. 1 and level 3 vs. 1 for variable
prog. If we want to compare level 2 vs. level 3, we can use the contrast statement. Usually, contrast is
done using less than full rank, reference cell coding as used in proc glm. We chose this type of coding
by using param = glm option in the class statement. We also used estimate option at the end of
contrast statement to get the estimate of the difference between group 1 and group 2. It is always a
good idea to check the Class Level Information to see how the variable is coded so we know that the
contrast statement gives us the expected contrast among groups.
proc logistic data = hsb2 ;
 class prog /param = glm ;
 model hiwrite (event='1') = female read math prog;
 contrast '1 vs 2 of prog' prog 1 -1 0 / estimate;
run;
 Class Level Information
Class Value Design Variables
PROG 1 1 0 0
 2 0 1 0
 3 0 0 1
 Contrast Test Results
 Wald
Contrast DF Chi-Square Pr > ChiSq
1 vs 2 of prog 1 0.3098 0.5778

 360

 Contrast Rows Estimation and Testing Results
 Standard
Contrast Type Row Estimate Error Alpha Confidence Limits
1 vs 2 of prog PARM 1 -0.2721 0.4889 0.05 -1.2303 0.6861
 Contrast Rows Estimation and Testing Results
 Wald
Contrast Type Row Chi-Square Pr > ChiSq
1 vs 2 of prog PARM 1 0.3098 0.5778

TEST Statement

The parameter estimates offers all the one degree of freedom test on each of the parameters. We can
also test the combined effect of multiple parameters using the test statement. In the example below, we
first tested on the joint effect of read and math. Next we tested on the hypothesis that the effect of read
and math are the same.

proc logistic data = hsb2 ;
 class prog(ref='1') /param = ref;
 model hiwrite (event='1') = prog female read math
 test_read_math: test read, math;
 test_equal: test read = math;
run;

 Linear Hypotheses Testing Results
 Wald
 Label Chi-Square DF Pr > ChiSq
 test_read_math 37.2236 2 <.0001
 test_equal 0.3041 1 0.5813

LACKFIT and RSQUARE Option

The Hosmer-Lemeshow test of goodness-of-fit can be performed by using the lackfit option after the
model statement. This test divides subjects into deciles based on predicted probabilities, then computes
a chi-square from observed and expected frequencies. It tests the null hypothesis that there is no
difference between the observed and predicted values of the response variable. Therefore, when the test
is not significant, as in this example, we can not reject the null hypothesis and say that the model fits the
data well. We can also request the generalized R-square measure for the model by using rsquare option
after the model statement. SAS gives the likelihood-based pseudo R-square measure and its rescaled
measure. Categorical Data Analysis Using The SAS System, by M. Stokes, C. Davis and G. Koch offers
more details on how the generalized R-square measures that you can request are constructed and how to
interpret them.
proc logistic data = hsb2;
 class prog(ref='1') /param = ref;
 model hiwrite(event='1') = female prog read math / rsq lackfit;
run;

 Model Fit Statistics
 Intercept
 Intercept and
Criterion Only Covariates
AIC 265.582 167.035
SC 268.881 186.825
-2 Log L 263.582 155.035
R-Square 0.4188 Max-rescaled R-Square 0.5720
 Partition for the Hosmer and Lemeshow Test

http://support.sas.com/publishing/bbu/companion_site/57998.html

 361

 hiwrite = 1 hiwrite = 0
 Group Total Observed Expected Observed Expected
 1 20 0 1.08 20 18.92
 2 20 4 3.45 16 16.55
 3 20 9 6.54 11 13.46
 4 21 10 10.86 11 10.14
 5 20 13 13.64 7 6.36
 6 20 17 15.70 3 4.30
 7 20 16 17.44 4 2.56
 8 20 18 18.76 2 1.24
 9 20 20 19.61 0 0.39
 10 19 19 18.90 0 0.10
Hosmer and Lemeshow Goodness-of-Fit Test
Chi-Square DF Pr > ChiSq
 5.2766 8 0.7276

Influence Statistics

One important topic in logistic regression is regression diagnostics. Proc logistic can generate a lot of
diagnostic measures for detecting outliers and influential data points for a binary outcome variable.
These diagnostic measures can be requested by using the output statement. For example, we can
request for residual deviance, the hat matrix diagonal and residual chi-squared deviance and the
difference between chi-square goodness-of-fit when an observation is deleted. We can then plot these
variables against the predicted values to investigate the influence of each point on the model. By using
the pointlabel option in the symbol statement, we can see that the observation with id = 187 has the
highest influence on the chi-square goodness-of-fit.

proc logistic data = hsb2 ;
 class prog(ref='1') /param = ref;
 model hiwrite(event='1') = female prog read math ;
 output out=dinf prob=p resdev=dr h=pii reschi=pr difchisq=difchi;
run;

goptions reset = all;
symbol1 pointlabel = ("#id" h=1) value=none;
proc gplot data = dinf;
 plot difchi*p;
run;
quit;

 362

Scoring a New Data Set

There are situations where we want to produce predicted probabilities for a specific combination of the
values of the predictors. For example, we may want to know the predicted probabilities for groups
defined by female and prog when math and read are held at their grand means. Let's first create a data
set with the groups and grand means for math and read.

proc sql;
 create table gdata as
 select distinct female, (prog=2) as prog2,(prog=3) as prog3,
 mean(read) as read, mean(math) as math
 from hsb2;
quit;
proc print data = gdata;
run;
Obs FEMALE prog2 prog3 read math
 1 0 0 0 52.23 52.645
 2 0 0 1 52.23 52.645
 3 0 1 0 52.23 52.645
 4 1 0 0 52.23 52.645
 5 1 0 1 52.23 52.645
 6 1 1 0 52.23 52.645

We can use SAS proc score to generate the linear predicted values and then compute the odds or
probabilities afterwards. Notice that the score procedure does not care what model we have run. It uses
the estimated parameters to generate linear predictions. In our logistic regression case, the predicted
values are therefore in the logit scale. In the output data set created by proc score, we have a variable
called hiwrite. This is the new variable that proc score created for predicted values.

proc logistic data = hsb2 outest=mg;

 363

 class prog(ref='1') /param = ref;
 model hiwrite(event='1') = female prog read math ;
run;
*Scoring the data set to get the linear predictions;
proc score data=gdata score=mg out=gpred type=parms;
 var female prog2 prog3 read math;
run;
data gpred;
 set gpred;
 odds = exp(hiwrite);
 p_1 = odds /(1+odds);
 p_0 = 1 - p_1;
run;
proc print data = gpred;
run;
Obs FEMALE prog2 prog3 read math hiwrite odds p_1 p_0
 1 0 0 0 52.23 52.645 0.00012 1.00012 0.50003 0.49997
 2 0 0 1 52.23 52.645 -0.57747 0.56132 0.35952 0.64048
 3 0 1 0 52.23 52.645 0.27223 1.31289 0.56764 0.43236
 4 1 0 0 52.23 52.645 1.95774 7.08332 0.87629 0.12371
 5 1 0 1 52.23 52.645 1.38016 3.97552 0.79902 0.20098
 6 1 1 0 52.23 52.645 2.22986 9.29856 0.90290 0.09710

Remarks: This process will be simplified with SAS 9.0 and above with the new statement score in
proc logistic. The syntax one will use looks like the the following:

proc sql;
 create table gdata1 as
 select distinct female, ses,
 mean(read) as read, mean(math) as math
 from hsb2;
quit;
proc logistic data = hsb2 outmodel=mg1;
 class prog(ref='1') /param = ref;
 model hiwrite(event='1') = female prog read math ;
run;
proc logistic inmodel=mg1;
 score data = gdata1 out=gpred1;
run;
proc print data = gpred1;
run;

Exact Logistic Regression

All of the models we have inspected so far require large sample sizes. When the data sets are too small
or when the event occurs very infrequently, the maximum likelihood method may not work or may not
provide reliable estimates. Exact logistic regression provides a way to get around these difficulties.
What it does is to enumerate the exact distributions of the parameters of interest, conditional on the
remaining parameters. Here is a simple example from Performing Exact Logistic Regression with the
SAS System. The data set has very small cells, with each cell having only 3 observations. Let's run the
exact logistic regression on this data set.

data dose;
 input dose deaths total;
 datalines;

http://www.ats.ucla.edu/stat/sas/library/exactlogistic.pdf
http://www.ats.ucla.edu/stat/sas/library/exactlogistic.pdf

 364

0 0 3
1 0 3
2 0 3
3 0 3
4 1 3
5 2 3
;
run;
proc logistic data = dose desc;
 model deaths/total = dose;
 exact dose /estimate = both;
run;

 Model Fit Statistics
 Intercept
 Intercept and
Criterion Only Covariates
AIC 18.220 12.072
SC 19.111 13.853
-2 Log L 16.220 8.072
 Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 8.1478 1 0.0043
Score 5.7943 1 0.0161
Wald 2.7249 1 0.0988
 Analysis of Maximum Likelihood Estimates
 Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -9.4745 5.5677 2.8958 0.0888
dose 1 2.0804 1.2603 2.7249 0.0988
 Odds Ratio Estimates
 Point 95% Wald
Effect Estimate Confidence Limits
dose 8.007 0.677 94.679
Exact Conditional Analysis
 Conditional Exact Tests
 --- p-Value ---
Effect Test Statistic Exact Mid
dose Score 5.4724 0.0245 0.0190
 Probability 0.0110 0.0245 0.0190
 Exact Parameter Estimates
 95% Confidence
Parameter Estimate Limits p-Value
dose 1.8000 0.1157 5.8665 0.0245
 Exact Odds Ratios
 95% Confidence
Parameter Estimate Limits p-Value
dose 6.049 1.123 353.000 0.0245

Notice first of all that the syntax for model statement is slight different than we have seen so far. This is
the syntax used for grouped data. That is we have frequencies of the events for each of the cells. This
type of syntax works for both the maximum likelihood logistic regression and exact logistic regression.
With estimate = both, we request that both the parameters and the odds ratios are being estimated.

Generalized Logits Model for Multinomial Logistic Models

 365

Proc logistic also perform analysis on nominal response variables. Since the response variable no
longer has the ordering, we can no longer fit a proportional odds model to our data. But we can fit a
generalized logits model. This analysis can be done using proc catmod and that is how it is used to be
done. SAS 8.2 added some new features to its proc logistic and now proc logistic does analysis on
nominal responses with ease. In this section, we are going to use a data file called school used in
Categorical Data Analysis Using The SAS System, by M. Stokes, C. Davis and G. Koch. We will
illustrate what a generalized logits model is and how to perform an analysis using proc logistic.

data school;
 input school program style $ count;
cards;
1 1 self 10
1 1 team 17
1 1 class 26
1 2 self 5
1 2 team 12
1 2 class 50
2 1 self 21
2 1 team 17
2 1 class 26
2 2 self 16
2 2 team 12
2 2 class 36
3 1 self 15
3 1 team 15
3 1 class 16
3 2 self 12
3 2 team 12
3 2 class 20
;
run;

In this data set, three different teaching styles have been implemented in teaching third grade math.
School children in experimental learning settings were surveyed to determine which teaching styles
they preferred. The response variable style takes three values: class, self and team. We want to
determine the preference of students by their schools and programs. The programs are regular and after-
school programs with 1 being regular and 2 being after-school.

In a generalized logit model, we will pick a particular category of responses as the baseline reference
and compare every other category with the baseline response. In our example, we will choose team as
the baseline category. Consider the probabilities:

π1 = probability of 'Preferring class',
π2 = probability of 'Preferring self',
π3 = probability of 'Preferring team'.

The generalized logits are defined as

logit(θ1) = log(π1/π3),
logit(θ2) = log(π2/π3).

The generalized logits model for our example is then defined as

http://support.sas.com/publishing/bbu/companion_site/57998.html

 366

logit(θi) = αi + x βi,

where i = 1 and 2 indicating the two logits. This means that we allow two different sets of regression
parameters, one for each logit.

A Simple Example

We can calculate the generalized odds from the frequency table, similar to what we have done in the
case of proportional odds model.

proc freq data = school;
 weight count;
 tables style /list chisq relrisk;
 ods output OneWayFreqs = test;
run;
data test1;
 set test;
 godds = frequency/85;
run;
proc print data = test1;
 var style frequency godds;
run;
Obs style Frequency godds
 1 class 174 2.04706
 2 self 79 0.92941
 3 team 85 1.00000

The other way of getting the same results is to run the generalized logits model. In SAS, we can simply
use proc logistic with the link = glogit option.

proc logistic data = school order = internal;
 freq count;
 model style = /link = glogit ;
 ods output parameterestimates= odds;
run;
data odds1;
 set odds;
 odds = exp(estimate);
run;

proc print data = odds1;
 var response estimate odds;
run;
Obs Response Estimate odds
 1 class 0.7164 2.04706
 2 self -0.0732 0.92941

Saturated Model Example

In this data set, there are three schools and two types of programs. That is, for each of the preference
choices there are possible six cell counts. If we use both school and program and also include their
interaction, we will use up all the degrees of freedom. That is we have a saturated model. This is the
best model we can get, fitting each cell with its own parameter.

 367

proc logistic data=school order = internal;
 freq count;
 class school program / order = data;
 model style = school program school*program /link = glogit scale = none aggregate;
run;
The LOGISTIC Procedure
 Model Information
Data Set WORK.SCHOOL
Response Variable style
Number of Response Levels 3
Number of Observations 18
Frequency Variable count
Sum of Frequencies 338
Model generalized logit
Optimization Technique Fisher's scoring
 Response Profile
 Ordered Total
 Value style Frequency
 1 class 174
 2 self 79
 3 team 85
Logits modeled use style='team' as the reference category.
 Class Level Information
 Design
Class Value Variables
school 1 1 0
 2 0 1
 3 -1 -1
program 1 1
 2 -1
 Model Convergence Status
 Convergence criterion (GCONV=1E-8) satisfied.
 Deviance and Pearson Goodness-of-Fit Statistics
Criterion Value DF Value/DF Pr > ChiSq
Deviance 0.0000 0 . .
Pearson 0.0000 0 . .
Number of unique profiles: 6
 Model Fit Statistics
 Intercept
 Intercept and
Criterion Only Covariates
AIC 699.404 689.156
SC 707.050 735.033
-2 Log L 695.404 665.156
 Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 30.2480 10 0.0008
Score 28.3738 10 0.0016
Wald 25.6828 10 0.0042
 Type 3 Analysis of Effects
 Wald
Effect DF Chi-Square Pr > ChiSq
school 4 14.5522 0.0057
program 2 10.4815 0.0053
school*program 4 1.7439 0.7827

We have included most parts of the output from SAS, excluding the parameter estimates. The Deviance
and Pearson Goodness-of-Fit Statistics output is new here. They were requested by using option scale =

 368

none aggregate. Because our model is saturated, the goodness-of-fit statistics are zero with zero degree
of freedom. We also see that the default type of coding scheme, e.g. effect coding, that proc logistic has
for categorical variables. We also see that the overall effect of the interaction of school and program is
not significant. This leads us to a simpler model with only the main effect.

Model With Only Main Effect

proc logistic data=school order = internal;
 freq count;
 class school program /order = data;
 model style = school program /link = glogit scale = none aggregate;
run;
 Odds Ratio Estimates
 Point 95% Wald
Effect style Estimate Confidence Limits
school 1 vs 3 class 1.926 0.990 3.747
school 1 vs 3 self 0.517 0.228 1.175
school 2 vs 3 class 1.609 0.820 3.155
school 2 vs 3 self 1.276 0.620 2.626
program 1 vs 2 class 0.476 0.280 0.809
program 1 vs 2 self 1.005 0.538 1.877

We will focus on the interpretation of parameters. For example the odds ratio of class to team for
program1 versus program 2 is .476. We can say that the odds for students in program 1 to choose class
over team is .476 times the odds for students in program 2. Or we can say that the odds for students in
program 1 to choose class over team is .524 times less than the odds for students in program 2.
Similarly, we can say that the odds for students in school 1 to choose class over team is 1.926 times
the odds for students in school 3. Or we can say that the odds for students in school 1 to choose class
over team is .926 times more than the odds for students in school 3. It is oftentimes easier to describe in
terms of probabilities. We can use the output statement to generate these probabilities as shown below.

proc logistic data=school order = internal;
 freq count;
 class school program ;
 model style = school program / link = glogit;
 output out = smodel p=prob;
run;
proc freq data = smodel;
 where school = 1 or school = 2;
 format prob 5.4;
 tables school*program*_level_*prob /list nopercent nocum;
run;
school program _LEVEL_ prob Frequency
--
 1 1 class .5371 3
 1 1 self .1580 3
 1 1 team .3049 3
 1 2 class .7095 3
 1 2 self .0989 3
 1 2 team .1917 3
 2 1 class .3924 3
 2 1 self .3409 3
 2 1 team .2667 3
 2 2 class .5764 3
 2 2 self .2372 3
 2 2 team .1864 3

 369

Proportional Odds Model for Ordinal Logistic Models

The proportional odds model is also referred as the logit version of an ordinal regression model. It
extends logistic regression to handle ordinal response variables. In this section, we are going to use SAS
data set ordwarm2.sas7bdat to illustrate what a proportional odds model is and how to perform a
proportional odds model analysis.

Let's first take a look at the data set. This data set is taken from Regression Models For Categorical
Dependent Variables Using Stata by Long and Freese. Each subject in the data set was asked to
evaluate the following statement: "A working mother can establish just as warm and secure of a
relationship with her child as a mother who does not work". The response is recoded in a variable called
warm. It has four levels: 1 = Strongly Disagree (SD), 2 = Disagree (D), 3 = Agree (A) and 4 = Strongly
Agree (SA). This will be the response variable in our analysis. Other variables in the data set include
age, education level, gender of the subject, and other subject related variables.

options nocenter nodate label;
proc contents data = ordwarm2;
run;
The CONTENTS Procedure
Data Set Name: WORK.ORDWARM2 Observations: 2293
Member Type: DATA Variables: 10

 -----Alphabetic List of Variables and Attributes-----
 # Variable Type Len Pos Label
--
 2 age Num 3 8 Age in years
 3 ed Num 3 11 Years of education
 5 male Num 3 17 Gender: 1=male 0=female
 4 prst Num 3 14 Occupational prestige
 1 warm Num 8 0 Mom can have warm relations with child
 8 warmlt2 Num 3 26 1=SD; 0=D,A,SA
 9 warmlt3 Num 3 29 1=SD,D; 0=A,SA
10 warmlt4 Num 3 32 1=SD,D,A; 0=SA
 7 white Num 3 23 Race: 1=white 0=not white
 6 yr89 Num 3 20 Survey year: 1=1989 0=1977

We are interested in building up a model to describe the relationship between the response variable
warm and some of the explanatory variables, such as the age, level of education and race. Let's consider
the probabilities

θ1 = π1, probability of 'Strongly Disagree',
θ2 = π1 + π2, probability of 'Strongly Disagree' or 'Disagree',
θ3 = π1 + π2 + π3, probability of 'Not Strongly Agree',

where
π1 = probability of 'Strongly Disagree',
π2 = probability of 'Disagree',
π3 = probability of 'Agree',
π4 = probability of 'Strongly Agree'.

http://www.ats.ucla.edu/stat/sas/seminars/sas_logistic/ordwarm2.sas7bdat
http://www.stata.com/bookstore/rmcdvs.html
http://www.stata.com/bookstore/rmcdvs.html

 370

Then we can construct the cumulative logits:

logit(θ1) = log(θ1/(1 - θ1)) = log(π1/(π2 + π3 + π4)),
logit(θ2) = log(θ2/(1 - θ2)) = log((π1 + π2)/(π3 + π4)),
logit(θ3) = log(θ3/(1 - θ3)) = log((π1 + π2 + π3))/π4).

The proportional odds model is the following:

logit(θi) = αi + xβ.

Thus we allow the intercept to be different for different cumulative logit functions, but the effect of the
explanatory variables will be the same across different logit functions. That is, we allow different α's for
each of the cumulative odds, but only one set of β's for all the cumulative odds. This is the
proportionality assumption and this is why this type model is called proportional odds model. Also
notice that although this is a model in terms of cumulative odds, we can always recover the probabilities
of each response category as follows.

π1 = θ1
π2 = θ2 - θ1
π3 = θ3 - θ2
π4 = 1 - θ3

A Simple Example

We can calculate the cumulative odds from the frequency table.

proc freq data = ordwarm2;
 table warm ;
 ods output onewayfreqs = test (keep = warm frequency cumfrequency);
run;
data test1;
 set test;
 if _n_ <=3 then
 odds = cumfrequency /(2293-cumfrequency);
run;
proc print data= test1;
run;
 Cum
Obs warm Frequency Frequency odds
 1 1 297 297 0.14880
 2 2 723 1020 0.80126
 3 3 856 1876 4.49880
 4 4 417 2293 .

The other way of getting the same result is to run a proportional odds model with only the intercept as a
predictor.

proc logistic data = ordwarm2 ;
 model warm = /link = clogit;
 ods output ParameterEstimates = model_based;
run;
data test2;
 set model_based;

 371

 odds = exp(estimate);
run;
proc print data = test2 noobs;
 var variable estimate odds;
run;
Variable Estimate odds
Intercept -1.9052 0.14880
Intercept -0.2216 0.80126
Intercept 1.5038 4.49880

An Example With Only Categorical Predictors

In SAS, a proportional odds model analysis can be performed using proc logistic with the option link =
clogit. Here clogit stands for cumulative logit. In this example, we are going to use only categorical
predictors, white (1=white 0=not white) and male (1=male 0=female), and we will focus more on the
interpretation of the regression coefficients. Our model can be written as logit(θi) = αi + β1*white +
β2*male, i = 1, 2, 3. The formula for the odds is shown in the table below. For example, we can see that
the odds ratio for males versus females is exp(β2) and the odds ratio for the whites versus non-whites is
exp(β1).

Race Gender SD vs. all other
choices

SD and D vs. all other
choices SD, D and A vs. SA

White Male exp(α1+ β1+ β2) exp(α2 + β1+ β2) exp(α3 + β1 + β2)
White Female exp(α1 + β1) exp(α2 + β1) exp(α3 + β1)
Non-White Male exp(α1 + β2) exp(α2 + β2) exp(α3 + β2)
None-White Female exp(α1) exp(α2) exp(α3)
proc logistic data = ordwarm2 ;
 model warm = white male /link = clogit;
run;
 Response Profile
 Ordered Total
 Value warm Frequency
 1 1 297
 2 2 723
 3 3 856
 4 4 417
Probabilities modeled are cumulated over the lower Ordered Values.
 Analysis of Maximum Likelihood Estimates
 Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 1 -2.5550 0.1277 400.0337 <.0001
Intercept 2 1 -0.8417 0.1159 52.7347 <.0001
Intercept 3 1 0.9326 0.1167 63.8455 <.0001
white 1 0.3422 0.1163 8.6594 0.0033
male 1 0.6450 0.0774 69.5178 <.0001
 Odds Ratio Estimates
 Point 95% Wald
Effect Estimate Confidence Limits
white 1.408 1.121 1.769
male 1.906 1.638 2.218

From the output above, we can say that males have 1.906 times greater odds of somewhat disagreeing
with the statement as females, no matter at what level.

 372

A Example with a Continuous Predictor

In this example, we are going to use a continuous predictor, age and show how to output the predicted
values and how to graph them. The output statement below requests that SAS output predicted
probabilities and the linear predictions and save them to a data set. Based on the proportionality
assumption, we should expect that the lines for the linear predictions will be parallel to each other.

proc logistic data = ordwarm2 ;
 model warm = age /link = clogit;
 output out = pred p=p xbeta=linp;
run;
proc sort data = pred;
 by age;
run;

goptions reset = all ;
symbol i = join w=.4 ;
proc gplot data = pred;
 plot p*age=_level_;
 plot linp*age=_level_;
run;
quit;

 373

Another Example -- Proportional Odds Assumption Test and Goodness of Fit

• Proportionality Assumption

In general, we can model the cumulative odds model in such as a way that each of the cumulative odds
has its own regression model:
logit(θi) = αi + xβi.

A proportional odds model simplifies the model so that the effects of the predictors are the same across
different levels. This is the main assumption of the model. We need to test this assumption. That is, we
need test the hypothesis that β1 = β2 = β3. SAS proc logistic performs a score test to test this hypothesis.
Let's look at the model with male and white as predictors again.

proc logistic data = ordwarm2 ;
 model warm = white male /link = clogit;
run;
Score Test for the Proportional Odds Assumption
Chi-Square DF Pr > ChiSq
 21.6592 4 0.0002

The p-value is really small, so we have to reject the null hypothesis of proportionality. The degrees of
freedom is calculated as k*(r-2), where k is the number of predictors and r is the number of levels of
response variables. In our example, we have two predictors and four levels of responses. It is not
uncommon for a model not to satisfy the proportionality assumption (which is also called parallel
regression assumption). When the test fails, other alternative models should be considered, such as
multinomial logistic models.

• A Model with More Predictors

 374

Now let's take a look at a model where we use white, age and ed as our predictors. We also add options
scale = none aggregate to get the goodness of fit tests. The deviance and Pearson tests compare the
current model with the saturated model. This test being not significant tells us our model fits the data
well.

proc logistic data = ordwarm2 ;
 model warm = white age ed /link = clogit scale=none aggregate;
run;
 Response Profile
 Ordered Total
 Value warm Frequency
 1 1 297
 2 2 723
 3 3 856
 4 4 417
Probabilities modeled are cumulated over the lower Ordered Values.
Score Test for the Proportional Odds Assumption

Chi-Square DF Pr > ChiSq
 10.3962 6 0.1089
 Deviance and Pearson Goodness-of-Fit Statistics
Criterion DF Value Value/DF Pr > ChiSq
Deviance 2628 2523.3191 0.9602 0.9271
Pearson 2628 2588.2232 0.9849 0.7062
Number of unique profiles: 878
 Model Fit Statistics
 Intercept
 Intercept and
Criterion Only Covariates
AIC 5997.541 5841.101
SC 6014.754 5875.526
-2 Log L 5991.541 5829.101
 Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 162.4403 3 <.0001
Score 157.6156 3 <.0001
Wald 157.7599 3 <.0001

 Analysis of Maximum Likelihood Estimates
 Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 1 -2.0393 0.2342 75.8321 <.0001
Intercept 2 1 -0.2698 0.2294 1.3829 0.2396
Intercept 3 1 1.5397 0.2318 44.1185 <.0001
white 1 0.4376 0.1176 13.8470 0.0002
age 1 0.0179 0.00241 54.8182 <.0001
ed 1 -0.0933 0.0129 52.6988 <.0001
 Odds Ratio Estimates
 Point 95% Wald
Effect Estimate Confidence Limits
white 1.549 1.230 1.951
age 1.018 1.013 1.023
ed 0.911 0.888 0.934

Summary

 375

This seminar illustrate how to perform binary logistic, exact logistic, multinomial logistic (generalized
logits model) and ordinal logistic (proportional odds model) regression analysis using SAS proc
logistic. It focus on some new features of proc logistic available since SAS 8.1.

Survival Analysis with SAS

• Background for Survival Analysis
• The UIS data
• Exploring the data: Univariate Analyses
• Model Building
• Interactions
• Proportionality Assumption
• Graphing Survival Functions from Proc phreg

Background for Survival Analysis

The goal of this seminar is to give a brief introduction to the topic of survival analysis. We will be using
a smaller and slightly modified version of the UIS data set from the book "Applied Survival Analysis"
by Hosmer and Lemeshow. We strongly encourage everyone who is interested in learning survival
analysis to read this text as it is a very good and thorough introduction to the topic.

Survival analysis is just another name for time to event analysis. The term survival analysis is used
predominately in biomedical sciences where the interest is in observing time to death either of patients
or of laboratory animals. Time to event analysis has also been used widely in the social sciences where
interest is on analyzing time to events such as job changes, marriage, birth of children and so forth. The
engineering sciences have also contributed to the development of survival analysis which is called
"reliability analysis" or "failure time analysis" in this field, since the main focus is in modeling the time
it takes for machines or electronic components to break down. The developments from these diverse
fields have for the most part been consolidated into the field of "survival analysis". For more
background please refer to the excellent discussion in Chapter 1 of Event History Analysis by Paul
Allison.

There are certain aspects of survival analysis data, such as censoring and non-normality, that generate
great difficulty when trying to analyze the data using traditional statistical models such as multiple
linear regression. The non-normality aspect of the data violates the normality assumption of most
commonly used statistical model such as regression or ANOVA, etc. A censored observation is defined
as an observation with incomplete information. There are four different types of censoring possible:
right truncation, left truncation, right censoring and left censoring. We will focus exclusively on right
censoring for a number of reasons. Most data used in analyses have only right censoring. Furthermore,
right censoring is the most easily understood of all the four types of censoring and if a researcher can
understand the concept of right censoring thoroughly it becomes much easier to understand the other
three types. When an observation is right censored it means that the information is incomplete because
the subject did not have an event during the time that the subject was part of the study. The point of
survival analysis is to follow subjects over time and observe at which point in time they experience the
event of interest. It often happens that the study does not span enough time in order to observe the event
for all the subjects in the study. This could be due to a number of reasons. Perhaps subjects drop out of

http://www.ats.ucla.edu/stat/sas/seminars/sas_survival/default.htm#Background#Background
http://www.ats.ucla.edu/stat/sas/seminars/sas_survival/default.htm#data#data
http://www.ats.ucla.edu/stat/sas/seminars/sas_survival/default.htm#exploring#exploring
http://www.ats.ucla.edu/stat/sas/seminars/sas_survival/default.htm#building#building
http://www.ats.ucla.edu/stat/sas/seminars/sas_survival/default.htm#interactions#interactions
http://www.ats.ucla.edu/stat/sas/seminars/sas_survival/default.htm#proportionality#proportionality
http://www.ats.ucla.edu/stat/sas/seminars/sas_survival/default.htm#graphs#graphs
http://www.ats.ucla.edu/stat/sas/seminars/sas_survival/uis_small.sas7bdat
http://www.ats.ucla.edu/stat/sas/examples/asa/default.htm
http://www.ats.ucla.edu/stat/books/default.htm

 376

the study for reasons unrelated to the study (i.e. patients moving to another area and leaving no
forwarding address). The common feature of all of these examples is that if the subject had been able to
stay in the study then it would have been possible to observe the time of the event eventually.

It is important to understand the difference between calendar time and time in the study. It is very
common for subjects to enter the study continuously throughout the length of the study. This situation is
reflected in the first graph where we can see the staggered entry of four subjects. The subjects in red
were censored and the subjects in blue experienced an event. It would appear that subject 3 dropped out
after only a short time (hit by a bus, very tragic) and that subject 4 did not experience an event by the
time the study ended but if the study had gone on longer (had more funding) we would have know the
time when this subject would have experienced an event. Thus, in calendar time both the entry and the
exit time of the subjects are staggered and can occur at any time throughout the course of the
study. Study time as the term would imply deals only with the length of time that the subjects were a
part of the study. Thus, every subject start at study time zero and have ending points corresponding to
the entire length of time that they participated in the study, in other words, until they experienced an
event or were censored.

 377

The other important concept in survival analysis is the hazard rate. From looking at data with discrete
time (time measured in large intervals such as month, years or even decades) we can get an intuitive
idea of the hazard rate. For discrete time the hazard rate is the probability that an individual will
experience an event at time t while that individual is at risk for having an event. Thus, the hazard rate is
really just the unobserved rate at which events occur. If the hazard rate is constant over time and it was
equal to 1.5, for example, this would mean that one would expect 1.5 events to occur in a time interval
that is one unit long. Furthermore, if a person had a hazard rate of 1.2 at time t and a second person had
a hazard rate of 2.4 at time t then it would be correct to say that the second person's risk of an event
would be two times greater at time t. It is important to realize that the hazard rate is an un-observed
variable yet it controls both the occurrence and the timing of the events. It is the fundamental
dependent variable in survival analysis.

Another important aspect of the hazard function is to understand how the shape of the hazard function
will influence the other variables of interest such as the survival function. The first graph below
illustrates a hazard function with a 'bathtub shape'. This graph is depicting the hazard function for the
survival of organ transplant patients. At time equal to zero they are having the transplant and since this
is a very dangerous operation they have a very high hazard (a great chance of dying). The first 10 days
after the operation are also very dangerous with a high chance of the patient dying but the danger is less
than during the actual operation and hence the hazard is decrease during this period. If the patient has
survived past day 10 then they are in very good shape and have a very little chance of dying in the
following 6 months. After 6 months the patients begin to experience deterioration and the chances of
dying increase again and therefore the hazard function starts to increase. After one year almost all
patients are dead and hence the very high hazard function which will continue to increase.

The hazard function may not seem like an exciting variable to model but other indicators of interest,
such as the survival function, are derived from the hazard rate. Once we have modeled the hazard rate
we can easily obtain these other functions of interest. To summarize, it is important to understand the
concept of the hazard function and to understand the shape of the hazard function.

An example of a hazard function for heart transplant patients.

 378

We are generally unable to generate the hazard function instead we usually look at the cumulative
hazard curve.

The UIS data

The goal of the UIS data, and of the smaller version called uis_small that we are using here, is to model
time until return to drug use for patients enrolled in two different residential treatment programs that
differed in length (treat=0 is the short program and treat=1 is the long program). The patients were
randomly assigned to two different sites (site=0 is site A and site=1 is site B). The variable age
indicates age at enrollment, herco indicates heroine or cocaine use in the past three months (herco=1
indicates heroine and cocaine use, herco=2 indicates either heroine or cocaine use and herco=3
indicates neither heroine nor cocaine use) and ndrugtx indicates the number of previous drug
treatments. The variables time contains the time until return to drug use and the censor variable
indicates whether the subject returned to drug use (censor=1 indicates return to drug use and censor=0
otherwise).

Let's look at the first 10 observations of the UIS data set. Note that subject 5 is censored and did not
experience an event while in the study. Also note that the coding for censor is rather counter-intuitive
since the value 1 indicates an event and 0 indicates censoring. It would perhaps be more appropriate to
call this variable "event".

proc print data=uis (obs=10);
run;

Obs ID age ndrugtx treat site time censor herco
 1 1 39 1 1 0 188 1 3
 2 2 33 8 1 0 26 1 3
 3 3 33 3 1 0 207 1 2
 4 4 32 1 0 0 144 1 3
 5 5 24 5 1 0 551 0 2
 6 6 30 1 1 0 32 1 1
 7 7 39 34 1 0 459 1 3
 8 8 27 2 1 0 22 1 3
 9 9 40 3 1 0 210 1 2

 379

 10 10 36 7 1 0 184 1 2

Exploring the data: Univariate Analyses

In any data analysis it is always a great idea to do some univariate analysis before proceeding to more
complicated models. In survival analysis it is highly recommended to look at the Kaplan-Meier curves
for all the categorical predictors. This will provide insight into the shape of the survival function for
each group and give an idea of whether or not the groups are proportional (i.e. the survival functions are
approximately parallel). We also consider the tests of equality across strata to explore whether or not to
include the predictor in the final model. For the categorical variables we will use the log-rank test of
equality across strata which is a non-parametric test. For the continuous variables we will use a
univariate Cox proportional hazard regression which is a semi-parametric model. We will consider
including the predictor if the test has a p-value of 0.2 - 0.25 or less. We are using this elimination
scheme because all the predictors in the data set are variables that could be relevant to the model. If the
predictor has a p-value greater than 0.25 in a univariate analysis it is highly unlikely that it will
contribute anything to a model which includes other predictors.

The log-rank test of equality across strata has a p-value of 0.0091 for the predictor treat, thus treat will
be included a potential candidate for the final model. From the graph we see that the survival function
for each group of treat are not perfectly parallel but that they are separate except at the very beginning
and at the very end of the study time. The overlap at the very end should not cause too much concern
because it is determined by only a very few number of censored subjects out of a sample with 628
subjects. In general, the log-rank test places more emphasis on the differences in the curves at larger
time values. This is why we get such a small p-value even though the two survival curves appear to be
very close together for time less than 100 days.

proc lifetest data=uis plots=(s);
 time time*censor(0);
 strata treat;
run;

<output omitted>

 Test of Equality over Strata

 Pr >
Test Chi-Square DF Chi-Square
Log-Rank 6.7979 1 0.0091
Wilcoxon 9.4608 1 0.0021
-2Log(LR) 7.8267 1 0.0051

 380

The log-rank test of equality across strata for the predictor site has a p-value of 0.1240, thus site will be
included as a potential candidate for the final model because this p-value is still less than our cut-off of
0.2. From the graph we see that the survival curves are not really parallel and that there are two periods
([0, 100] and [200, 300]) where the curves are very close together. This would explain the rather high
p-value from the log-rank test.

proc lifetest data=uis plots=(s);
 time time*censor(0);
 strata site;
run;

<output omitted>

Test of Equality over Strata

 Pr >
Test Chi-Square DF Chi-Square
Log-Rank 2.3658 1 0.1240
Wilcoxon 3.1073 1 0.0779
-2Log(LR) 2.0784 1 0.1494

 381

The log-rank test of equality across strata for the predictor herco has a p-value of 0.1473, thus herco
will be included as potential candidate for the final model. From the graph we see that the three groups
are not parallel and that especially the groups herco=1 and herco=3 overlap for most of the graph. This
lack of parallelism could pose a problem when we include this predictor in the Cox proportional hazard
model since one of the assumptions is proportionality of all the predictors.

proc lifetest data=uis plots=(s);
 time time*censor(0);
 strata herco;
run;

<output omitted>

Test Chi-Square DF Chi-Square
Log-Rank 3.8300 2 0.1473
Wilcoxon 2.4629 2 0.2919
-2Log(LR) 4.4300 2 0.1092

 382

It is not feasible to calculate a Kaplan-Meier curve for the continuous predictors since there would be a
curve for each level of the predictor and a continuous predictor simply has too many different levels.
Instead we consider the Cox proportional hazard model with a single continuous predictor.
Unfortunately it is not possibly to produce a plot from proc phreg. Instead we consider the Chi-squared
test for ndrugtx which has a p-value of 0.0735 and therefore ndrugtx is a potential candidate for the
final model since the p-value is less than our cut-off value of 0.2.

proc phreg data=uis;
 model time*censor(0) = ndrugtx;
run;

<output omitted>

 Analysis of Maximum Likelihood Estimates

 Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio
Variable Label
ndrugtx 1 0.02937 0.00750 15.3470 <.0001 1.030
Number of Prior Drug Treatments

In univariate Chi-squared test of age the p-value is less than 0.0001 and therefore it is a potential
candidate for the final model.

proc phreg data=uis;
 model time*censor(0) = age;
run;

<output omitted>

 Analysis of Maximum Likelihood Estimates

 Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio Variable
Label
age 1 -0.01286 0.00719 3.2022 0.0735 0.987 Age at
Enrollment

Model Building

For our model building, we will first consider the model which will include all the predictors that had a
p-value of less than 0.2 - 0.25 in the univariate analyses, which in this particular analysis means that we
will include every predictor in our model. The categorical predictor herco has three levels and therefore
we will include this predictor using dummy variables with the group herco=1 as the reference group.
Proc phreg is a very powerful procedure and it is one of the few procedures where it is possible to
program data steps inside the procedure and so, we create the dummy variables inside the proc phreg.

In the model statement we have to specify which variable contains the information about time, which
variable contains the information about censoring and which value of the censoring variable indicates
that the observation is censored. In the UIS data set the variable time and censor contain the
information about time and censoring respectively. The number in the parenthesis next to censor has to
be the number which corresponds to a subject being censored. In this model we therefore specify zero
since the coding for censor is that censor = 0 indicates that the subject has been censored and censor =

 383

1 indicates that the subject experienced an event. We can test the dummy variables for herco
collectively in the test statement.

proc phreg data=uis;
 model time*censor(0) = age ndrugtx treat site herco2 herco3;
 herco2 = (herco=2);
 herco3 = (herco=3);
 herco: test herco2, herco3;
run;

<output omitted>

The PHREG Procedure

 Analysis of Maximum Likelihood Estimates

 Parameter Standard
Variable DF Estimate Error Chi-Square Pr > ChiSq
age 1 -0.02375 0.00756 9.8702 0.0017
ndrugtx 1 0.03475 0.00775 20.0824 <.0001
treat 1 -0.25402 0.09100 7.7910 0.0053
site 1 -0.17239 0.10210 2.8509 0.0913
herco2 1 0.24677 0.12276 4.0409 0.0444
herco3 1 0.12567 0.10307 1.4865 0.2228

 Linear Hypotheses Testing Results

 Wald
 Label Chi-Square DF Pr > ChiSq
 herco 4.3607 2 0.1130

The predictor herco is clearly not significant and we will drop it from the final model. The predictor
site is also not significant but from prior research we know that this is a very important variable to have
in the final model and therefore we will not eliminate site from the model. So, the final model of main
effects include: age, ndrugtx, treat and site.

proc phreg data=uis;
 model time*censor(0) = age ndrugtx treat site;
run;

<output omitted>

 Analysis of Maximum Likelihood Estimates

 Parameter Standard
Variable DF Estimate Error Chi-Square Pr > ChiSq
age 1 -0.02213 0.00751 8.6807 0.0032
ndrugtx 1 0.03503 0.00767 20.8689 <.0001
treat 1 -0.24368 0.09054 7.2433 0.0071
site 1 -0.16833 0.10041 2.8103 0.0937

Interactions

 384

Next we need to consider interactions. We do not have any prior knowledge of specific interactions that
we must include so we will consider all the possible interactions. Since our model is rather small this is
manageable but the ideal situation is when all model building, including finding interactions, is theory
driven. Note that we do not need to use a data step in order to create our interaction terms because we
can create all the interactions inside the proc phreg.

The interaction ndrugtx*age is not significant and will not be included in the model.

proc phreg data=uis;
 model time*censor(0) = age ndrugtx treat site drugage;
 drugage = ndrugtx*age;
run;

<output omitted>

 Analysis of Maximum Likelihood Estimates

 Parameter Standard
Variable DF Estimate Error Chi-Square Pr > ChiSq
age 1 -0.01102 0.01001 1.2121 0.2709
ndrugtx 1 0.10541 0.04195 6.3135 0.0120
treat 1 -0.23528 0.09064 6.7373 0.0094
site 1 -0.17462 0.10045 3.0219 0.0821
drugage 1 -0.00210 0.00125 2.8274 0.0927

The interaction ndrugtx*treat is not significant and will not be included in the model.

proc phreg data=uis;
 model time*censor(0) = age ndrugtx treat site drugtreat;
 drugtreat = ndrugtx*treat;
run;

<output omitted>

 Analysis of Maximum Likelihood Estimates

 Parameter Standard
Variable DF Estimate Error Chi-Square Pr > ChiSq
age 1 -0.02202 0.00750 8.6113 0.0033
ndrugtx 1 0.04050 0.01106 13.3959 0.0003
treat 1 -0.19488 0.11667 2.7899 0.0949
site 1 -0.17084 0.10046 2.8919 0.0890
drugtreat 1 -0.00992 0.01494 0.4412 0.5066

The interaction ndrugtx*site is not significant and will not be included in the model.

proc phreg data=uis;
 model time*censor(0) = age ndrugtx treat site drugsite;
 drugsite = ndrugtx*site;
run;

<output omitted>

 Analysis of Maximum Likelihood Estimates

 Parameter Standard

 385

Variable DF Estimate Error Chi-Square Pr > ChiSq
age 1 -0.02227 0.00753 8.7578 0.0031
ndrugtx 1 0.03665 0.00887 17.0869 <.0001
treat 1 -0.24542 0.09068 7.3243 0.0068
site 1 -0.14170 0.12534 1.2781 0.2583
drugsite 1 -0.00598 0.01699 0.1236 0.7251

The interaction age*treat is not significant and will not be included in the model.

proc phreg data=uis;
 model time*censor(0) = age ndrugtx treat site agetreat;
 agetreat = age*treat;
run;

<output omitted>

 Analysis of Maximum Likelihood Estimates

 Parameter Standard
Variable DF Estimate Error Chi-Square Pr > ChiSq
age 1 -0.01146 0.01040 1.2149 0.2704
ndrugtx 1 0.03577 0.00772 21.4917 <.0001
treat 1 0.44833 0.48092 0.8691 0.3512
site 1 -0.14927 0.10108 2.1809 0.1397
agetreat 1 -0.02147 0.01466 2.1450 0.1430

The interaction age*site is significant and will be included in the model.

proc phreg data=uis;
 model time*censor(0) = age ndrugtx treat site agesite;
 agesite = age*site;
run;

<output omitted>

 Analysis of Maximum Likelihood Estimates

 Parameter Standard
Variable DF Estimate Error Chi-Square Pr > ChiSq
age 1 -0.03369 0.00929 13.1512 0.0003
ndrugtx 1 0.03646 0.00770 22.4092 <.0001
treat 1 -0.26741 0.09123 8.5921 0.0034
site 1 -1.24593 0.50873 5.9979 0.0143
agesite 1 0.03377 0.01551 4.7423 0.0294

The interaction treat*site is not significant and will not be included in the model.

proc phreg data=uis;
 model time*censor(0) = age ndrugtx treat site treatsite;
 treatsite = treat*site;
run;

<output omitted>

 Analysis of Maximum Likelihood Estimates

 Parameter Standard

 386

Variable DF Estimate Error Chi-Square Pr > ChiSq
age 1 -0.02386 0.00764 9.7584 0.0018
ndrugtx 1 0.03615 0.00775 21.7849 <.0001
treat 1 -0.34041 0.10768 9.9934 0.0016
site 1 -0.32385 0.13942 5.3959 0.0202
treatsite 1 0.33351 0.20093 2.7550 0.0969

The final model including interaction.

proc phreg data=uis;
 model time*censor(0) = age ndrugtx treat site agesite;
 agesite = age*site;
run;

<output omitted>

 Analysis of Maximum Likelihood Estimates

 Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio
age 1 -0.03369 0.00929 13.1512 0.0003 0.967
ndrugtx 1 0.03646 0.00770 22.4092 <.0001 1.037
treat 1 -0.26741 0.09123 8.5921 0.0034 0.765
site 1 -1.24593 0.50873 5.9979 0.0143 0.288
agesite 1 0.03377 0.01551 4.7423 0.0294 1.034

From looking at the hazard ratios (also called relative risks) the model indicates that as the number of
previous drug treatment (ndrugtx) increases by one unit, and all other variables are held constant, the
rate of relapse increases by 3.7%. If the treatment length is altered from short to long, while holding all
other variables constant, the rate of relapse decreases by (100% - 76.5%) = 23.5%. As treatment is
moved from site A to site B and age is equal to zero, and all other variables are held constant, the rate of
relapse decreases by (100% - 28.8%) = 71.2%. If age is increased by 5 years and subject is at site A
(site=0) and all other variables are held constant the hazard ratio is equal to exp(-0.3369*5)
= .18553718. Thus, the rate of relapse is decreased by (100% - 18.5%) = 81.5% with an increase of 5
years in age. If age is increased by 5 years and the subject is at site B, while holding all other variables
constant, then the hazard ratio is equal to exp(-0.3369*5 + 0.03377*5) = .21966536. Thus, the rate of
relapse decreases by (100% - 21.97%) = 78.03% with an increase of 5 years of age for subjects at site
B.

Proportionality Assumption

One of the main assumptions of the Cox proportional hazard model is proportionality. There are several
methods for verifying that a model satisfies the assumption of proportionality and for more information
on this topic please refer to our FAQ Tests of proportionality in SAS, STATA, SPLUS and R. We will
check proportionality by including time-dependent covariates in the model because in proc phreg it is
very easy and convenient to include data step programming inside the procedure. Time dependent
covariates are interactions of the predictors with time. In this analysis we choose to use the interactions
with log(time) because this is the most common function of time used in time-dependent covariates but
any function of time could be used. If a time-dependent covariate is significant this indicates a violation
of the proportionality assumption for that specific predictor. We use a test statement to test all the time-
dependent covariates together in one collective test.

http://www.ats.ucla.edu/stat/sas/faq/test_proportionality.htm

 387

The conclusion is that all of the time-dependent variables are not significant either collectively or
individually thus supporting the assumption of proportional hazard. Our faith in these results are
bolstered by the Kaplan-Meier curves we created during our univariate analyses. The curves for all the
variables in the model were indeed separate and approximately parallel. Looking at the Kaplan-Meier
curves is not enough to be certain of proportionality since they are univariate analysis and do not show
whether a predictor will still be proportional when included in a model with many other predictors but
they support our argument for proportionality.

proc phreg data=uis;
model time*censor(0) = age ndrugtx treat site agesite aget drugt treatt sitet;
 agesite = age*site;
 aget = age*log(time);
 drugt = ndrugtx*log(time);
 treatt = treat*log(time);
 sitet = site*log(time);
 test_proportionality: test aget, drugt, treatt, sitet;
run;

<output omitted>

 Analysis of Maximum Likelihood Estimates

 Parameter Standard
Variable DF Estimate Error Chi-Square Pr > ChiSq
age 1 -0.03228 0.03408 0.8968 0.3436
ndrugtx 1 0.01738 0.03216 0.2920 0.5889
treat 1 -0.66710 0.41149 2.6282 0.1050
site 1 -1.63720 0.68019 5.7936 0.0161
agesite 1 0.03372 0.01555 4.7044 0.0301
aget 1 -0.0004057 0.00712 0.0032 0.9546
drugt 1 0.00428 0.00696 0.3784 0.5385
treatt 1 0.08605 0.08632 0.9937 0.3188
sitet 1 0.08435 0.09744 0.7493 0.3867

 Linear Hypotheses Testing Results

 Wald
 Label Chi-Square DF Pr > ChiSq
 test_proportionality 2.0264 4 0.7309

The tests of all the time-dependent variables were not significant either individually or collectively so
we do not have enough evidence to reject proportionality and will assume that we have satisfied the
assumption of proportionality for this model.

If one of the predictors were not proportional there are various solutions to consider. We can change
from using a semi-parametric Cox regression model to using a parametric regression model. Another
solution is to include the time-dependent variable for the non-proportional predictors. Finally, we can
use a model where we stratify on the non-proportional predictors. The only change to the model is the
addition of the strata statement. The assumption is that we are fitting separate models for each level of
treat under the constraint that that the coefficients are equal but the baseline hazard functions are not
equal. The following is an example of stratification on the predictor treat. Note that treat is no longer
included in the model statement instead it is specified in the strata statement.

 388

proc phreg data=sorted;
 model time*censor(0) = age ndrugtx site agesite;
 agesite = age*site;
 strata treat;
run;

<output omitted>

 Summary of the Number of Event and Censored Values
 Percent
Stratum treat Total Event Censored Censored

 1 0 310 257 53 17.10
 2 1 300 238 62 20.67

 Total 610 495 115 18.85

 Analysis of Maximum Likelihood Estimates

 Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio
age 1 -0.03475 0.00929 13.9940 0.0002 0.966
ndrugtx 1 0.03638 0.00770 22.3401 <.0001 1.037
site 1 -1.25130 0.50855 6.0541 0.0139 0.286
agesite 1 0.03399 0.01551 4.8041 0.0284 1.035

The parameter estimates are almost exactly the same as the parameter estimates in the model where
treat was included as a proportional predictor. This leads us to believe that treat actually is
proportional and that we do not need to stratify on treat. If treat truly violated the assumption of
proportionality then we would expect the estimates of the stratified model to differ from the non-
stratified model.

proc phreg data=uis;
 model time*censor(0) = age ndrugtx treat site agesite;
 agesite = age*site;
run;

<output omitted>

 Analysis of Maximum Likelihood Estimates

 Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio
age 1 -0.03369 0.00929 13.1512 0.0003 0.967
ndrugtx 1 0.03646 0.00770 22.4092 <.0001 1.037
treat 1 -0.26741 0.09123 8.5921 0.0034 0.765
site 1 -1.24593 0.50873 5.9979 0.0143 0.288
agesite 1 0.03377 0.01551 4.7423 0.0294 1.034

Graphing Survival Functions from Proc phreg

It is useful to look at the survival function but unfortunately it is not possibly to obtain a graph through
proc phreg. Instead we output a data set which includes the survival function using the baseline
statement with an out option and then we will be able to produce a survival function for specific
covariate patterns. Each covariate pattern will have a different survival function. The default survival
function is for the covariate pattern where each predictor is set equal to its mean. However, for many

 389

predictors the mean value is not meaningful. Consider the predictor site where the value 0 indicates site
A and the value 1 indicates site B. The mean value for site is 0.292. What would it mean for a person to
have the value 0.292 for site? We are not interested in looking at the survival function for a subject
with site = 0.292. It would be much more useful to specify a covariate pattern of interest and generate a
survival function for subjects with this specific covariate pattern.

In the following example we want to graph the survival function for a subject who is 30 years old
(age=30), has had 5 prior drug treatments (ndrugtx=5), and is currently getting the long treatment
(treat=0) at site A (site=0 and agesite=30*0 = 0). We first create a covariate data set which must
include all the covariates listed as predictor in the model statement of the proc phreg. The survival
option indicates that we want to obtain the survival function and the covariates option indicates for
which covariate pattern we want to generate the survival function.

data cov_treat1;
 age = 30;
 ndrugtx = 5;
 treat = 1;
 site = 0;
 agesite = 0;
run;
proc phreg data=uis noprint;
 model time*censor(0) = age ndrugtx treat site agesite;
 agesite = age*site;
 baseline out=surv1 covariates=cov_treat1 survival=surv / nomean;
run;
goptions reset=all;
symbol1 c=red v=triangle h=.8 i=stepjll;
symbol2 c=blue v=circle h=.8 i=stepjll;
axis1 label=(a=90 'Survivorship function');
proc gplot data=surv1;
 plot surv*time / vaxis=axis1;
run;
quit;

Looking at the survival function for one covariate pattern is sometimes not sufficient. It is often very
useful to have a graph where we can compare the survival functions of different groups. In the
following example we generate a graph with the survival functions for the two treatment groups where

 390

all the subjects are 30 years old (age=30), have had 5 prior drug treatments (ndrugtx=5) and are
currently being treated at site A (site=0 and agesite=30*0=0). Thus, the two covariate patterns differ
only in their values for treat.

data cov_treat0;
 age = 30;
 ndrugtx = 5;
 treat = 0;
 site = 0;
 agesite = 0;
run;
proc phreg data=uis noprint;
 model time*censor(0) = age ndrugtx treat site agesite;
 agesite = age*site;
 baseline out=surv0 covariates=cov_treat0 survival=surv / nomean;
run;
data combo;
 set surv1 surv0;
run;
goptions reset=all;
symbol1 c=red v=triangle h=.8 i=stepjll;
symbol2 c=blue v=circle h=.8 i=stepjll;
axis1 label=(a=90 'Survivorship function');
proc gplot data=combo;
 plot surv*time=treat / vaxis=axis1;
run;
quit;

Another short coming of the graphic output in SAS is that the survival function that is obtained through
the baseline statement does not include the last censored observation. Both of the preceding graphs have
survival functions for time < 700. But in fact as the following proc means shows we have subjects who
have survived until time = 1172 when treat=1 and subjects who survived until time =805 when
treat=0. We also know this from looking at the Kaplan-Meier curves in the univariate analysis section.

proc sort data=uis out=sorted;
 by treat;
run;
proc means data=sorted max;

 391

 by treat;
 var time;
run;
treat=0

The MEANS Procedure

Analysis Variable : time

 Maximum

 805.0000000

treat=1

Analysis Variable : time

 Maximum

 1172.00

Since this last observation at time = 1172 is censored the value of the survival function for this
observation will be equal to the value of the survival function for the time just prior (time=659).

proc print data=combo ;
 where time > 600;
run;

Obs age ndrugtx treat site agesite time surv
275 30 5 1 0 0 659 0.15060
550 30 5 0 0 0 659 0.08429

To make the graph include all the observations, even the last censored observation, all we have to do is
include two extra data points, one for each treatment group, where time is equal to the maximum value
of time (obtained from the proc means) and the survival function is equal to last survival function value
generated by the baseline output (obtained from the proc print).

data combo1;
 set combo;
 if _n_ = 1 then do;
 treat=0;
 time = 805;
 surv = 0.08429;
 treat = 0;
 output;
 treat=1;
 time = 1172;
 surv = 0.15060;
 output;
 end;
 output;
run;

We verify that the data step accomplished what we set out to do.

 392

proc print data=combo1 ;
 where time > 600;
run;

Obs treat time surv age ndrugtx site agesite
 1 0 805 0.08429
 2 1 1172 0.15060
277 1 659 0.15060 30 5 0 0
552 0 659 0.08429 30 5 0 0

We need to sort on the variable that will be the on the x-axis of our graph. In this case the variable is
time.

proc sort data=combo1;
 by time;
run;
goptions reset=all;
symbol1 c=red v=triangle h=.8 i=stepjll;
symbol2 c=blue v=circle h=.8 i=stepjll;
axis1 label=(a=90 'Survivorship function');
proc gplot data=combo;
 plot surv*time=treat / vaxis=axis1;
run;
quit;

Statistical Computing Seminar
Introduction to Multilevel Modeling Using SAS

This seminar is based on the paper Using SAS Proc Mixed to Fit Multilevel Models, Hierarchical
Models, and Individual Growth Models
by Judith Singer and can be downloaded from Professor Singer's web site at
http://gseweb.harvard.edu/~faculty/singer/sasprocmixed.pdf .

SAS data files, hsb12.sas7bdat and willett.sas7bdat and the SAS program code is here.

http://gseweb.harvard.edu/~faculty/singer/sasprocmixed.pdf
http://www.ats.ucla.edu/stat/paperexamples/singer/hsb12.sas7bdat
http://www.ats.ucla.edu/stat/paperexamples/singer/willett.sas7bdat
http://www.ats.ucla.edu/stat/sas/seminars/sas_mlm/demo_code.sas.txt

 393

Outline

"The purpose of this paper is to show educational and behavioral statisticians and researchers how they
can use PROC MIXED to fit many common types of multilevel models."

There are two types of models that this paper has focused on: (a) school effects models and (b)
individual growth models.

• A school effect model using data file hsb12.sas7bdat
o modeling organizational research;
o students nested within classes, children nested within families, patients nested within

hospitals;

• Model 1: Unconditional Means Model
• Model 2: Including Effects of School Level (level 2) Predictors
• Model 3: Including Effects of Student-Level Predictors
• Model 4: Including Both Level-1 and Level-2 Predictors

• Growth model using data file willett.sas7bdat
o modeling individual change
o multiple observations on each individual as nested within the person;

• Model 1 :Unconditional Linear Growth Model
• Model 2: A Linear Growth Model with a Person-Level Covariance
• Model 3: Exploring the Structure of Variance Covariance Matrix Within Persons

School Effect Model

A segment of the data file:

SCHOOL MATHACH SES MEANSES SECTOR
 1296 6.588 -0.178 -0.420 0
 1296 11.026 0.392 -0.420 0
 1296 7.095 -0.358 -0.420 0
 1296 12.721 -0.628 -0.420 0
 1296 5.520 -0.038 -0.420 0
 1296 7.353 0.972 -0.420 0
 1296 7.095 0.252 -0.420 0
 1296 9.999 0.332 -0.420 0
 1296 10.715 -0.308 -0.420 0
 1308 13.233 0.422 0.534 1
 1308 13.952 0.562 0.534 1
 1308 13.757 -0.058 0.534 1
 1308 13.970 0.952 0.534 1
 1308 23.434 0.622 0.534 1
 1308 9.162 0.832 0.534 1
 1308 23.818 1.512 0.534 1
 1308 15.998 0.622 0.534 1
 1308 16.039 0.332 0.534 1
 1308 24.993 0.442 0.534 1

http://www.ats.ucla.edu/stat/paperexamples/singer/hsb12.sas7bdat
http://www.ats.ucla.edu/stat/paperexamples/singer/willett.sas7bdat

 394

 1308 15.657 0.582 0.534 1
 1308 16.258 1.102 0.534 1

The data file is a subsample from the 1982 High School and Beyond Survey and is used extensively in
Hierarchical Linear Models by Raudenbush and Bryk. The data file consists of 7185 students nested in
160 schools. The outcome variable of interest is student-level math achievement score (MATHACH).
Variable SES is social-economic-status of a student and therefore is a student-level variable. Variable
MEANSES is the group mean of SES and therefore is a school-level variable. Both SES and
MEANSES are centered at the grand mean (they both have means of 0). Variable SECTOR is an
indicator variable indicating if a school is public or catholic and is therefore a school-level variable.
There are 90 public schools (SECTOR=0) and 70 catholic schools (SECTOR=1) in the sample.

Model 1: Unconditional Means Model

This model is referred as a one-way ANOVA with random effects and is the simplest possible random
effect linear model and is discussed in detail by Raudenbush and Bryk. The motivation for this model is
the question on how much schools vary in their mean mathematics achievement. In terms of regression
equations, we have the following, where rij ~ N(0, σ2) and u0j ~ N(0, τ2),

MATHACHij = β0j + rij
β0j = γ00 + u0j

Combining the two equations into one by substituting the level-2 equation to level-1 equation, we have

MATHACHij = γ00 + u0j + rij

proc mixed data = in.hsb12 covtest noclprint;
 class school;
 model mathach = / solution;
 random intercept / subject = school;
run;
 Covariance Parameter Estimates
 Standard Z
Cov Parm Subject Estimate Error Value Pr Z
Intercept SCHOOL 8.6097 1.0778 7.99 <.0001
Residual 39.1487 0.6607 59.26 <.0001
 Fit Statistics
-2 Res Log Likelihood 47116.8
AIC (smaller is better) 47120.8
AICC (smaller is better) 47120.8
BIC (smaller is better) 47126.9
 Solution for Fixed Effects
 Standard
Effect Estimate Error DF t Value Pr > |t|
Intercept 12.6370 0.2443 159 51.72 <.0001

Comments:

1. In proc mixed, the statement MODEL includes intercept as default. Therefore, we can further
request that intercept be random in the random statement.

 395

2. There are different estimation methods that proc mixed can use. The default is residual
(restricted) maximum likelihood and is the method that we use here. This is also the default for
HLM program.

3. The option solution in the model statement gives the parameter estimates for the fixed effect.
4. The option covtest requests for the standard error for the covariance-variance parameter

estimates and the corresponding z-test.
5. The option noclprint requests that SAS not print the class information.
6. The estimated between variance, τ2 corresponds to the term INTERCEPT in the output of

Covariance Parameter Estimates and the estimated within variance, σ2, corresponds to the term
RESIDUAL in the same output section.

7. Based on the covariance estimates, we can compute the intraclass
correlation: 8.6097/(8.6097+39.1487) = .18027614. This tells us the portion of the total
variance that occurs between schools.

8. To measure the magnitude of the variation among schools in their mean achievement levels, we
can calculate the plausible values range for these means, based on the between variance we
obtained from the model: 12.637 ?1.96*(8.61)1/2 = (6.89, 18.39).

Model 2: Including Effects of School Level (level 2) Predictors -- predicting mathach from meanses

This model is referred as regression with Means-as-Outcomes by Raudenbush and Bryk. The
motivation of this model is the question on if the schools with high MEANSES also have high math
achievement. In other words, we want to understand why there is a school difference on mathematics
achievement. In terms of regression equations, we have the following.

MATHACHij = β0j + rij
β0j = γ00 + γ01(MEANSES) + u0j

Combining the two equations into one by substituting the level-2 equation to level-1 equation, we have

MATHACHij = γ00 + γ01(MEANSES) + u0j + rij

proc mixed data = in.hsb12 covtest noclprint;
 class school;
 model mathach = meanses / solution ddfm = bw;
 random intercept / subject = school;
run;
 Covariance Parameter Estimates
 Standard Z
Cov Parm Subject Estimate Error Value Pr Z
Intercept SCHOOL 2.6357 0.4036 6.53 <.0001
Residual 39.1578 0.6608 59.26 <.0001
 Fit Statistics
-2 Res Log Likelihood 46961.3
AIC (smaller is better) 46965.3
AICC (smaller is better) 46965.3
BIC (smaller is better) 46971.4
 Solution for Fixed Effects
 Standard
Effect Estimate Error DF t Value Pr > |t|
Intercept 12.6495 0.1492 158 84.77 <.0001

 396

MEANSES 5.8635 0.3613 158 16.23 <.0001
 Type 3 Tests of Fixed Effects
 Num Den
Effect DF DF F Value Pr > F
MEANSES 1 158 263.37 <.0001

Comments:

1. The coefficient for the constant is the predicted math achievement when all predictors are 0, so
when the average school SES is 0, the students math achievement is predicted to be 12.65.

2. The variance component representing variation between schools decreases greatly (from 8.6097
to 2.6357). This means that the level-2 variable meanses explains a large portion of the school-
to-school variation in mean math achievement. More precisely, the proportion of variance
explained by meanses is (8.6097 - 2.6357)/8.6097 = .694, that is about 69% of the explainable
variation in school mean math achievement scores is explained by meanses.

3. A range of plausible values for school means, given that all schools have MEANSES of zero, is
12.65 ?1.96 *(2.64)1/2 = (9.47, 15.83).

4. We can also calculate the conditional intraclass correlation conditional on the values of
MEANSES. 2.64/(2.64 + 39.16) = .06 measures the degree of dependence among observations
within schools that are of the same MEANSES.

5. Do school achievement means still vary significantly once MEANSES is controlled? From the
output of Covariance Parameter Estimates, we see that the test that between variance is zero is
highly significant. Therefore, we conclude that after controlling for MEANSES, significant
variation among school mean math achievement still remains to be explained.

6. Notice though, the standard error used to perform the above hypothesis test is based on large-
sample theory of the maximum likelihood estimates and in many cases the normality
approximation will be extremely poor. We will only use these results as guidance for further
analysis, rather than definitive results. In SAS version 8 and later, SAS uses one-tailed z-test on
variance and two-tailed z-test on covariance, trying to avoid misleading results by previously
used two-tailed test for both.

7. The option ddfm = bw (between and within method) used in the model statement is to request
SAS to use between and within method for computing the denominator degrees of freedom for
the tests of fixed effects, instead of the default, containment method. This option is especially
useful when there are large number of random effects in the model and the design is severely
unbalanced. The default, on the other hand, matches the tests performed for balanced split-plot
designs and should be adequate for moderately unbalanced designs.

Model 3: Including Effects of Student-Level Predictors--predicting mathach from centered student-
level ses, cses

This model is referred as a random-coefficient model by Raudenbush and Bryk. Pretend that we run
regression of mathach on centered ses on each school, that is we are going to run 160 regressions.

1. What would be the average of the 160 regression equations (both intercept and slope)?
2. How much do the regression equations vary from school to school?
3. What is the correlation between the intercepts and slopes?

 397

These are some of the questions that motivates the following model.

MATHACHij = β0j + β1j (SES - MEANSES) + rij
β0j = γ00 + u0j
β1j = γ10 + u1j

Combining the two equations into one by substituting the level-2 equation to level-1 equation, we have

MATHACHij = γ00 + γ10(SES - MEANSES) + u0j + u1j(SES - MEANSES) + rij

data hsbc;
 set in.hsb12;
 cses = ses - meanses;
run;
proc mixed data = hsbc noclprint covtest noitprint;
 class school;
 model mathach = cses / solution ddfm = bw notest;
 random intercept cses / subject = school type = un gcorr;
run;
 Estimated G Correlation Matrix
 Row Effect SCHOOL Col1 Col2
 1 Intercept 1224 1.0000 0.02068
 2 cses 1224 0.02068 1.0000
 Covariance Parameter Estimates
 Standard Z
Cov Parm Subject Estimate Error Value Pr Z
UN(1,1) SCHOOL 8.6769 1.0786 8.04 <.0001
UN(2,1) SCHOOL 0.05075 0.4062 0.12 0.9006
UN(2,2) SCHOOL 0.6940 0.2808 2.47 0.0067
Residual 36.7006 0.6258 58.65 <.0001

 Fit Statistics
-2 Res Log Likelihood 46714.2
AIC (smaller is better) 46722.2
AICC (smaller is better) 46722.2
BIC (smaller is better) 46734.5
 Null Model Likelihood Ratio Test
 DF Chi-Square Pr > ChiSq
 3 1065.70 <.0001
 Solution for Fixed Effects
 Standard
Effect Estimate Error DF t Value Pr > |t|
Intercept 12.6493 0.2445 159 51.75 <.0001
cses 2.1932 0.1283 7024 17.10 <.0001

Comments:

1. Specifying level-1 predictor cses as random effect, we formulate that effect of cses can vary
across schools.

2. The option type = un in the random statement allows us to estimate the three parameters (the
variance of intercept and the variance of slopes for cses and the covariance between them) from
the data.

3. Option gcorr displays the correlation matrix corresponding to the estimated variance-covariance
matrix, called G matrix.

 398

4. The covariance estimate is 0.05075 with standard error 0.4062. That yields a p-vlaue of 0.9006.
This is saying that there is no evidence that the effect of cses depending upon the average math
achievement in the school.

5. In the output of Covariance Parameter Estimates, the parameter corresponding to UN(2,2) is the
variability in slopes of cses. The estimate is 0.6940 with standard error 0.2808. That yields a p-
value of 0.0067 for 1-tailed test. The test being significant tells us that we can not accept the
hypothesis that there is no difference in slopes among schools.

6. The 95% plausible value range for the school means is 12.65 ?1.96 *(8.68)1/2 = (6.87, 18.41).
7. The 95% plausible value range for the SES-achievement slope is 2.19 ?1.96 *(.69)1/2 = (.56,

3.82).
8. Notice that the residual variance is now 36.70, comparing with the residual variance of 39.15 in

the one-way ANOVA with random effects model. We can compute the proportion variance
explained at level 1 by (39.15 - 36.70) / 39.15 = .063. This means using student-level SES as a
predictor of math achievement reduced the within-school variance by 6.3%.

Model 4: Including Both Level-1 and Level-2 Predictors --predicting mathach from meanses, sector,
cses and the cross level interaction of meanses and sector with cses

This model is referred as an intercepts and slopes-as-outcomes model by Raudenbush and Bryk. We
have examined the variability of the regression equations across schools. Now we will build an
explanatory model to account for the variability. That is we want to model the following:

MATHACHij = β0j + β1j (SES - MEANSES) + rij
β0j = γ00 + γ01(MEANSES) + γ02(SECTOR) + u0j
β1j = γ10 + γ11(MEANSES) + γ12(SECTOR) + u1j

Combining the two equations into one by substituting the level-2 equation to level-1 equation, we have

MATHACHij = γ00 + γ01(MEANSES) + γ02(SECTOR) + γ10 (SES - MEANSES) +
 γ11(MEANSES)* (SES - MEANSES) + γ12(SECTOR)* (SES - MEANSES) +
 u0j +u1j(SES-MEANSES) + rij

The questions that we are interested in are:

1. Do MEANSES and SECTOR significantly predict the intercept?
2. Do MEANSES and SECTOR significantly predict the within-school slopes?
3. How much variation in the intercepts and the slopes is explained by MEANSES and SECTOR?

proc mixed data = hsbc noclprint covtest noitprint;
 class school;
 model mathach = meanses sector cses meanses*cses sector*cses
 / solution ddfm = bw notest;
 random intercept cses / subject = school type = un;
run;
 Covariance Parameter Estimates
 Standard Z
Cov Parm Subject Estimate Error Value Pr Z
UN(1,1) SCHOOL 2.3817 0.3717 6.41 <.0001

 399

UN(2,1) SCHOOL 0.1926 0.2045 0.94 0.3464
UN(2,2) SCHOOL 0.1014 0.2138 0.47 0.3177
Residual 36.7212 0.6261 58.65 <.0001

 Fit Statistics
-2 Res Log Likelihood 46503.7
AIC (smaller is better) 46511.7
AICC (smaller is better) 46511.7
BIC (smaller is better) 46524.0
 Null Model Likelihood Ratio Test
 DF Chi-Square Pr > ChiSq
 3 220.57 <.0001
 Solution for Fixed Effects
 Standard
Effect Estimate Error DF t Value Pr > |t|
Intercept 12.1136 0.1988 157 60.93 <.0001
MEANSES 5.3391 0.3693 157 14.46 <.0001
SECTOR 1.2167 0.3064 157 3.97 0.0001
cses 2.9388 0.1551 7022 18.95 <.0001
MEANSES*cses 1.0389 0.2989 7022 3.48 0.0005
SECTOR*cses -1.6426 0.2398 7022 -6.85 <.0001

Comments:

1. First take a look at the output of Solutions for Fixed Effects. The first three parameters are about
the intercept, or more precisely about the mean math achievement across schools. We see that
MEANSES is positively related to math achievement and catholic schools have significantly
higher mean math achievement than public schools, controlling for other effects.

2. The last three parameters in the output are about the slopes. Schools of high MEANSES tend to
have larger slopes and catholic schools have significantly weaker slopes, on the average, than
public schools.

3. Variable sector and its interaction with cses are significant in the model, indicating that the
intercepts and the slopes for cses are different for Catholic and public schools. This can also be
shown by plotting the predicted math achievement scores constraining the meanses to low,
medium and high. We use 25th/50th/75th percentiles to define the strata of low, medium and
high.

4. proc univariate data = hsbc;
5. var meanses;
6. run;
7. /*
8. 90% 0.523
9. 75% Q3 0.333
10. 50% Median 0.038
11. 25% Q1 -0.317
12. 10% -0.579
13. 5% -0.696
14. 1% -1.043
15. 0% Min -1.188

*/
data toplot;
 set hsbc;
 if meanses <= -0.317 then do;
 ms = -0.317;
 strata = "Low"; end;
 else if meanses >= 0.333 then do;
 ms = 0.333;

 400

 strata = "Hig"; end;
 else do; ms = 0.038; strata = "Med" ; end;
 predicted = 12.1136 + 5.3391*ms * 1.2167*sector + 2.9388*cses +
 1.0389*ms*cses - 1.6426*sector*cses;
run;
proc sort data = toplot;
 by strata;
run;
goptions reset = all;
symbol1 v = none i = join c = red ;
symbol2 v = none i = join c = blue ;
axis1 order = (-4 to 3 by 1) minor = none label=("Group Centered SES");
axis2 order = (0 to 22 by 2) minor = none label=(a = 90 "Math Achievement
Score");
proc gplot data = toplot;
 by strata;
 plot predicted*cses = sector / vaxis = axis2 haxis = axis1;
run;
quit;

 401

16. Possibly there would be two-way interaction between meanses and sector and a three way
interaction between meanses, cses and sector. We can test it by adding the interaction into the
model. For example,

17. proc mixed data = hsbc noclprint covtest noitprint;
18. class school;
19. model mathach = meanses sector cses meanses*sector
20. meanses*cses sector*cses meanses*sector*cses
21. / solution ddfm = bw notest;
22. random intercept cses / subject = school type = un;

run;
 Solution for Fixed Effects
 Standard
Effect Estimate Error DF t Value Pr > |t|
Intercept 12.1842 0.2030 156 60.01 <.0001
MEANSES 5.8732 0.5065 156 11.60 <.0001
SECTOR 1.2430 0.3052 156 4.07 <.0001
cses 2.9513 0.1616 7021 18.26 <.0001
MEANSES*SECTOR -1.1276 0.7355 156 -1.53 0.1273
MEANSES*SECTOR*cses -0.1888 0.5997 7021 -0.31 0.7528
MEANSES*cses 1.1289 0.4232 7021 2.67 0.0077
SECTOR*cses -1.6407 0.2406 7021 -6.82 <.0001

23. Since the variance component for slopes is very small and its corresponding p-value is 0.3177.
We cannot reject the hypothesis that the slopes do not differ across schools. Similarly, we can
not reject the hypothesis that the covariance between intercepts and slopes is zero. Therefore, a
simpler model can be used:

24. proc mixed data = hsbc noclprint covtest noitprint;
25. class school;
26. model mathach = meanses sector cses meanses*cses sector*cses / solution

ddfm = bw notest;
27. random intercept / subject = school;

run;
 Covariance Parameter Estimates
 Standard Z
Cov Parm Subject Estimate Error Value Pr Z
Intercept SCHOOL 2.3752 0.3709 6.40 <.0001
Residual 36.7661 0.6207 59.24 <.0001
 Fit Statistics

 402

-2 Res Log Likelihood 46504.8
AIC (smaller is better) 46508.8
AICC (smaller is better) 46508.8
BIC (smaller is better) 46514.9
 Solution for Fixed Effects
 Standard
Effect Estimate Error DF t Value Pr > |t|
Intercept 12.1138 0.1986 157 60.98 <.0001
MEANSES 5.3429 0.3690 157 14.48 <.0001
SECTOR 1.2146 0.3061 157 3.97 0.0001
cses 2.9358 0.1507 7022 19.48 <.0001
MEANSES*cses 1.0441 0.2910 7022 3.59 0.0003
SECTOR*cses -1.6421 0.2331 7022 -7.04 <.0001

To compare the original model with this simplified one, we can compare their -2LL's, since the
fixed portion of these two models are the same.

Model Number of
parameters -2 LL

restricted 2 46504.8
Unrestricted 4 46503.7

Approximately, the difference in -2LL's is a χ2 distribution with two degrees of freedom
(corresponding to the difference in the number of parameters). The p-value is .577. This justifies
the use of the simpler model. The SAS program is shown below.

data pvalue;
 df = 2; chisq = 46504.8 - 46503.7;
 pvalue = 1 - probchi(chisq, df);
run;
proc print data = pvalue noobs;
run;
df chisq pvalue
 2 1.1 0.57695

Linear Growth Model

A segment of the data file:

id time cons covar y
 1 0 1 137 205
 1 1 1 137 217
 1 2 1 137 268
 1 3 1 137 302
 2 0 1 123 219
 2 1 1 123 243
 2 2 1 123 279
 2 3 1 123 302
 3 0 1 129 142
 3 1 1 129 212
 3 2 1 129 250
 3 3 1 129 289
 4 0 1 125 206
 4 1 1 125 230

 403

 4 2 1 125 248
 4 3 1 125 273
 5 0 1 81 190
 5 1 1 81 220
 5 2 1 81 229
 5 3 1 81 220

Model 1: Unconditional Linear Growth Model -- page 340

proc mixed data = willett noclprint covtest;
 class id;
 model y = time /solution ddfm = bw notest;
 random intercept time / subject = id type = un;
run;
 Covariance Parameter Estimates
 Standard Z
Cov Parm Subject Estimate Error Value Pr Z
UN(1,1) id 1198.78 318.38 3.77 <.0001
UN(2,1) id -179.26 88.9634 -2.01 0.0439
UN(2,2) id 132.40 40.2107 3.29 0.0005
Residual 159.48 26.9566 5.92 <.0001
 Fit Statistics
-2 Res Log Likelihood 1266.8
AIC (smaller is better) 1274.8
AICC (smaller is better) 1275.1
BIC (smaller is better) 1281.0
 Null Model Likelihood Ratio Test
 DF Chi-Square Pr > ChiSq
 3 120.90 <.0001
 Solution for Fixed Effects
 Standard
Effect Estimate Error DF t Value Pr > |t|
Intercept 164.37 6.1188 34 26.86 <.0001
time 26.9600 2.1666 104 12.44 <.0001

Comments:

1. Notice that variable time is coded 0, 1, 2 and 3. Therefore, the intercept is the estimate of the
initial value and the slope is the estimate of the rate of change across occasions.

2. We may want to visually see the relationship between the dependent variable and time by
subject. This gives us a good sense if the the linear relationship holds across all the subjects and
if the slopes vary across all the subjects.

3. proc gplot data = willett;
4. plot y*time = id;
5. where id <=20;
6. run;

quit;

 404

Model 2: A Linear Growth Model with a Person-Level Covariance -- predicting y by time and centered
covar -- page 344

data willett;
 set in.willett;
 wave = time;
 ccovar = covar - 113.4571429;
run;
proc mixed data = willett noclprint covtest;
 class id;
 model y = time ccovar time*ccovar /solution ddfm = bw notest;
 random intercept time / subject = id type = un gcorr;
run;
 Estimated G Correlation Matrix
 Row Effect id Col1 Col2
 1 Intercept 1 1.0000 -0.4895
 2 time 1 -0.4895 1.0000
 Covariance Parameter Estimates
 Standard Z
Cov Parm Subject Estimate Error Value Pr Z
UN(1,1) id 1236.41 332.40 3.72 <.0001
UN(2,1) id -178.23 85.4298 -2.09 0.0370
UN(2,2) id 107.25 34.6767 3.09 0.0010
Residual 159.48 26.9566 5.92 <.0001
 Fit Statistics
-2 Res Log Likelihood 1260.3
AIC (smaller is better) 1268.3
AICC (smaller is better) 1268.6
BIC (smaller is better) 1274.5
 Null Model Likelihood Ratio Test
 DF Chi-Square Pr > ChiSq
 3 120.72 <.0001
 Solution for Fixed Effects
 Standard
Effect Estimate Error DF t Value Pr > |t|
Intercept 164.37 6.2061 33 26.49 <.0001

 405

time 26.9600 1.9939 103 13.52 <.0001
ccovar -0.1136 0.5040 33 -0.23 0.8231
time*ccovar 0.4329 0.1619 103 2.67 0.0087

Comments:

1. Variable wave created in the data step will be used in our next model.
2. Estimated correlation matrix among the random effect is requested by using the option gcorr.
3. Comparing with the model of unconditional growth, this model

Model 3: Exploring the Structure of Variance Covariance Matrix Within Persons

A. Compound Symmetry

proc mixed data = willett covtest noitprint;
 class id wave;
 model y = time / s notest;
 repeated wave /type = cs subject = id r;
run;
 Estimated R Matrix for id 1
 Row Col1 Col2 Col3 Col4
 1 1280.71 904.81 904.81 904.81
 2 904.81 1280.71 904.81 904.81
 3 904.81 904.81 1280.71 904.81
 4 904.81 904.81 904.81 1280.71
 Covariance Parameter Estimates
 Standard Z
Cov Parm Subject Estimate Error Value Pr Z
CS id 904.81 242.59 3.73 0.0002
Residual 375.90 52.1281 7.21 <.0001
 Fit Statistics
-2 Res Log Likelihood 1300.3
AIC (smaller is better) 1304.3
AICC (smaller is better) 1304.4
BIC (smaller is better) 1307.5
 Null Model Likelihood Ratio Test
 DF Chi-Square Pr > ChiSq
 1 87.39 <.0001
 Solution for Fixed Effects
 Standard
Effect Estimate Error DF t Value Pr > |t|
Intercept 164.37 5.7766 34 28.45 <.0001
time 26.9600 1.4656 104 18.40 <.0001

B.Unstructured

proc mixed data = willett covtest noitprint;
 class id wave;
 model y = time / s notest;
 repeated wave /type = un subject = id r;
run;
 Estimated R Matrix for id 1
 Row Col1 Col2 Col3 Col4
 1 1307.96 977.17 921.87 563.54

 406

 2 977.17 1120.32 1018.97 855.53
 3 921.87 1018.97 1289.47 1081.77
 4 563.54 855.53 1081.77 1415.03
 Covariance Parameter Estimates
 Standard Z
Cov Parm Subject Estimate Error Value Pr Z
UN(1,1) id 1307.96 316.95 4.13 <.0001
UN(2,1) id 977.17 266.55 3.67 0.0002
UN(2,2) id 1120.32 270.69 4.14 <.0001
UN(3,1) id 921.87 272.81 3.38 0.0007
UN(3,2) id 1018.97 269.55 3.78 0.0002
UN(3,3) id 1289.47 312.07 4.13 <.0001
UN(4,1) id 563.54 252.45 2.23 0.0256
UN(4,2) id 855.53 260.70 3.28 0.0010
UN(4,3) id 1081.77 296.64 3.65 0.0003
UN(4,4) id 1415.03 343.17 4.12 <.0001
 Fit Statistics
-2 Res Log Likelihood 1263.4
AIC (smaller is better) 1283.4
AICC (smaller is better) 1285.2
BIC (smaller is better) 1299.0
 Null Model Likelihood Ratio Test
 DF Chi-Square Pr > ChiSq
 9 124.30 <.0001
 Solution for Fixed Effects
 Standard
Effect Estimate Error DF t Value Pr > |t|
Intercept 165.83 5.8668 34 28.27 <.0001
time 26.5846 2.1215 34 12.53 <.0001

C. AR(1)

proc mixed data = willett covtest noitprint;
 class id wave;
 model y = time / s notest;
 repeated wave /type = ar(1) subject = id r;
run;
 Estimated R Matrix for id 1
 Row Col1 Col2 Col3 Col4
 1 1323.77 1092.07 900.93 743.24
 2 1092.07 1323.77 1092.07 900.93
 3 900.93 1092.07 1323.77 1092.07
 4 743.24 900.93 1092.07 1323.77
 Covariance Parameter Estimates
 Standard Z
Cov Parm Subject Estimate Error Value Pr Z
AR(1) id 0.8250 0.03937 20.96 <.0001
Residual 1323.77 258.56 5.12 <.0001
 Fit Statistics

-2 Res Log Likelihood 1273.5
AIC (smaller is better) 1277.5
AICC (smaller is better) 1277.6
BIC (smaller is better) 1280.6
 Null Model Likelihood Ratio Test
 DF Chi-Square Pr > ChiSq
 1 114.26 <.0001
 Solution for Fixed Effects
 Standard

 407

Effect Estimate Error DF t Value Pr > |t|
Intercept 164.34 6.1371 34 26.78 <.0001
time 27.1979 1.9198 104 14.17 <.0001

Arrays in SAS

Recoding variables
Applying math computations to many variables simultaneously
Computing new variables
Collapsing over variables
Identify patterns across variables using arrays
Reshaping wide to long
Understanding the functions first., last. and the retain statement
Reshaping long to wide using arrays
Comparisons across observations using arrays

First we run the SAS options so that we can get rid of the date, page number, centering and page break
in the output.

options nodate nonumber nocenter formdlim="-";

Recoding variables

Inputting the faminc data set.

data faminc;
 input famid faminc1-faminc12 ;
cards;
1 3281 3413 3114 2500 2700 3500 3114 3319 3514 1282 2434 2818
2 4042 3084 3108 3150 3800 3100 1531 2914 3819 4124 4274 4471
3 6015 6123 6113 6100 6100 6200 6186 6132 3123 4231 6039 6215
;
run;

Recoding manually using if-then.

data recode_manual;
 set faminc;
 if faminc1 < 3000 then faminc1=.;
 if faminc2 < 3000 then faminc2=.;
 if faminc3 < 3000 then faminc3=.;
 if faminc4 < 3000 then faminc4=.;
 if faminc5 < 3000 then faminc5=.;
 if faminc6 < 3000 then faminc6=.;
 if faminc7 < 3000 then faminc7=.;
 if faminc8 < 3000 then faminc8=.;
 if faminc9 < 3000 then faminc9=.;
 if faminc10 < 3000 then faminc10=.;
 if faminc11 < 3000 then faminc11=.;
 if faminc12 < 3000 then faminc12=.;
run;
/*heading option specifies horizontal (H) column headings/*
proc print data=recode_manual noobs heading=H;

http://www.ats.ucla.edu/stat/sas/seminars/SAS_arrays/default.htm#recode#recode
http://www.ats.ucla.edu/stat/sas/seminars/SAS_arrays/default.htm#same#same
http://www.ats.ucla.edu/stat/sas/seminars/SAS_arrays/default.htm#new_vars#new_vars
http://www.ats.ucla.edu/stat/sas/seminars/SAS_arrays/default.htm#collapse#collapse
http://www.ats.ucla.edu/stat/sas/seminars/SAS_arrays/default.htm#patterns#patterns
http://www.ats.ucla.edu/stat/sas/seminars/SAS_arrays/default.htm#wide_to_long#wide_to_long
http://www.ats.ucla.edu/stat/sas/seminars/SAS_arrays/default.htm#functions#functions
http://www.ats.ucla.edu/stat/sas/seminars/SAS_arrays/default.htm#long_to_wide#long_to_wide
http://www.ats.ucla.edu/stat/sas/seminars/SAS_arrays/default.htm#across_obs#across_obs

 408

 var famid faminc1-faminc6;
run;

famid faminc1 faminc2 faminc3 faminc4 faminc5 faminc6
 1 3281 3413 3114 . . 3500
 2 4042 3084 3108 3150 3800 3100
 3 6015 6123 6113 6100 6100 6200

Recoding with arrays using if-then.
Note: In the code we use the square brackets around the subscript variable i. The choice between square
brackets, curly brackets or parenthesis is completely arbitrary. We have decided to use the square
brackets as a visual reminder that i is a subscript and not a part of a mathematical computation.

data recode_array;
 set faminc;
 array Afaminc(12) faminc1-faminc12;
 do i = 1 to 12;
 if Afaminc[i] < 3000 then Afaminc[i] = . ;
 end;
 drop i;
run;
proc print data=recode_array noobs heading=H;
 var famid faminc1-faminc6;
run;

famid faminc1 faminc2 faminc3 faminc4 faminc5 faminc6
 1 3281 3413 3114 . . 3500
 2 4042 3084 3108 3150 3800 3100
 3 6015 6123 6113 6100 6100 6200

Applying the same math computation to many variables at a time

Reverse items on a -3 to +3 scale using array.

data score;
 input item1 item2 item3 item4;
cards;
-2 1 -3 0
-1 2 -2 1
 0 -1 -3 -1
;
run;
data score_array1;
 set score;
 array item(4) item1-item4;
 do i=1 to 4;
 item[i] = -1*item[i];
 end;
run;
proc print data=score_array1;
run;

Obs item1 item2 item3 item4 i
 1 2 -1 3 0 5
 2 1 -2 2 -1 5
 3 0 1 3 1 5

 409

Computing new variables

Computing the tax income variables manually.

data tax_manual;
 set faminc;
 taxinc1 = faminc1 * .10 ;
 taxinc2 = faminc2 * .10 ;
 taxinc3 = faminc3 * .10 ;
 taxinc4 = faminc4 * .10 ;
 taxinc5 = faminc5 * .10 ;
 taxinc6 = faminc6 * .10 ;
 taxinc7 = faminc7 * .10 ;
 taxinc8 = faminc8 * .10 ;
 taxinc9 = faminc9 * .10 ;
 taxinc10= faminc10 * .10 ;
 taxinc11= faminc11 * .10 ;
 taxinc12= faminc12 * .10 ;
run;
proc print data=tax_manual noobs;
 var famid faminc1-faminc3 taxinc1-taxinc3;
run;

famid faminc1 faminc2 faminc3 taxinc1 taxinc2 taxinc3
 1 3281 3413 3114 328.1 341.3 311.4
 2 4042 3084 3108 404.2 308.4 310.8
 3 6015 6123 6113 601.5 612.3 611.

Computing the same tax income variables using an array. We have to use two arrays because the first
array, Afaminc, is the array for the existing variables (faminc1-faminc12); the second array, Ataxinc,
is created as a "placeholder" where we will store the new variables (taxinc1-taxinc12).

data tax_array;
 set faminc;
 array Afaminc(12) faminc1-faminc12; /* existing variables */
 array Ataxinc(12) taxinc1-taxinc12; /* new variables */
 do month = 1 to 12;
 Ataxinc[month] = Afaminc[month]*0.1;
 end;
run;
proc print data=tax_array noobs;
 var famid faminc1-faminc3 taxinc1-taxinc3;
run;

famid faminc1 faminc2 faminc3 taxinc1 taxinc2 taxinc3
 1 3281 3413 3114 328.1 341.3 311.4
 2 4042 3084 3108 404.2 308.4 310.8
 3 6015 6123 6113 601.5 612.3 611.

Collapsing over variables

Creating the total income per quarter variables manually.

data quarter_manual;
 set faminc;
 incq1 = faminc1 + faminc2 + faminc3;

 410

 incq2 = faminc4 + faminc5 + faminc6;
 incq3 = faminc7 + faminc8 + faminc9;
 incq4 = faminc10 + faminc11 + faminc12;
run;
proc print data=quarter_manual;
 var incq1 faminc1-faminc3;
run;

Obs incq1 faminc1 faminc2 faminc3
 1 9808 3281 3413 3114
 2 10234 4042 3084 3108
 3 18251 6015 6123 6113

Creating the total income per quarter variables using arrays.

data quarter_array;
 set faminc;
 array Afaminc(12) faminc1-faminc12; /*existing vars*/
 array Aquarter(4) incq1-incq4; /* new vars */
 do q = 1 to 4;
 Aquarter[q] = Afaminc[3*q-2] + Afaminc[3*q-1] + Afaminc[3*q];
 end;
run;
/* For q=1: Aquarter[1] = Afaminc[3*1-2] + Afaminc[3*1-1] + Afaminc[3*1]
 = Afaminc[1] + Afaminc[2] + Afaminc[3]
 For q=2: Aquarter[2] = Afaminc[3*2-2] + Afaminc[3*2-1] + Afaminc[3*2]
 = Afaminc[4] + Afaminc[5] + Afaminc[6] */
proc print data=quarter_array nobs;
 var famid incq1 faminc1-faminc3;
run;

famid incq1 faminc1 faminc2 faminc3
 1 9808 3281 3413 3114
 2 10234 4042 3084 3108
 3 18251 6015 6123 6113

Identify patterns across variables using arrays

In this section the objective is to identify the months in which income was less than half of previous
month and store information in the dummy variables lowinc2-lowinc12 looping over months 2-12. Note
that month 1 has no previous month! The variable ever indicates if income has ever been less than half
of a previous month for any month.
Note: The array "size" specified in the parenthesis is usually one number and it is understood by SAS
that it is supposed to create an array where the index ranges from one to the number in the parenthesis.
But we can specify any range for the index which suits our program. We are only interested in
lowincome variables corresponding to months 2-12 and thus we indicate that the range for the index of
array Alowinc should be 2 to 12.

data pattern;
 set faminc;
 length ever $ 4;
 array Afaminc(12) faminc1-faminc12; /* existing vars */
 array Alowinc(2:12) lowinc2-lowinc12; /* new vars */
 do m = 2 to 12;
 if Afaminc[m] < (Afaminc[m-1] / 2) then Alowinc[m] = 1;
 else Alowinc[m] = 0;

 411

 end;
 sum_low = sum(of lowinc:); /*sums over all vars with lowinc as part of name*/
 if sum_low > 0 then ever='Yes';
 if sum_low = 0 then ever='No';
 drop m sum_low;
run;
proc print data=pattern noobs heading=H;
 var famid famininc1-faminc6 lowinc2-lowinc6 ever;
run;

famid faminc1 faminc2 faminc3 faminc4 faminc5 faminc6
 1 3281 3413 3114 2500 2700 3500
 2 4042 3084 3108 3150 3800 3100
 3 6015 6123 6113 6100 6100 6200

lowinc2 lowinc3 lowinc4 lowinc5 lowinc6 ever
 0 0 0 0 0 Yes
 0 0 0 0 0 Yes
 0 0 0 0 0 No

Reshaping wide to long

Reshaping wide to long creating only one variable--manually.
In the problem data set we show what happens when we forget to include the appropriate output
statements in the data step.

data wide;
 input famid faminc96 faminc97 faminc98 ;
cards;
1 40000 40500 41000
2 45000 45400 45800
3 75000 76000 77000
;
run;
data long_manual;
 set wide;
 year=96;
 faminc=faminc96;
 output;
 year=97;
 faminc=faminc97;
 output;
 year=98;
 faminc=faminc98;
 output;
run;
proc print data=long_manual;
 var famid year faminc;
run;

Obs famid year faminc
 1 1 96 40000
 2 1 97 40500
 3 1 98 41000
 4 2 96 45000
 5 2 97 45400
 6 2 98 45800
 7 3 96 75000

 412

 8 3 97 76000
 9 3 98 77000

data problem;
 set wide;
 year=96;
 faminc=faminc96;
 *output;
 year=97;
 faminc=faminc97;
 *output;
 year=98;
 faminc=faminc98;
 output;
run;
proc print data=problem;
 var famid year faminc;
run;

 Obs famid year faminc
 1 1 98 41000
 2 2 98 45800
 3 3 98 77000

Reshaping wide to long creating only one variable using arrays.

data long_array;
 set wide;
 array Afaminc(96:98) faminc96 - faminc98;
 do year = 96 to 98;
 faminc = Afaminc[year];
 output;
 end;
 drop faminc96-faminc98;
run;
proc print data=long_array;
run;

Obs famid year faminc
 1 1 96 40000
 2 1 97 40500
 3 1 98 41000
 4 2 96 45000
 5 2 97 45400
 6 2 98 45800
 7 3 96 75000
 8 3 97 76000
 9 3 98 77000

Reshaping wide to long creating multiple variables (including string variables) using arrays.

data multi_wide;
 input famid faminc96 faminc97 faminc98 spend96 spend97 spend98
 debt96 $ debt97 $ debt98 $;
cards;
1 40000 40500 41000 38000 39000 40000 yes yes no
2 45000 45400 45800 42000 43000 44000 yes no no
3 75000 76000 77000 70000 71000 72000 no no no

 413

;
run;
data multi_long;
 set multi_wide;
 length debt $ 3;
 array Afaminc(96:98) faminc96-faminc98;
 array Aspend(96:98) spend96-spend98;
 array Adebt(96:98) debt96-debt98;
 do year = 96 to 98;
 faminc = Afaminc[year];
 spend = Aspend[year];
 debt = Adebt[year];
 output;
 end;
 drop faminc96-faminc98 spend96-spend98;
run;
proc print data=multi_long;
 var famid year faminc spend debt;
run;

Obs famid year faminc spend debt
 1 1 96 40000 38000 yes
 2 1 97 40500 39000 yes
 3 1 98 41000 40000 no
 4 2 96 45000 42000 yes
 5 2 97 45400 43000 no
 6 2 98 45800 44000 no
 7 3 96 75000 70000 no
 8 3 97 76000 71000 no
 9 3 98 77000 72000 no

Reshaping wide to long in presence of character suffixes. In the above example we had numeric
suffixes (96, 97 and 98). We can reshape even if we have character suffixes such as old, now and
future.

data character;
 length name_old $ 24 name_now $ 24 name_future $ 24;
 input id name_old $ name_now $ name_future $ inc_old inc_now inc_future;
cards;
1 Ramon Martin Martin_Sheen 23000 50000 700000
2 John Johnnie J_boy 10000 20000 600000
3 Mary_Cathleen Bo Bo_Derek 15000 40000 250000
;
run;
proc print data=character;
run;
data character_array;
 set character;
 length name $ 24;
 array Aname(3) $ name_old name_now name_future;
 array Aincome(3) inc_old inc_now inc_future;
 do time = 1 to 3;
 name = Aname[time];
 income = Aincome[time];
 output;
 end;
run;
proc format;

 414

 value t_format 1='old' 2='now' 3='future';
run;
proc print data=character_array ;
 format time t_format.;
 var id time name income;
run;

Obs id time name income
 1 1 old Ramon 23000
 2 1 now Martin 50000
 3 1 future Martin_Sheen 700000
 4 2 old John 10000
 5 2 now Johnnie 20000
 6 2 future J_boy 600000
 7 3 old Mary_Cathleen 15000
 8 3 now Bo 40000
 9 3 future Bo_Derek 250000

Understanding the functions first., last. and the retain statement

The previous section demonstrated how to reshape data sets from wide to long. Unfortunately,
reshaping data sets from long to wide is more complex. In order to better understand how to use arrays
to reshape from long to wide we will need to understand how the first. and last. functions work as well
as understand how the retain statement works. The following are examples of the retain statement.

We would like to create a new variable called new_meas which contains the same values as
measurement but with the missing values filled in. The new_meas variable should have a starting
value of 0 and then change values every time measurement has a non-missing value.

data missings;
 input id measurement;
cards;
1 .
1 2
3 .
2 3
3 4
2 .
3 .
1 .
3 5
3 6
;
run;
data ex_retain;
 set missings;
 retain new_meas 0;
 if measurement ne . then new_meas = measurement;
run;
proc print data=ex_retain;
run;

Obs id measurement new_meas
 1 1 . 0
 2 1 2 2
 3 3 . 2
 4 2 3 3

 415

 5 3 4 4
 6 2 . 4
 7 3 . 4
 8 1 . 4
 9 3 5 5
 10 3 6 6

Omitting the retain statement gives us the wrong new_meas, now it is just a copy of measurement.

data ex_retain;
 set missings;
 *retain new_meas 0;
 if measurement ne . then new_meas = measurement;
run;
proc print data=ex_retain;
run;

Obs id measurement new_meas
 1 1 . .
 2 1 2 2
 3 3 . .
 4 2 3 3
 5 3 4 4
 6 2 . .
 7 3 . .
 8 1 . .
 9 3 5 5
 10 3 6 6

In the next example we want to create a variable called new1 which contains the cumulative sum of the
values in the variable measurement. Note that when measurement is missing the sum should remain
unchanged.

data ex2_retain;
 set missings;
 retain new1 0;
 if measurement ne . then new1 = new1 + measurement;
run;
proc print data=ex2_retain;
run;

Obs id measurement new1
 1 1 . 0
 2 1 2 2
 3 3 . 2
 4 2 3 5
 5 3 4 9
 6 2 . 9
 7 3 . 9
 8 1 . 9
 9 3 5 14
 10 3 6 20

Omitting the retain statement gives us the wrong new1.

data ex2_retain;
 set missings;

 416

 *retain new1 0;
 if measurement ne . then new1 = new1 + measurement;
run;
proc print data=ex2_retain;
run;

Obs id measurement new1
 1 1 . .
 2 1 2 .
 3 3 . .
 4 2 3 .
 5 3 4 .
 6 2 . .
 7 3 . .
 8 1 . .
 9 3 5 .
 10 3 6 .

Looking at the first. and last. functions.
In the first example we create indicator variables, first and last. The variable first indicates the first
observation for each person as indicated by id; the variable last indicates the last observation for each
person.
Note: When using first.var_name or last.var_name we must first sort the data set on the variable
var_name. Moreover, in the data step we must always precede first.var_name or last.var_name with
a by var_name statement.

proc sort data=missings out=sort_miss;
 by id;
run;
data ex1;
 set sort_miss;
 by id;
 if first.id then first=1;
 else first=0;
 if last.id then last=1;
 else last=0;
run;
proc print data=ex1;
run;

Obs id measurement first last
 1 1 . 1 0
 2 1 2 0 0
 3 1 . 0 1
 4 2 3 1 0
 5 2 . 0 1
 6 3 . 1 0
 7 3 4 0 0
 8 3 . 0 0
 9 3 5 0 0
 10 3 6 0 1

Combining the first. function with a retain statement to get a cumulative sum and count.

data kids;
 length kidname $ 4;
 input famid kidname birth_order wt;

 417

cards;
1 Beth 1 60
1 Barb 3 20
4 Sam 1 100
4 Stu 2 90
1 Bob 2 40
3 Pete 1 60
3 Phil 3 20
2 Andy 1 80
3 Pam 2 40
2 Al 2 50
2 Ann 3 20
;
run;

We will be using first.famid so we must sort the data set on famid.

proc sort data=kids out=sort_kids;
 by famid;
run;
data retain1;
 set sort_kids;
 retain sumwt count; /*carry over the value from previous obs to next obs*/
 by famid;
 if first.famid then do; /*at 1st obs of each family set sumwt and count = 0*/
 sumwt=0;
 count=0;
 end;
 sumwt = sumwt + wt;
 count = count + 1;
 meanwt = sumwt/count;
run;
proc print data=retain1;
 var famid kidname wt sumwt count meanwt;
run;

famid kidname wt sumwt count meanwt
 1 Beth 60 60 1 60
 1 Barb 20 80 2 40
 1 Bob 40 120 3 40
 2 Andy 80 80 1 80
 2 Al 50 130 2 65
 2 Ann 20 150 3 50
 3 Pete 60 60 1 60
 3 Phil 20 80 2 40
 3 Pam 40 120 3 40
 4 Sam 100 100 1 100
 4 Stu 90 190 2 95

By adding an if last.famid statement to the program we output only the last observation per family
which shows the final sumwt, count and meanwt for each family.
Note: We do not need to resort the data since it is already sorted on famid.

data retain2;
 set retain1;
 by famid;
 if last.famid then output; /*output only the last obs for each family*/
run;

 418

proc print data=retain2;
 var famid sumwt meanwt;
run;

famid sumwt count meanwt
 1 120 3 40
 2 150 3 50
 3 120 3 40
 4 190 2 95

Reshaping long to wide using arrays

We will use the long_array data set created from the wide data set and we will reshape it back to the
original wide format.

proc print data=long_array;
run;

Obs famid year faminc
 1 1 96 40000
 2 1 97 40500
 3 1 98 41000
 4 2 96 45000
 5 2 97 45400
 6 2 98 45800
 7 3 96 75000
 8 3 97 76000
 9 3 98 77000

We will be using first.famid so we must sort the data set on famid.

proc sort data=long_array out=long_sort;
 by famid;
run;
data wide_array;
 set long_sort;
 by famid;
 retain faminc96-faminc98;
 array Afaminc(96:98) faminc96-faminc98;
 if first.famid then do;
 do i = 96 to 98;
 Afaminc[i] = .; /*initializing to missing*/
 end;
 end;
 Afaminc(year) = faminc; /*looping across values in the variable year*/
 if last.famid then output; / outputs only the last obs in a family*/
 drop year faminc i;
run;
proc print data=wide_array noobs;
run;

famid faminc96 faminc97 faminc98
 1 40000 . .
 1 40000 40500 .
 1 40000 40500 41000
 2 45000 . .
 2 45000 45400 .

 419

 2 45000 45400 45800
 3 75000 . .
 3 75000 76000 .
 3 75000 76000 77000

data wide_array;
 set long_sort;
 by famid;
 retain faminc96-faminc98;
 array Afaminc(96:98) faminc96-faminc98;
 if first.famid then do;
 do i = 96 to 98;
 Afaminc[i] = .;
 end;
 end;
 Afaminc(year) = faminc; /*looping across values in the variable year*/
 if last.famid then output; /* outputs only the last obs in a family*/
 drop year faminc i;
run;
proc print data=wide_array noobs;
run;

famid faminc96 faminc97 faminc98
 1 40000 40500 41000
 2 45000 45400 45800
 3 75000 76000 77000

Comparisons across observations using arrays

A more subtle usage of arrays. One issue in SAS data management is that we cannot do comparisons
across observations. One solution to this problem is to transpose the data from long to wide; then we
can use the array to do the comparisons very easily.
The goal is to compare each observation with the previous and the next observation. If they are the
same then flag the observation.

data real_life;
 input person topicA;
cards;
1 0
1 1
3 -1
1 0
2 0
1 1
2 -1
2 -1
3 0
3 1
4 0
1 1
4 1
4 0
2 -1
4 0
4 0
1 -1
;

 420

run;

We need to number the observations within each person. We will be using first.person in the process of
doing this, so we must first sort the data on person. Then we will create the count variable which will
enumerates the observations within each person.

proc sort data=real_life out=sort_real;
 by person;
run;
data count_real;
 set sort_real;
 retain count;
 by person;
 if first.person then count = 0;
 count = count + 1;
run;
proc print data=count_real noobs;
run;
 topic
person A count
 1 0 1
 1 1 2
 1 0 3
 1 1 4
 1 1 5
 1 -1 6
 2 0 1
 2 -1 2
 2 -1 3
 2 -1 4
 3 -1 1
 3 0 2
 3 1 3
 4 0 1
 4 1 2
 4 0 3
 4 0 4
 4 0 5

We now convert the data set from long to wide.
Note: We are using first.person and last.person but we do not need to resort the data since it is already
sorted on person.

data wide_real;
 set count_real;
 array AtopicA(6) topicA_1-topicA_6;
 retain topicA_1-topicA_6;
 by person;
 if first.person then do;
 do i = 1 to 6;
 AtopicA[i] = .;
 end;
 end;
 AtopicA(count) = topicA; /*looping across values in the variable count*/
 if last.person then output; /* outputs only the last obs per person */
run;
proc print data=wide_real noobs;

 421

 var person topicA_1-topicA_6;
run;
 topic topic topic topic topic topic flag
person A_1 A_2 A_3 A_4 A_5 A_6 A
 1 0 1 0 1 1 -1 0
 2 0 -1 -1 -1 . . 1
 3 -1 0 1 . . . 0
 4 0 1 0 0 0 . 1

Now, let's find the people who have the same value for 3 observations in a row.

data three;
 set wide_real;
 array topic(6) topicA_1-topicA_6;
 do i = 2 to 5;
 if topic[i-1] ne . & topic[i] ne . & topic[i+1] ne . &
 topic[i]=topic[i-1] & topic[i]=topic[i+1] then flagA=1;
 end;
 if flagA=. then flagA=0;
run;
proc print data=three noobs;
 var person topicA_1-topicA_6 flagA;
run;

 topic topic topic topic topic topic flag
person A_1 A_2 A_3 A_4 A_5 A_6 A

 1 0 1 0 1 1 -1 0
 2 0 -1 -1 -1 . . 1
 3 -1 0 1 . . . 0
 4 0 1 0 0 0 . 1

Introduction to SAS Macro Language

• Macro variables
• Macro functions
• symput and symget function to pass information to and from a data step
• Creating a macro variable using proc sql
• Creating a list of file names for a data step using a macro program
• A macro program for repeating a procedure multiple times

The SAS macro language is a very versatile and useful tool. It is often used to reduce the amount of
regular SAS code and it facilitates passing information from one procedure to another procedure.
Furthermore, we can use it to write SAS programs that are "dynamic" and flexible. Generally, we can
consider macro language to be composed of macro variables and macro programs. In this seminar we
will demonstrate how to create macro variables and how to write basic macro programs.

Macro Variables

A macro variable in SAS is a string variable that allows you to dynamically modify the text in a SAS
program through symbolic substitution. The following example demonstrates how to create and use a
macro variable. First we set up some system options to have a more concise output style.

options nodate nonumber nocenter formdlim="-";

 422

data hsb2;
 input id female race ses prog
 read write math scinece socst;
datalines;
 70 0 4 1 1 57 52 41 47 57
121 1 4 2 3 68 59 53 63 61
 86 0 4 3 1 44 33 54 58 31
141 0 4 3 3 63 44 47 53 56
172 0 4 2 2 47 52 57 53 61
113 1 4 2 2 44 52 51 63 61
 50 0 3 2 1 50 59 42 53 61
 11 0 1 2 2 34 46 45 39 36
 84 0 4 2 1 63 57 54 51 63
 48 1 3 2 2 57 55 52 50 51
 75 1 4 2 3 60 46 51 53 61
 60 1 4 2 2 57 65 51 63 61
 95 0 4 3 2 73 60 71 61 71
104 0 4 3 2 54 63 57 55 46
 38 0 3 1 2 45 57 50 31 56
115 0 4 1 1 42 49 43 50 56
 76 0 4 3 2 47 52 51 50 56
195 0 4 2 1 57 57 60 56 52
;
run;

Suppose that we want to look at the means of some variables and then do a regression analysis on the
same variables.

proc means data = hsb2;
 var write math female socst;
run;
proc reg data = hsb2;
 model read = write math female socst;
run;
quit;

We can simplify the program by creating a macro variable containing all the names of the independent
variables. A macro variable can be created by using the %let statement. All the key words in statements
that are related to macro variables or macro programs are preceded by percent sign %; and when we
reference a macro variable it is preceded by an ampersand sign &. When we submit our program, SAS
will process the macro variables first, substituting them with the text string they were defined to be and
then process the program as a standard SAS program.

%let indvars = write math female socst;
proc means data = hsb2;
 var &indvars;
run;

proc reg data = hsb2;
 model read = &indvars;
run;
quit;

We can display macro variable value as text in the log window by using %put statement.

%put my first macro variable indvars is &indvars;

 423

In the log window, you will see the following:

90 %put my first macro variable indvars is &indvars;
my first macro variable indvars is write math female socst

SAS has many system-defined macro variables. These macro variables are created automatically when
SAS is started. Therefore, they are sometimes called automatic macro variables. We can use the %put
statement again to display the values of these system-defined macro variables.

%put _automatic_;

Below is a partial output from the log window. The first column indicates the type of macro variable,
the second indicates the name of the macro variable and the third contains the value of the macro
variable. For example, SYSDSN (system data source name) is in the WORK directory and the last data
set created was hsb2.

92 %put _automatic_;
AUTOMATIC AFDSID 0
AUTOMATIC AFDSNAME
AUTOMATIC AFLIB
AUTOMATIC AFSTR1
AUTOMATIC AFSTR2
AUTOMATIC FSPBDV
AUTOMATIC SYSBUFFR
AUTOMATIC SYSCC 0
AUTOMATIC SYSCHARWIDTH 1
AUTOMATIC SYSCMD
AUTOMATIC SYSDATE 17JUN03
AUTOMATIC SYSDATE9 17JUN2003
AUTOMATIC SYSDAY Tuesday
AUTOMATIC SYSDEVIC
AUTOMATIC SYSDMG 0
AUTOMATIC SYSDSN WORK HSB2

These macro variables can be used in the same way as ordinary macro variables. For example, in the
following example, we use two of the system-defined macro variables in the title statement.

title "today's date is &SYSDATE9 and today is &SYSDAY";
proc means data = hsb2;
 var &indvarS;
run;
today's date is 17JUN2003 and today is Tuesday.
The MEANS Procedure
Variable N Mean Std Dev Minimum Maximum
--
write 18 53.2222222 7.7273811 33.0000000 65.0000000
math 18 51.6666667 7.1373088 41.0000000 71.0000000
female 18 0.2777778 0.4608886 0 1.0000000
socst 18 55.3888889 9.6536423 31.0000000 71.0000000
--

Notice that in the title statement we used double quotation marks around the title. Normally, we can use
either single quotes or double quotes. When macro variables are embedded in the title statement, only

 424

double quotes will work. The following example shows some of the problems that might occur when
using single quotes with macro variables.

title 'The date is &SYSDATE9 and today is &SYSDAY';
proc means data = hsb2;
 var &indvarS;
run;
The date is &SYSDATE9 and today is &SYSDAY.
The MEANS Procedure
Variable N Mean Std Dev Minimum Maximum
--
write 18 53.2222222 7.7273811 33.0000000 65.0000000
math 18 51.6666667 7.1373088 41.0000000 71.0000000
female 18 0.2777778 0.4608886 0 1.0000000
socst 18 55.3888889 9.6536423 31.0000000 71.0000000
--

We can also display macro variables defined by a user. The macro variable indvar, which was defined
earlier, is an example of a user defined macro variable. Since indvar was defined outside a macro
program it is by default a global macro variable. A global macro variable can be use in any SAS
procedure or data step whereas a local macro variable can only be used inside the macro program in
which it was defined.

%put _user_;
127 %put _user_;
GLOBAL INDVARS write math female socst

Summary:

In this section, we have mentioned the following.

• defining a macro variable by using %let statement;
• displaying macro variable values as text in the SAS log by using %put statement;
• System-defined automatic macro variables

o %put _automatic_;
• User-defined macro variables

o %put _user_;
• Substituting the value of a macro variable in a program;

o use of &;
o double quotes vs. single quotes;

Macro functions

There are many functions that are related to macro variables. They include string functions, evaluation
functions and others. In the this section we will show some examples of these different types of
functions.. For a complete list of macro functions, please refer to the SAS online documentation page
on Macro Functions.

http://saspdf.ats.ucla.edu/sasdoc/sashtml/macro/z1072445.htm

 425

Some of the most commonly used string functions include %upcase, %substr and %scan. The
function %scan takes a string and an integer i as arguments and returns the ith word in the string. The
%substr function will pick out a subcomponent of a string variable; this function takes three arguments
where the first argument is the string variable (a macro variable), the second is the start position of the
substring and the third argument is the length of the substring. The %upcase function creates a new
variable which contains the upper case version of a string variable.

%put &indvars;
938 %put &indvars;
write math female socst
%let newind = %upcase(&indvars);
%put &newind;
940 %let newind = %upcase(&indvars);
941 %put &newind;
WRITE MATH FEMALE SOCST
%let word2 = %scan(&indvars, 2);
%put &word2;
943 %let word2 = %scan(&indvars, 2);
944 %put &word2;
math
%let subword = %substr(&indvars, 5, 3);
%put &subword;
946 %let subword = %substr(&indvars, 5, 3);
947 %put &subword;
e m

The evaluation functions evaluate arithmetic and logical expressions. The following are examples of
very basic arithmetic and logical evaluation functions.

%let k = 1;
%let tot = &k + 1;
%put &tot;
989 %let k = 1;
990 %let tot = &k + 1;
991 %put &tot;
1 + 1
%let tot = %eval(&k + 1);
%put &tot;
992 %let tot = %eval(&k + 1);
993 %put &tot;
2

Function %eval uses integer arithmetic. That means we will get an error message when any part of the
expression is not an integer nor a logic statement. For example,

%let tot = %eval(&k + 1.234);
995 %let tot = %eval(&k + 1.234);
ERROR: A character operand was found in the %EVAL function or %IF condition where a
numeric
 operand is required. The condition was: 1 + 1.234

Instead, we can use %sysevalf function as shown in the following example.

%let tot = %sysevalf(&k + 1.234);
%put &tot;

 426

996 %let tot = %sysevalf(&k + 1.234);
997 %put &tot;
2.234

Summary:

In this section, we have mentioned the following.

• string functions;
o %upcase;
o %substr;
o %scan;

• evaluation functions;
o %eval;
o %sysevalf;

Symput and symget function to pass information to and from a data step

There are two functions that are particularly useful when we want to get information in and out of a data
step. These are symput and symget. You use symput to get information from a data step into a macro
variable and symget is used when we want to get information from a macro variable into a data step.

The syntax used is CALL SYMPUT(argument1, argument2), where argument1 is the macro variable
that we are creating which will store the value that is being passed out of the data step and argument2
is the value in string format. Notice that the new macro variable has to be in single quotes.

proc means data = hsb2 n;
 var write;
 where write>=55;
 output out=w55 n=n;
run;
proc print data = w55;
run;
data _null_;
 set w55;
 call symput('n55', n);
run;
%put &n55 Observations have write >=55;
118 %put &n55 Observations have write >=55;
9 Observations have write >=55

The syntax for symget is symget(argument) where argument can be the name of a macro variable, a
string variable or a character expression. Suppose that we want to create a new variable in the hsb2 data
set that is constant across the entire data set and the value for this variable is the number of students
who have a writing score 55 or higher. We have already stored the number in the macro variable
number so this will be the argument for the symget function. Notice that even though number is a
macro variable we do not use the ampersand sign preceding number, instead we use single quotes.

data hsb2_55;
 set hsb2;

 427

 w55 = symget('number')+0;
run;
proc print data = hsb2_55;
 var write w55;
run;

Obs write w55
 1 52 9
 2 59 9
 3 33 9
 4 44 9
 5 52 9
 6 52 9
 7 59 9
 8 46 9
 9 57 9
 10 55 9
 11 46 9
 12 65 9
 13 60 9
 14 63 9
 15 57 9
 16 49 9
 17 52 9
 18 57 9

Summary:

In this section, we have mentioned the following.

• symput -- call symput('new_macro_variable', value_in_string_format)
• symget --symget('macro_variable')

Creating macro variables using proc sql

Another way of creating macro variables is through proc sql. SQL stands for Structured Query
Language and is a standardized database language. Proc sql can create SAS macro variables that
contains values from a query result. In the following example we create a macro variable called w55,
which contains the number of students whose writing scores are higher than or equal to 55.

proc sql;
 select sum(write>=55) into :w55
 from hsb2;
quit;
%put w55 is &w55;
35 %put w55 is &w55;
w55 is 9

The example below shows how to create group means for each level of the variable ses and store them
in three macro variables called write1, write2 and write3. We make use of the %put function to
display the values of the macro variables in the log file.

 428

proc sql;
 select mean(write) into :write1 - :write3
 from hsb2
 group by ses;
quit;
%put write1 to write3 are &write1, &write2 and &write3;
311 %put write1 to write3 are &write1, &write2 and &write3;
write1 to write3 are 52.66667, 54.8 and 50.4

Summary:

In this section, we have mentioned the following.

• proc sql with select into statement to create macro variable(s);

Creating a list of file names for a data step using a macro program

Thus far we have gained familiarity with macro variables. Now we will use this knowledge to write
some macro programs. A macro program always starts with the %macro statement including the user
defined program name and it ends with a %mend statement. When SAS is going to compile a SAS
program it first sends the program to a word scanner which intercepts the macro syntax before it can
reach the compiler. The macro processor translates the macro syntax into standard SAS syntax which is
then compiled. Thus, the macro language serves as a dynamic editor for SAS programs.

Let's first create some exercise data sets. In the following data step, we create four data files: file1 -
file4.

data file1 file2 file3 file4;
 input a @@;
 if _n_ <= 3 then output file1;
 if 3 < _n_<= 6 then output file2;
 if 6 < _n_ <= 9 then output file3;
 if 9 < _n_ <=12 then output file4;
cards;
1 2 3 4 5 6 7 8 9 10 11 12
;
run;

In the following program the goal is to stack a number of data sets together into one data set. Suppose
we have four data sets that are named file1, file2 and so forth. In a standard SAS program we would
have to write out the names of all the files in the set statement. In the macro program we will
demonstrate how the program will write the names of the files in the set statement for us.

In general, it is always a good idea to write a regular SAS program first, test it and then turn it into a
macro program. For example, the following data step will be our base program for stacking the four
files together.

data all;
 set
 file1

 429

 file2
 file3
 file4
 ;
run;

How do we turn this piece of SAS program into a SAS macro program? We need to start with a
%macro statement where we specify the name of the macro; then we write the program and finally we
end the macro program with a %mend statement. The only part from the SAS program that we need to
modify substantially is the set statement. Consider the macro program called combine in the following
example. We need to create a do loop in the set statement in order to create the list of file names
automatically rather than writing them out one by one.

%macro combine;
 data all_1;
 set
 %do i = 1 %to 4;
 file&i
 %end;
 ;
 run;
%mend;

We submit the macro program in the same way as we submit a SAS program. The program can then be
executed by submitting the following code which consists of a percent sign followed by the name of the
macro program. Note that macro programs are called in a statement, which unlike all standard SAS
programs, does NOT end in a semicolon. Another point of interest is that our macro does not take any
arguments. In order to see what is going on behind the scene, we turn on a SAS system option called
mprint (for macro print). It will print out SAS statements generated by macro execution.

*executing the combine program;
options mprint;
%combine

Here is what has happened in the log window:

167 %combine
MPRINT(COMBINE): data all_1;
MPRINT(COMBINE): set file1 file2 file3 file4 ;
MPRINT(COMBINE): run;
NOTE: There were 3 observations read from the data set WORK.FILE1.
NOTE: There were 3 observations read from the data set WORK.FILE2.
NOTE: There were 3 observations read from the data set WORK.FILE3.
NOTE: There were 3 observations read from the data set WORK.FILE4.
NOTE: The data set WORK.ALL_1 has 12 observations and 1 variables.
NOTE: DATA statement used:
 real time 0.02 seconds
 cpu time 0.02 seconds

Ideally we would like to be able to stack any number of data sets into one long data set. The current
macro program stacks exactly four data sets together, no more and no less. So, we would like to
generalize the program to take an argument which will specify how many data sets we are stacking in
any specific execution of the program.

 430

When a macro program takes arguments we list the names of the arguments in parenthesis after the
name of the program in the %macro statement. In the following example we include an argument
called num in the new version of the combine program. Inside the macro program we use &num to
refer to the value passed by the argument. &num is now a local macro variable which only "lives"
inside the combine macro program. If we refer to &num outside the combine program SAS will have
no idea what we are talking about and we will get an error indicating that the reference to &num was
unresolved.

The only other change to the program is that instead of executing the do loop exactly four times we now
execute it &num number of times. At the end of the code when we finally execute the new version of
the combine program we specify that we want to execute the do loop three times thus stacking together
file1, file2 and file3.

%macro combine(num);
 data big;
 set
 %do i = 1 %to #
 file&i
 %end;
 ;
 run;
%mend;

*executing the macro program;
%combine(3)
180 %combine(3)
MPRINT(COMBINE): data big;
MPRINT(COMBINE): set file1 file2 file3 ;
MPRINT(COMBINE): run;
NOTE: There were 3 observations read from the data set WORK.FILE1.
NOTE: There were 3 observations read from the data set WORK.FILE2.
NOTE: There were 3 observations read from the data set WORK.FILE3.
NOTE: The data set WORK.BIG has 9 observations and 1 variables.

A macro program for repeating a procedure multiple times

Suppose that we have a number of binary dependent variables and two independent variables. Our task
is to fit a logistic model for each of the dependent variables on the same two independent variables. We
could simply write a proc logistic for each model but this would be tedious and typing intensive.
Instead we choose to write a macro program which will automatically cycle through all the dependent
variables and fit a logistic model to each one of the dependent variables.

Let's first create a data set which consists of the dependent variables v1 to v5 and predictors ind1 and
ind2.

data xxx;
 input v1-v5 ind1 ind2;
 cards;
1 0 1 1 0 34 23
0 0 1 0 1 22 32
1 1 1 0 0 12 10
0 1 0 1 1 56 90
0 1 0 1 1 26 80

 431

1 1 0 0 0 46 45
0 0 0 1 1 57 53
1 1 0 0 0 22 77
0 1 0 1 1 44 45
1 1 0 0 0 41 72
;
run;

To get a better idea of how we will write the macro program let us first write a standard SAS program
for fitting the logistic model to v1.

proc logistic data = xxx descending;
 model v1 = ind1 ind2;
run;

What part of the program do we have to change? The key change will be in the model statement. The
following program will demonstrate one way of changing it. We create a do loop which will iterate
through each of the dependent variables and fit a logistic model for each one. We include a number
argument, called num, which will specify how many dependent variables we will be using. The do loop
takes advantage of the naming convention of the dependent variables.

%macro mylogit(num);
 %do i = 1 %to #
 title "dependent variable is v&i";
 proc logistic data=xxx des;
 model v&i = ind1 ind2;
 run;
 %end;
%mend;
*executing the macro using 5 dependent variable;
%mylogit(5)

This was merely the first attempt to automate the repetitive process. We can further modify the program
in many different ways.

Debugging a macro program

Before modifying our macro program, let's pause for a second. When we write SAS macro programs,
SAS actually will try to help us to detect errors in the program. Two SAS options are particularly useful:
mprint and mlogic. We have seen how option mprint helps us to see the translation process from a
macro program to regular SAS statements. Let's add these two options along with other SAS options.
Notice that, SAS spills out all the relevant information related to a macro program or macro variable to
log window. The other way to debug is to use the %put statement manually inside our macro program.
For example, in the example below, %put is used after the looping. We can see if the looping stops
correctly this way.

options mprint mlogic;
%macro mylogit(num);
 %do i = 1 %to #
 proc logistic data=xxx des;
 model v&i = ind1 ind2;
 run;
 %end;
 %put &i;

 432

%mend;

*executing the macro using 5 dependent variable;
%mylogit(5)
...
...
...
MLOGIC(MYLOGIT): %DO loop index variable I is now 6; loop will not iterate again.
MLOGIC(MYLOGIT): %PUT &i
6
MLOGIC(MYLOGIT): Ending execution.

Specifying dependent variable names

There are some limitation to the mylogit macro program in its current form; it only works iteratively
when the dependent variable names are of the form v1, v2 and so forth. We would like to modify the
mylogit macro to be able to take any type of dependent variable names and we would like to be able to
simply pass the macro a variable list as an argument and then the macro will fit a model to every
variable in that list. To accomplish this goal we make use of the macro function %scan which will scan
the list of dependent variables one at a time. The name of the dependent variable will then be stored in
the local macro variable dep which is then passed in to the logistic procedure. The while loop works in
that we are asking SAS to iterate the process until dep is equal to missing, in other words, the loop
iterates until the end of the list. We increment the local macro variable k for each iteration of the while
loop because &k is the position indicator in the variable list. Thus, for the first iteration of the while
loop &k=1, and the scan function stores the first variable in the dependent variable list in the local
macro variable dep. Then SAS fits a logistic model using the first variable in the list as the dependent
variable and then it increments &k=2. Now scan stores the second variable in the dependent variable
list in dep and this variable is used as the dependent variable in the logistic procedure. This continuous
until the dependent variable list has been exhausted at which point dep will be equal to missing and
SAS will exit the while loop.

%macro mylogit1(all_deps);
 %let k=1;
 %let dep = %scan(&all_deps, &k);
 %do %while("&dep" NE "");
 title "dependent variable is &dep";
 proc logistic data=xxx des;
 model &dep = ind1 ind2;
 run;
 %let k = %eval(&k + 1);
 %let dep = %scan(&all_deps, &k);
 %end;
%mend;

*run the program for the frist three v's;
%mylogit1(v1 v2 v3)

Saving the estimates to a data set

The next generalization that we would like to implement is to be able to save the estimates from each
logistic model in a data set. So, the macro program will now take two arguments: all_dep which is the
dependent variable list and outest which is the name of the data set containing the estimates of all the
logistic models. The mylogit1 macro program takes uses the outest option in the proc logistic

 433

statement to create a data set containing the parameter estimates for all the model fitted. The parameter
estimates for the first model fitted will be stored in the data set called _est1, the estimates for the second
model in the data set _est2 and so forth. If we specify a name for the outest argument then the program
tells SAS to stack all the data sets containing the parameter estimates in a data set with this name. If we
do not specify a name then the program uses a proc datasets to delete all the data sets containing the
parameter estimates.

%macro mylogit1(all_deps, outest);
 %let k=1;
 %let dep = %scan(&all_deps, &k);
 %do %while("&dep" NE "");
 title "dependent variable is &dep";
 proc logistic data=xxx des outest=_est&k;
 model &dep = ind1 ind2;
 run;
 %let k = %eval(&k + 1);
 %let dep = %scan(&all_deps, &k);
 %end;
 %if "&outest" NE "" %then
 %do;
 data &outest;
 set
 %do i = 1 %to &k - 1;
 _est&i
 %end;
 ;
 run;
 %let k = %eval(&k - 1);
 proc datasets;
 delete _est1 - _est&k;
 run;
 %end;
 %else
 %do;
 %put no dataset name was provided, files are not combined;
 %end;
%mend;
%mylogit1(v1 v2 v3)

%mylogit1(v1 v2 v3, a)
proc print data = a;
 var intercept ind1 ind2;
run;

Obs Intercept ind1 ind2

 1 2.4570 -0.04282 -0.01709
 2 0.3278 -0.09480 0.09078
 3 33.3421 -0.50434 -0.40122

A more flexible version of the same macro program

We can generalize the macro program even more. The new version of the macro program called
mylogita will allow the user to specify an input data file, a list of dependent variables, a list of
predictors and an output data set containing the parameter estimates. This macro program actually
contains two types of arguments: positional arguments and non-positional arguments. The non-

 434

positional arguments are followed by an equal sign and possibly a default value. The argument indvars
is an example of a non-positional argument which does not have a defaults value and the argument
outest is a non-positional argument with the default value of _out. The arguments indata and all_deps
are both examples of positional arguments. The difference between these types of arguments occur
when we want to execute the macro program. Positional arguments must appear in the code executing
the macro in the exact same order they appear in the macro program. In other words, the name of the
input data set has to be the first argument in the code, the list of dependent variables has to be the
second argument. The order of the list of independent variables and the name of the data set containing
the parameter estimates is not fixed. We can change the order of these arguments, all we have to do is
specify which argument we are giving the value for by including the name of the argument and an equal
sign and the value. Thus, in the first example where we execute the mylogita macro we declare that the
list of independent variables should include ind1 and ind2 (by specifying indvars = ind1 ind2) and that
the name of the data set containing the parameter estimates should be myparms (by specifying outest =
myparms). In the second example we switch the order of these two arguments without any problems
since we use the argument name, equal sign and value syntax.

%macro mylogita(indata, all_deps, indvars =, myout =_out);
 %let k=1;
 %let dep = %scan(&all_deps, &k);
 %do %while(&dep NE);
 title "The dependent variable is &dep";
 title2 "The independent variables are &indvars";
 proc logistic data=&indata des outest=est&k;
 model &dep = &indvars;
 run;
 %let k = %eval(&k + 1);
 %let dep = %scan(&all_deps, &k);
 %end;
 data &myout;
 set
 %do i = 1 %to &k - 1;
 est&i
 %end;
 ;
 run;
%mend;
*run the program;
%mylogita(xxx, v1 v2 v3, indvars = ind1 ind2, myout = myparms)

title;
proc print data = myparms;
 var _name_ intercept ind1 ind2;
run;
Obs _NAME_ Intercept ind1 ind2
 1 v1 2.4570 -0.04282 -0.01709
 2 v2 0.3278 -0.09480 0.09078
 3 v3 33.3421 -0.50434 -0.40122
* run the program again: unpositional arguments can be reordered;
%mylogita(hsb2,female, myout = myparm1, indvars = write math)

title;
proc print data = myparm1;
 var _name_ intercept write math;
run;
Obs _NAME_ Intercept write math
 1 female -3.49607 0.068307 -0.022230

 435

Summary:

In this long section, we have mentioned the following.

• defining a SAS macro program with %macro and %mend;
• making use of %let statement to create macro variables inside a macro program;
• making use of macro functions such as %scan and %eval;
• how to call a SAS macro program (executing a macro program);
• how to debug a SAS macro program;
• positional vs. non-positional arguments;

SAS Graphics

Topics

• Graph-N-Go
• SAS/INSIGHT
• SAS/ANALYST
• SAS/PROCS

1. Graph-N-Go

Graph-N-Go is mainly for reporting. Its strong point is in its flexibility to save a plot in various formats,
including graphic format and html format. Its week point is that it only support a few graph types. We
will show how to save a graph into a dynamic html format, so the graph can be modified later. We will
also show how to save a graph in a graphic format.

 Menu: Solution-->Reporting-->Graph-N-Go

• Bar Graph: Reading vs. Ses
o Reading in a data set
o Choose bar chart icon for a bar chart
o Choose variables--> category variable vs. response variable
o Titles/Footnotes--> text, font, color, etc
o Appearance--> Color scheme, bar style, etc
o No need to adjust the size, it can be done later
o Right click on the graph, choose Grow/Shrink to resize the graph
o Right click on the graph, choose Category to change the categorical variable to get a

different bar chart
o Right click on the graph and choose Export to save the plot to a file: html-->Interactive

activeX

Here is the html page that has been created.

http://www.ats.ucla.edu/stat/sas/seminars/sasGraphics/reading_ses.html

 436

• Within the html file we just created, we can change the plot and save it later as a gif file.
o -->Options-->Axis-->Label options-->Customer Label
o -->Options-->Data-->Statistic
o -->Options-->Legend
o -->Bar options->Color and Shape

• Regression type of plots
o Choose new plot icon for a scatter plot
o Choose variables, reading score and math score
o Choose plotting style to be regression style to get the confidence interval band
o Choose Export to save it to a graphic file in .gif format

2. SAS/Insight

SAS/Insight is another package that can be used to explore variables and relationships among variables.
Its strong point is that it offers a lot of good detailed information on variables, such univariate statistics.
You can save all the graphs to gif files, or other graphic format files. But it is not easy to modify the
style or the color of the graphs. Its interactive feature makes it strong for exploring data both graphically
and analytically.

• Solutions-->Analysis-->Interactive Data Analysis
• Choose a data set: Libname (Directory)-->Data set name

 437

• Choose an analysis
o Univariate Analysis: Analyze-->Distribution(Y)
o File-->Save-->Graphics Files-->Specify the path and choose One Per File

o Rotating plot (Y Z X)

 438

3. SAS/Analyst

SAS/Analyst tries to be both for exploring and reporting. It is a good place to start to have a look at the
graphs that you are interested. There are many types of graphs that you can create and the best part of it
is that it also creates the SAS code for generating the plots in case you want to change some of the
settings or modify the code for other use. This is not only true for graphics, it is also true for statistical
analyses.

 439

• Solutions-->Analysis-->Analyst
• File-->Open by SAS Name
• Choose an analysis or a graph type

o Stacked bar chart

• SAS code generated automatically:
• *---+
• | Generated: Tuesday, May 14, 2002 11:39:23 |
• | Data: c:\temp_TD416\Hsb2 |
• +---*;
• title;
• footnote;
• goptions ftext=SWISS ctext=BLACK htext=1.0 cells;
• goptions colors=(red green blue cyan purple tan pink orange
• brown yellow plum peru salmon lime);
• axis1 label=(a=90 r=0);

 440

• pattern value=solid;
• *** Produce bar charts ***;
•
• proc gchart data=Work.Hsb2 ;
• vbar3d WRITE
• / description="Vertical Bar Chart of WRITE"
• frame
• woutline=1
• type=FREQ
• group=female
• subgroup=GROUP
• coutline=CX008080
• cframe=CXF7E1C2
• inside=FREQ
• ;
• run;
• goptions ftext= ctext= htext= ;
• quit;
•

4. SAS/Procs: Univariate, Boxplot, Gplot, Gchart, G3d to create customized more complex plots.

proc univariate data = hsb2 noprint;
histogram write;
run;

/*A better one of the same histogram.*/
proc univariate data = hsb2 noprint;
title "Histogram for variable write";
histogram write /cfill=ligr normal cframe=liy barwidth=8 cv=black;
inset mean std max min;
run;

 441

title;

proc sort data = hsb2;
 by group;
run;
goptions reset = all;
proc boxplot data = hsb2;
 plot math*group;
run;

 442

goptions reset = all;
axis1 value=("Group 1" "Group 2" "Group 3" "Group 4") label=('Group');
axis2 label = ('Math Score' a=90 justify=center);
proc boxplot data = hsb2;
 title1 'Boxplot of Math Score vs. group';
 plot math*group /boxconnect=mean boxstyle=schematic haxis=axis1 vaxis = axis2;
run;

 443

goptions reset = all gunit=pct border cback=white
 colors=(blue green red black) ftext=swiss
 ftitle=swissb htitle=3 htext=3.5 ctitle=black ctext=black;
axis1 label=(a=90 'Mean for Variable Write') minor=none;

proc gchart data=hsb2;
 vbar group /sumvar=write axis=axis1
 ERRORBAR= bars width = 5 gspace=2 discrete
 type=mean cframe=ligr coutline= blue cerror=black;
run;
quit;

goptions reset = all;
symbol1 i = none c = blue v = dot w=1 pointlabel=("#id");
symbol2 i = none c = red v = dot;
proc gplot data = hsb2;
 plot write*math = 1 ;
where math > 60;
run;
quit;

 444

symbol1 i = none c = blue v = diamond;
symbol2 i = none c = red v = triangle;
proc gplot data=hsb2;
 plot math*read =1 science*read =2 /overlay hminor=0 vminor=0;
run;
quit;

proc sort data= hsb2;
by read;
run;

 445

symbol1 i = join v=star c=blue l = 1;
symbol2 i = join v=circle c=red l = 21;
proc glm data = hsb2;
 model write = read female female*read ;
 output out= pred p=pred;
run;
quit;
proc gplot data = pred;
 plot pred*read = female /overlay;
run;
quit;

proc g3d data= hsb2;
 scatter write*read =math;
run;
quit;

 446

5. Regression diagnostic plots

/*regression diagnostic plots from proc reg*/
proc reg data = hsb2 noprint;
 model write = female math ;
 plot rstudent.*predicted. / vref =(-3 3) vrefl=4 cvrefl=red;
 plot rstudent.*obs.;
 plot cookd.*predicted.;
 plot cookd.*obs.;
run;
quit;

 447

 448

	 Introduction to the features of SAS
	1. Introduction
	2. Descriptive statistics in SAS
	3. Making graphs in SAS
	4. Correlation, regression and analysis of variance
	 Using SAS Display Manager
	Starting SAS
	Summary

	
	Descriptive statistics
	1. Introduction
	2. Using proc freq for frequencies
	3. Using proc means for summary statistics
	4. Using proc univariate for detailed summary statistics
	5. Problems to look out for
	1. Introduction and description of data
	2. T-tests
	3. Chi-square tests
	4. Correlation
	5. Regression
	6. Analysis of variance (and analysis of covariance)

	 Graphing data in SAS
	1. Introduction and description of data
	2. Creating charts with proc gchart
	3. Creating Scatter plots with proc gplot
	4. Customizing with proc gplot and symbol statements
	5. Problems to look out for

	Using where with SAS procedures
	1. Introduction
	2. Basic use of the where statement
	3. Missing values and the where statement
	4. More complex where statements
	5. Problems to look out for

	Missing data in SAS
	1. Introduction
	2. How SAS handles missing data in SAS procedures
	3. Summary of how missing values are handled in SAS procedures
	4. Missing values in assignment statements
	5. Missing values in logical statements
	6. Problems to look out for

	SAS system options
	1. SAS system options
	2. Log, output and procedure options
	3. SAS data set control options
	4. Error handling options
	5. Reading and writing data options

	 An overview of the syntax of SAS procedures
	1. Introduction
	2. Using a procedure with no options
	3. Using options on the PROC statement
	4. Using additional statements
	5. Options on additional statements
	6. More examples
	7. Problems to look out for

	 Common error messages in SAS
	1. The log
	2. Finding and correcting errors
	3. Common errors
	3.1 Misspellings
	3.2 Unmatched quotes/comments
	3.3 Mixing proc and data statements
	3.4 Using options with the wrong proc
	4. Understanding common error messages

	Inputting data into SAS
	1. Reading free formatted data instream
	2. Reading fixed formatted data instream
	3. Reading fixed formatted data from an external file
	4. Reading free formatted (space delimited) data from an external file
	5. Reading free formatted (comma delimited) data from an external file
	6. Reading free formatted (tab delimited) data from an external file
	7. Problems to look out for

	Using dates
	1. Reading dates in data
	2. SAS dates and Y2K
	3. Computations with elapsed dates
	4. Other useful date functions
	5. Summary
	6. Problems to look out for

	 Creating and recoding variables in SAS
	1. Creating and replacing variables in SAS
	2. Recoding variables in SAS
	3. Problems to look out for
	4. Helpful hints and suggestions

	Using SAS functions for making and recoding variables
	1. Introduction
	2. Random numbers in SAS
	3. Problems to look out for
	4. For more information

	Subsetting data in SAS
	1. Introduction
	2. Subsetting variables
	3. Subsetting observations
	4. Problems to look out for

	Labeling
	1. Introduction
	2. Creating variable labels
	3. Creating and using value labels
	4. Problems to look out for

	Using proc sort and by statements
	1. Introduction
	2. Sorting data with proc sort
	3. Removing duplicates with proc sort
	4. Obtaining separate analyses with sorted data
	5. Problems to look out for

	Making and using permanent SAS data files (version 8)
	Concatenating data files in SAS
	1. Introduction
	2. Concatenating the moms and dads
	3. Concatenating the moms and dads, a better example
	4. Problems to look out for
	4.1. The two data files have different variable names for the same thing
	4.2 The two data files have different lengths for variables of the same name
	4.3 The two data files have variables with the same name but different codes

	Working across variables
	1. Introduction
	2. Computing variables (manually)
	3. Computing variables (using the array statement)
	4. Collapsing across variables (manually)
	5. Collapsing across variables (using the array statement)
	6. Identifying patterns across variables (using the array statement)

	Match merging data files in SAS
	1. Introduction
	2. One-to-one merge
	3. One-to-many merge
	4. Problems to look out for
	4.1 Mismatching records in one-to-one merge
	4.2 Variables with the same name, but different information

	
	
	Regression with SAS Chapter 1 - Simple and Multiple Regression
	Regression with SAS Chapter 2 - Regression Diagnostics
	Regression with SAS Chapter 3 - Regression with Categorical Predictors
	Regression with SAS Chapter 4 - Beyond OLS
	
	
	Regression with SAS Chapter 5: Additional coding systems for categorical variables in regression analysis
	Regression with SAS Chapter 6 - More on Interactions of Categorical Predictors
	Regression with SAS Chapter 7: Categorical and Continuous Predictors and Interactions
	Demo Analysis #1
	Demo Analysis #2
	Demo Analysis #3
	Demo Analysis #4
	Creating Graphs of the Means for Demo Analysis #4
	Exercise data examples
	Exercise example, model 1 (time and diet)
	Exercise example, model 2 (time and exercise type)
	Further Issues
	Variance-Covariance Structures
	SAS Exercise example, model 2 using Proc Mixed
	Creating Graphs of the Means for Proc Mixed, model 2 (time and exertype)
	Exercise example, model 3 (time, diet and exertype)--Proc Glm
	Creating Graphs for model 3 Using Proc Glm
	Exercise example, model 3 (time, diet and exertype)--Proc Mixed
	Creating Graphs for model 3 Using Proc Mixed
	Contrasts and interaction contrasts for model 3

	Unequally Spaced Time Points
	Modeling Time as a Linear Predictor of Pulse
	Modeling Time as a Quadratic Predictor of Pulse
	Modeling Time as a Quadratic Predictor of Pulse, Interacting by Exertype

	Statistical Computing Seminar Proc Logistic and Logistic Regression Models
	Introduction
	Logistic Regression Models
	A Simple Model
	A Model with a Continuous Predictor and a Categorical Predictor
	Other Features of Proc Logistic
	Exact Logistic Regression
	Generalized Logits Model for Multinomial Logistic Models
	A Simple Example
	Saturated Model Example
	Model With Only Main Effect
	Proportional Odds Model for Ordinal Logistic Models
	A Simple Example
	An Example With Only Categorical Predictors
	A Example with a Continuous Predictor
	Another Example -- Proportional Odds Assumption Test and Goodness of Fit
	Summary

	Survival Analysis with SAS
	Background for Survival Analysis
	The UIS data
	Exploring the data: Univariate Analyses
	Model Building
	Interactions
	Proportionality Assumption
	Graphing Survival Functions from Proc phreg

	Statistical Computing Seminar Introduction to Multilevel Modeling Using SAS
	Outline
	School Effect Model
	Linear Growth Model

	Arrays in SAS
	Recoding variables
	Applying the same math computation to many variables at a time
	Computing new variables
	Collapsing over variables
	Identify patterns across variables using arrays
	Reshaping wide to long
	Understanding the functions first., last. and the retain statement
	Reshaping long to wide using arrays
	Comparisons across observations using arrays

	Introduction to SAS Macro Language
	Macro Variables
	Macro functions
	Symput and symget function to pass information to and from a data step
	Creating macro variables using proc sql
	Creating a list of file names for a data step using a macro program
	A macro program for repeating a procedure multiple times

	SAS Graphics
	Topics

